ngaggion commited on
Commit
b2c3b4b
·
verified ·
1 Parent(s): 1d77aef

Upload multiclass model

Browse files
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/dataset.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "channel_names": {
3
+ "0": "Image"
4
+ },
5
+ "labels": {
6
+ "background": 0,
7
+ "main root": 1,
8
+ "lateral root": 2,
9
+ "seed": 3,
10
+ "hypocotil": 4,
11
+ "leaf": 5,
12
+ "petiole": 6
13
+ },
14
+ "numTraining": 945,
15
+ "file_ending": ".png"
16
+ }
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/dataset_fingerprint.json ADDED
The diff for this file is too large to render. See raw diff
 
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/checkpoint_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6f0a581da077277f5beb6938818d6bbec7ef3a7b3b199315e02eec6154853a8
3
+ size 268599250
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:029d9483c029270f1f84b8e1dc073b82aadfbd9c85f3dae0c68d50e72b136a9c
3
+ size 268600726
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "12",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 12, 'patch_size': [448, 576], 'median_image_size_in_voxels': [2464.0, 3280.0], 'spacing': [1.0, 1.0], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
5
+ "configuration_name": "2d",
6
+ "cudnn_version": 90100,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7b7d52794920>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7b7d53166cf0>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [448, 576], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-3.141592653589793, 3.141592653589793), angle_y = (0, 0), angle_z = (0, 0), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[np.float64(1.0), np.float64(1.0)], [np.float64(0.5), np.float64(0.5)], [np.float64(0.25), np.float64(0.25)], [np.float64(0.125), np.float64(0.125)], [np.float64(0.0625), np.float64(0.0625)], [np.float64(0.03125), np.float64(0.03125)]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7b7d527c65d0>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7b7d53167290>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[np.float64(1.0), np.float64(1.0)], [np.float64(0.5), np.float64(0.5)], [np.float64(0.25), np.float64(0.25)], [np.float64(0.125), np.float64(0.125)], [np.float64(0.0625), np.float64(0.0625)], [np.float64(0.03125), np.float64(0.03125)]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'channel_names': {'0': 'Image'}, 'labels': {'background': 0, 'main root': 1, 'lateral root': 2, 'seed': 3, 'hypocotil': 4, 'leaf': 5, 'petiole': 6}, 'numTraining': 945, 'file_ending': '.png'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "0",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "NVIDIA GeForce RTX 3090",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7b7d52797860>",
23
+ "hostname": "apoloml-B760M-K-DDR4",
24
+ "inference_allowed_mirroring_axes": "(0, 1)",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7b7d526bc980>",
29
+ "local_rank": "0",
30
+ "log_file": "nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/training_log_2025_1_20_15_33_32.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7b7d53167230>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7b7d527e2ea0>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset789_ChronoRoot2', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [999.0, 1.0, 1.0], 'original_median_shape_after_transp': [1, 2464, 3280], 'image_reader_writer': 'NaturalImage2DIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 12, 'patch_size': [448, 576], 'median_image_size_in_voxels': [2464.0, 3280.0], 'spacing': [1.0, 1.0], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 225.0, 'mean': 119.90813446044922, 'median': 122.0, 'min': 0.0, 'percentile_00_5': 0.3148415684700012, 'percentile_99_5': 196.0, 'std': 38.823753356933594}}}, 'configuration': '2d', 'fold': 0, 'dataset_json': {'channel_names': {'0': 'Image'}, 'labels': {'background': 0, 'main root': 1, 'lateral root': 2, 'seed': 3, 'hypocotil': 4, 'leaf': 5, 'petiole': 6}, 'numTraining': 945, 'file_ending': '.png'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "1000",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0",
42
+ "output_folder_base": "nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset789_ChronoRoot2', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [999.0, 1.0, 1.0], 'original_median_shape_after_transp': [1, 2464, 3280], 'image_reader_writer': 'NaturalImage2DIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 12, 'patch_size': [448, 576], 'median_image_size_in_voxels': [2464.0, 3280.0], 'spacing': [1.0, 1.0], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 225.0, 'mean': 119.90813446044922, 'median': 122.0, 'min': 0.0, 'percentile_00_5': 0.3148415684700012, 'percentile_99_5': 196.0, 'std': 38.823753356933594}}}",
45
+ "preprocessed_dataset_folder": "nnUNet_preprocessed/Dataset789_ChronoRoot2/nnUNetPlans_2d",
46
+ "preprocessed_dataset_folder_base": "nnUNet_preprocessed/Dataset789_ChronoRoot2",
47
+ "save_every": "50",
48
+ "torch_version": "2.5.1",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/progress.png ADDED

