Update README.md
Browse filesadd description for custom-caption part
README.md
CHANGED
@@ -109,10 +109,15 @@ sentences = [
|
|
109 |
"Create the original colors of this image"
|
110 |
]
|
111 |
```
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
### Loading the Dataset
|
114 |
|
115 |
-
You can load this dataset using the Hugging Face `datasets` library:
|
116 |
```python
|
117 |
from datasets import load_dataset
|
118 |
```
|
@@ -133,6 +138,14 @@ train_dataset = load_dataset("nickpai/coco2017-colorization", split="train", rev
|
|
133 |
val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation", revision="caption-free")
|
134 |
```
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
## Filtering Criteria
|
137 |
|
138 |
### 1. Grayscale Images
|
@@ -147,4 +160,5 @@ val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation",
|
|
147 |
- Images with low color variance, determined by a specified threshold, are removed.
|
148 |
- Low color variance can indicate poor image quality or uniform color distribution.
|
149 |
|
150 |
-
For more details about the filtering criteria,
|
|
|
|
109 |
"Create the original colors of this image"
|
110 |
]
|
111 |
```
|
112 |
+
- **custom-caption:** Provides prompts generated by
|
113 |
+
[CLIP Interrogator](https://github.com/pharmapsychotic/clip-interrogator/tree/main) with `'ViT-H-14/laion2b_s32b_b79k'` model.
|
114 |
+
Then filter with `'csv_filter.py'` to remove unlikely words, such as black and white, monochrome, grainy, desaturated, etc.
|
115 |
+
For more details about the prompts filtering criteria,
|
116 |
+
refer to the [Dataset-for-Image-Colorization](https://github.com/nick8592/Dataset-for-Image-Colorization.git) repository.
|
117 |
|
118 |
### Loading the Dataset
|
119 |
|
120 |
+
You can load this dataset using the Hugging Face `'datasets'` library:
|
121 |
```python
|
122 |
from datasets import load_dataset
|
123 |
```
|
|
|
138 |
val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation", revision="caption-free")
|
139 |
```
|
140 |
|
141 |
+
#### Custom-Caption Branch
|
142 |
+
```python
|
143 |
+
# Load the train split of the colorization dataset from the custom-caption branch
|
144 |
+
train_dataset = load_dataset("nickpai/coco2017-colorization", split="train", revision="custom-caption")
|
145 |
+
# Load the validation split of the colorization dataset from the custom-caption branch
|
146 |
+
val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation", revision="custom-caption")
|
147 |
+
```
|
148 |
+
|
149 |
## Filtering Criteria
|
150 |
|
151 |
### 1. Grayscale Images
|
|
|
160 |
- Images with low color variance, determined by a specified threshold, are removed.
|
161 |
- Low color variance can indicate poor image quality or uniform color distribution.
|
162 |
|
163 |
+
For more details about the image filtering criteria,
|
164 |
+
refer to the [Dataset-for-Image-Colorization](https://github.com/nick8592/Dataset-for-Image-Colorization.git) repository.
|