Datasets:
Tasks:
Image Segmentation
Formats:
text
Languages:
English
Size:
10K - 100K
Tags:
plant root phenotyping
License:
Upload multiclass model
Browse files- nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/dataset.json +16 -0
- nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/dataset_fingerprint.json +0 -0
- nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/checkpoint_best.pth +3 -0
- nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/checkpoint_final.pth +3 -0
- nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/debug.json +52 -0
- nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/progress.png +3 -0
- nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/training_log_2025_1_20_15_33_32.txt +0 -0
- nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/plans.json +169 -0
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/dataset.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"channel_names": {
|
3 |
+
"0": "Image"
|
4 |
+
},
|
5 |
+
"labels": {
|
6 |
+
"background": 0,
|
7 |
+
"main root": 1,
|
8 |
+
"lateral root": 2,
|
9 |
+
"seed": 3,
|
10 |
+
"hypocotil": 4,
|
11 |
+
"leaf": 5,
|
12 |
+
"petiole": 6
|
13 |
+
},
|
14 |
+
"numTraining": 945,
|
15 |
+
"file_ending": ".png"
|
16 |
+
}
|
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/dataset_fingerprint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6f0a581da077277f5beb6938818d6bbec7ef3a7b3b199315e02eec6154853a8
|
3 |
+
size 268599250
|
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:029d9483c029270f1f84b8e1dc073b82aadfbd9c85f3dae0c68d50e72b136a9c
|
3 |
+
size 268600726
|
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "12",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 12, 'patch_size': [448, 576], 'median_image_size_in_voxels': [2464.0, 3280.0], 'spacing': [1.0, 1.0], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}",
|
5 |
+
"configuration_name": "2d",
|
6 |
+
"cudnn_version": 90100,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7b7d52794920>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7b7d53166cf0>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [448, 576], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-3.141592653589793, 3.141592653589793), angle_y = (0, 0), angle_z = (0, 0), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[np.float64(1.0), np.float64(1.0)], [np.float64(0.5), np.float64(0.5)], [np.float64(0.25), np.float64(0.25)], [np.float64(0.125), np.float64(0.125)], [np.float64(0.0625), np.float64(0.0625)], [np.float64(0.03125), np.float64(0.03125)]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7b7d527c65d0>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_2d.nnUNetDataLoader2D object at 0x7b7d53167290>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[np.float64(1.0), np.float64(1.0)], [np.float64(0.5), np.float64(0.5)], [np.float64(0.25), np.float64(0.25)], [np.float64(0.125), np.float64(0.125)], [np.float64(0.0625), np.float64(0.0625)], [np.float64(0.03125), np.float64(0.03125)]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'channel_names': {'0': 'Image'}, 'labels': {'background': 0, 'main root': 1, 'lateral root': 2, 'seed': 3, 'hypocotil': 4, 'leaf': 5, 'petiole': 6}, 'numTraining': 945, 'file_ending': '.png'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "0",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA GeForce RTX 3090",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7b7d52797860>",
|
23 |
+
"hostname": "apoloml-B760M-K-DDR4",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7b7d526bc980>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/training_log_2025_1_20_15_33_32.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7b7d53167230>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7b7d527e2ea0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset789_ChronoRoot2', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [999.0, 1.0, 1.0], 'original_median_shape_after_transp': [1, 2464, 3280], 'image_reader_writer': 'NaturalImage2DIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 12, 'patch_size': [448, 576], 'median_image_size_in_voxels': [2464.0, 3280.0], 'spacing': [1.0, 1.0], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 225.0, 'mean': 119.90813446044922, 'median': 122.0, 'min': 0.0, 'percentile_00_5': 0.3148415684700012, 'percentile_99_5': 196.0, 'std': 38.823753356933594}}}, 'configuration': '2d', 'fold': 0, 'dataset_json': {'channel_names': {'0': 'Image'}, 'labels': {'background': 0, 'main root': 1, 'lateral root': 2, 'seed': 3, 'hypocotil': 4, 'leaf': 5, 'petiole': 6}, 'numTraining': 945, 'file_ending': '.png'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0",