Git LFS Details

  • SHA256: 86554b2a447d849f860331604fc048c0e8a487234ebf95cff8c501b218076ab2
  • Pointer size: 131 Bytes
  • Size of remote file: 557 kB
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/training_log_2025_1_20_15_33_32.txt ADDED
The diff for this file is too large to render. See raw diff
 
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/plans.json ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset789_ChronoRoot2",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 999.0,
6
+ 1.0,
7
+ 1.0
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 1,
11
+ 2464,
12
+ 3280
13
+ ],
14
+ "image_reader_writer": "NaturalImage2DIO",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 12,
30
+ "patch_size": [
31
+ 448,
32
+ 576
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 2464.0,
36
+ 3280.0
37
+ ],
38
+ "spacing": [
39
+ 1.0,
40
+ 1.0
41
+ ],
42
+ "normalization_schemes": [
43
+ "ZScoreNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "UNet_class_name": "PlainConvUNet",
49
+ "UNet_base_num_features": 32,
50
+ "n_conv_per_stage_encoder": [
51
+ 2,
52
+ 2,
53
+ 2,
54
+ 2,
55
+ 2,
56
+ 2,
57
+ 2
58
+ ],
59
+ "n_conv_per_stage_decoder": [
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 2,
65
+ 2
66
+ ],
67
+ "num_pool_per_axis": [
68
+ 6,
69
+ 6
70
+ ],
71
+ "pool_op_kernel_sizes": [
72
+ [
73
+ 1,
74
+ 1
75
+ ],
76
+ [
77
+ 2,
78
+ 2
79
+ ],
80
+ [
81
+ 2,
82
+ 2
83
+ ],
84
+ [
85
+ 2,
86
+ 2
87
+ ],
88
+ [
89
+ 2,
90
+ 2
91
+ ],
92
+ [
93
+ 2,
94
+ 2
95
+ ],
96
+ [
97
+ 2,
98
+ 2
99
+ ]
100
+ ],
101
+ "conv_kernel_sizes": [
102
+ [
103
+ 3,
104
+ 3
105
+ ],
106
+ [
107
+ 3,
108
+ 3
109
+ ],
110
+ [
111
+ 3,
112
+ 3
113
+ ],
114
+ [
115
+ 3,
116
+ 3
117
+ ],
118
+ [
119
+ 3,
120
+ 3
121
+ ],
122
+ [
123
+ 3,
124
+ 3
125
+ ],
126
+ [
127
+ 3,
128
+ 3
129
+ ]
130
+ ],
131
+ "unet_max_num_features": 512,
132
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
133
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
134
+ "resampling_fn_data_kwargs": {
135
+ "is_seg": false,
136
+ "order": 3,
137
+ "order_z": 0,
138
+ "force_separate_z": null
139
+ },
140
+ "resampling_fn_seg_kwargs": {
141
+ "is_seg": true,
142
+ "order": 1,
143
+ "order_z": 0,
144
+ "force_separate_z": null
145
+ },
146
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
147
+ "resampling_fn_probabilities_kwargs": {
148
+ "is_seg": false,
149
+ "order": 1,
150
+ "order_z": 0,
151
+ "force_separate_z": null
152
+ },
153
+ "batch_dice": true
154
+ }
155
+ },
156
+ "experiment_planner_used": "ExperimentPlanner",
157
+ "label_manager": "LabelManager",
158
+ "foreground_intensity_properties_per_channel": {
159
+ "0": {
160
+ "max": 225.0,
161
+ "mean": 119.90813446044922,
162
+ "median": 122.0,
163
+ "min": 0.0,
164
+ "percentile_00_5": 0.3148415684700012,
165
+ "percentile_99_5": 196.0,
166
+ "std": 38.823753356933594
167
+ }
168
+ }
169
+ }