parquet-converter commited on
Commit
099f758
1 Parent(s): 2a0c9c3

Update parquet files

Browse files
README.dataset.txt DELETED
@@ -1,8 +0,0 @@
1
- # GARBAGE CLASSIFICATION 3 > GC1
2
- https://universe.roboflow.com/object-detection/garbage-classification-3
3
-
4
- Provided by Roboflow
5
- License: CC BY 4.0
6
-
7
- # Garbage Object-Detection to Identify Disposal Class
8
- This dataset detects various kinds of waste, labeling with a class that indentifies how it should be disposed
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,92 +0,0 @@
1
- ---
2
- task_categories:
3
- - object-detection
4
- tags:
5
- - roboflow
6
- - roboflow2huggingface
7
- - Manufacturing
8
- ---
9
-
10
- <div align="center">
11
- <img width="640" alt="nflechas/recycling_app" src="https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/thumbnail.jpg">
12
- </div>
13
-
14
- ### Dataset Labels
15
-
16
- ```
17
- ['biodegradable', 'cardboard', 'glass', 'metal', 'paper', 'plastic']
18
- ```
19
-
20
-
21
- ### Number of Images
22
-
23
- ```json
24
- {'valid': 2098, 'test': 1042, 'train': 7324}
25
- ```
26
-
27
-
28
- ### How to Use
29
-
30
- - Install [datasets](https://pypi.org/project/datasets/):
31
-
32
- ```bash
33
- pip install datasets
34
- ```
35
-
36
- - Load the dataset:
37
-
38
- ```python
39
- from datasets import load_dataset
40
-
41
- ds = load_dataset("nflechas/recycling_app", name="full")
42
- example = ds['train'][0]
43
- ```
44
-
45
- ### Roboflow Dataset Page
46
- [https://universe.roboflow.com/material-identification/garbage-classification-3/dataset/2](https://universe.roboflow.com/material-identification/garbage-classification-3/dataset/2?ref=roboflow2huggingface)
47
-
48
- ### Citation
49
-
50
- ```
51
- @misc{ garbage-classification-3_dataset,
52
- title = { GARBAGE CLASSIFICATION 3 Dataset },
53
- type = { Open Source Dataset },
54
- author = { Material Identification },
55
- howpublished = { \\url{ https://universe.roboflow.com/material-identification/garbage-classification-3 } },
56
- url = { https://universe.roboflow.com/material-identification/garbage-classification-3 },
57
- journal = { Roboflow Universe },
58
- publisher = { Roboflow },
59
- year = { 2022 },
60
- month = { mar },
61
- note = { visited on 2023-03-31 },
62
- }
63
- ```
64
-
65
- ### License
66
- CC BY 4.0
67
-
68
- ### Dataset Summary
69
- This dataset was exported via roboflow.com on July 27, 2022 at 5:44 AM GMT
70
-
71
- Roboflow is an end-to-end computer vision platform that helps you
72
- * collaborate with your team on computer vision projects
73
- * collect & organize images
74
- * understand unstructured image data
75
- * annotate, and create datasets
76
- * export, train, and deploy computer vision models
77
- * use active learning to improve your dataset over time
78
-
79
- It includes 10464 images.
80
- GARBAGE-GARBAGE-CLASSIFICATION are annotated in COCO format.
81
-
82
- The following pre-processing was applied to each image:
83
- * Auto-orientation of pixel data (with EXIF-orientation stripping)
84
- * Resize to 416x416 (Stretch)
85
-
86
- The following augmentation was applied to create 1 versions of each source image:
87
- * 50% probability of horizontal flip
88
- * 50% probability of vertical flip
89
- * Equal probability of one of the following 90-degree rotations: none, clockwise, counter-clockwise, upside-down
90
-
91
-
92
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.roboflow.txt DELETED
@@ -1,27 +0,0 @@
1
-
2
- GARBAGE CLASSIFICATION 3 - v2 GC1
3
- ==============================
4
-
5
- This dataset was exported via roboflow.com on July 27, 2022 at 5:44 AM GMT
6
-
7
- Roboflow is an end-to-end computer vision platform that helps you
8
- * collaborate with your team on computer vision projects
9
- * collect & organize images
10
- * understand unstructured image data
11
- * annotate, and create datasets
12
- * export, train, and deploy computer vision models
13
- * use active learning to improve your dataset over time
14
-
15
- It includes 10464 images.
