nikhilchigali commited on
Commit
dd7cf46
1 Parent(s): 59fef1d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md CHANGED
@@ -18,4 +18,54 @@ configs:
18
  data_files:
19
  - split: train
20
  path: data/train-*
 
 
 
 
 
 
21
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  data_files:
19
  - split: train
20
  path: data/train-*
21
+ task_categories:
22
+ - sentence-similarity
23
+ language:
24
+ - en
25
+ size_categories:
26
+ - 100K<n<1M
27
  ---
28
+
29
+ # Dataset Card for "wikianswers_embeddings_384"
30
+ ## Dataset Summary
31
+ `nikhilchigali/wikianswers_embeddings_384` is a subset of the `embedding-data/WikiAnswers` ([Link](https://huggingface.co/datasets/embedding-data/WikiAnswers))
32
+ As opposed to the original dataset with 3,386,256 rows, this dataset contains only .13% of the total rows(sets). The sets of sentences have been unraveled into individual items with corresponding cluster IDs to identify sentences from the same set. Each Sentence has its associated cluster ID and embeddings of dimension 384.
33
+
34
+ ## Languages
35
+ English.
36
+
37
+ ## Dataset Structure
38
+ Each example in the dataset contains a sentence and its cluster id of other equivalent sentences. The sentences in the same cluster are paraphrases of each other. The embeddings for the dataset are created using the `all-MiniLM-L6-v2` model.
39
+ ```
40
+ {"sentence": [sentence], "cluster": [cluster_id], "embedding_384": [embeddings]}
41
+ {"sentence": [sentence], "cluster": [cluster_id], "embedding_384": [embeddings]}
42
+ {"sentence": [sentence], "cluster": [cluster_id], "embedding_384": [embeddings]}
43
+ ...
44
+ {"sentence": [sentence], "cluster": [cluster_id], "embedding_384": [embeddings]}
45
+ ```
46
+ ### Usage Example
47
+ Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:
48
+
49
+ ```python
50
+ from datasets import load_dataset
51
+ dataset = load_dataset("nikhilchigali/wikianswers_embeddings_384")
52
+ ```
53
+
54
+ The dataset is loaded as a DatasetDict and has the format for N examples:
55
+
56
+ ```python
57
+ DatasetDict({
58
+ train: Dataset({
59
+ features: ['sentence', "cluster", "embedding_384"],
60
+ num_rows: N
61
+ })
62
+ })
63
+ ```
64
+
65
+ Review an example i with:
66
+ ```python
67
+ dataset["train"][i]
68
+ ```
69
+ ## Source Data
70
+ `embedding-data/WikiAnswers` on HuggingFace ([Link](https://huggingface.co/datasets/embedding-data/WikiAnswers))
71
+ ### Note: This dataset is for the owner's personal use and claims no rights whatsoever.