|
42 |
+
"output_folder_base": "nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset789_ChronoRoot2', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [999.0, 1.0, 1.0], 'original_median_shape_after_transp': [1, 2464, 3280], 'image_reader_writer': 'NaturalImage2DIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 12, 'patch_size': [448, 576], 'median_image_size_in_voxels': [2464.0, 3280.0], 'spacing': [1.0, 1.0], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 225.0, 'mean': 119.90813446044922, 'median': 122.0, 'min': 0.0, 'percentile_00_5': 0.3148415684700012, 'percentile_99_5': 196.0, 'std': 38.823753356933594}}}",
|
45 |
+
"preprocessed_dataset_folder": "nnUNet_preprocessed/Dataset789_ChronoRoot2/nnUNetPlans_2d",
|
46 |
+
"preprocessed_dataset_folder_base": "nnUNet_preprocessed/Dataset789_ChronoRoot2",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.5.1",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/progress.png
ADDED
![]() |
Git LFS Details
|
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/fold_0/training_log_2025_1_20_15_33_32.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
nnUNet_results/Dataset789_ChronoRoot2/nnUNetTrainer__nnUNetPlans__2d/plans.json
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset789_ChronoRoot2",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
999.0,
|
6 |
+
1.0,
|
7 |
+
1.0
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
1,
|
11 |
+
2464,
|
12 |
+
3280
|
13 |
+
],
|
14 |
+
"image_reader_writer": "NaturalImage2DIO",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 12,
|
30 |
+
"patch_size": [
|
31 |
+
448,
|
32 |
+
576
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
2464.0,
|
36 |
+
3280.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
1.0,
|
40 |
+
1.0
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"ZScoreNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2,
|
57 |
+
2
|
58 |
+
],
|
59 |
+
"n_conv_per_stage_decoder": [
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
2,
|
65 |
+
2
|
66 |
+
],
|
67 |
+
"num_pool_per_axis": [
|
68 |
+
6,
|
69 |
+
6
|
70 |
+
],
|
71 |
+
"pool_op_kernel_sizes": [
|
72 |
+
[
|
73 |
+
1,
|
74 |
+
1
|
75 |
+
],
|
76 |
+
[
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
[
|
81 |
+
2,
|
82 |
+
2
|
83 |
+
],
|
84 |
+
[
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
[
|
89 |
+
2,
|
90 |
+
2
|
91 |
+
],
|
92 |
+
[
|
93 |
+
2,
|
94 |
+
2
|
95 |
+
],
|
96 |
+
[
|
97 |
+
2,
|
98 |
+
2
|
99 |
+
]
|
100 |
+
],
|
101 |
+
"conv_kernel_sizes": [
|
102 |
+
[
|
103 |
+
3,
|
104 |
+
3
|
105 |
+
],
|
106 |
+
[
|
107 |
+
3,
|
108 |
+
3
|
109 |
+
],
|
110 |
+
[
|
111 |
+
3,
|
112 |
+
3
|
113 |
+
],
|
114 |
+
[
|
115 |
+
3,
|
116 |
+
3
|
117 |
+
],
|
118 |
+
[
|
119 |
+
3,
|
120 |
+
3
|
121 |
+
],
|
122 |
+
[
|
123 |
+
3,
|
124 |
+
3
|
125 |
+
],
|
126 |
+
[
|
127 |
+
3,
|
128 |
+
3
|
129 |
+
]
|
130 |
+
],
|
131 |
+
"unet_max_num_features": 512,
|
132 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
133 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
134 |
+
"resampling_fn_data_kwargs": {
|
135 |
+
"is_seg": false,
|
136 |
+
"order": 3,
|
137 |
+
"order_z": 0,
|
138 |
+
"force_separate_z": null
|
139 |
+
},
|
140 |
+
"resampling_fn_seg_kwargs": {
|
141 |
+
"is_seg": true,
|
142 |
+
"order": 1,
|
143 |
+
"order_z": 0,
|
144 |
+
"force_separate_z": null
|
145 |
+
},
|
146 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
147 |
+
"resampling_fn_probabilities_kwargs": {
|
148 |
+
"is_seg": false,
|
149 |
+
"order": 1,
|
150 |
+
"order_z": 0,
|
151 |
+
"force_separate_z": null
|
152 |
+
},
|
153 |
+
"batch_dice": true
|
154 |
+
}
|
155 |
+
},
|
156 |
+
"experiment_planner_used": "ExperimentPlanner",
|
157 |
+
"label_manager": "LabelManager",
|
158 |
+
"foreground_intensity_properties_per_channel": {
|
159 |
+
"0": {
|
160 |
+
"max": 225.0,
|
161 |
+
"mean": 119.90813446044922,
|
162 |
+
"median": 122.0,
|
163 |
+
"min": 0.0,
|
164 |
+
"percentile_00_5": 0.3148415684700012,
|
165 |
+
"percentile_99_5": 196.0,
|
166 |
+
"std": 38.823753356933594
|
167 |
+
}
|
168 |
+
}
|
169 |
+
}
|