16
- GARBAGE-GARBAGE-CLASSIFICATION are annotated in COCO format.
17
-
18
- The following pre-processing was applied to each image:
19
- * Auto-orientation of pixel data (with EXIF-orientation stripping)
20
- * Resize to 416x416 (Stretch)
21
-
22
- The following augmentation was applied to create 1 versions of each source image:
23
- * 50% probability of horizontal flip
24
- * 50% probability of vertical flip
25
- * Equal probability of one of the following 90-degree rotations: none, clockwise, counter-clockwise, upside-down
26
-
27
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/valid.zip → full/recycling_app-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8751fdac7d27f956b1d7e3182349c042bad4006f18c6df78869640581d30341
3
- size 38312703
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4fd70b17ef504481a2dbbcedcdf01d3096cb7b9b0d3765568ad8540eb5ce894
3
+ size 19923137
data/train.zip → full/recycling_app-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:adfe6cd26e4b76801d15ff6f0c3d1bef12c53894a4507ec99f4d27e6d6be973a
3
- size 137708705
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ed5dfa6ab0ed2f6b435a66613291cb0fa405d6fad7e9546f56a4e36d658cd92
3
+ size 141596144
data/test.zip → full/recycling_app-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4f0e70a37d9e4cd0b926a98c6a0deeb720465b5fecb5c0385bcd1bd803ec1fbd
3
- size 19639153
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea27667aefdbc47ff8a47501e1afd3fbc7003ef9a1928748007466e25a165baa
3
+ size 38971753
thumbnail.jpg → mini/recycling_app-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6ed7178c3b18fd996257be5bec5dce3970eddee26bae464744bfb5f69f22cec3
3
- size 87808
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a79dcc401aea06951f27b5c9d2a314f1d24204d3bed67732dbb1d1275c74ed1
3
+ size 58748
data/valid-mini.zip → mini/recycling_app-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8df57e2ffd38271509aef1c3f28ce56601e57543fa65e7c3ce474c306e0c24a1
3
- size 50875
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a79dcc401aea06951f27b5c9d2a314f1d24204d3bed67732dbb1d1275c74ed1
3
+ size 58748
mini/recycling_app-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a79dcc401aea06951f27b5c9d2a314f1d24204d3bed67732dbb1d1275c74ed1
3
+ size 58748
recycling_app.py DELETED
@@ -1,152 +0,0 @@
1
- import collections
2
- import json
3
- import os
4
-
5
- import datasets
6
-
7
-
8
- _HOMEPAGE = "https://universe.roboflow.com/material-identification/garbage-classification-3/dataset/2"
9
- _LICENSE = "CC BY 4.0"
10
- _CITATION = """\
11
- @misc{ garbage-classification-3_dataset,
12
- title = { GARBAGE CLASSIFICATION 3 Dataset },
13
- type = { Open Source Dataset },
14
- author = { Material Identification },
15
- howpublished = { \\url{ https://universe.roboflow.com/material-identification/garbage-classification-3 } },
16
- url = { https://universe.roboflow.com/material-identification/garbage-classification-3 },
17
- journal = { Roboflow Universe },
18
- publisher = { Roboflow },
19
- year = { 2022 },
20
- month = { mar },
21
- note = { visited on 2023-03-31 },
22
- }
23
- """
24
- _CATEGORIES = ['biodegradable', 'cardboard', 'glass', 'metal', 'paper', 'plastic']
25
- _ANNOTATION_FILENAME = "_annotations.coco.json"
26
-
27
-
28
- class RECYCLING_APPConfig(datasets.BuilderConfig):
29
- """Builder Config for recycling_app"""
30
-
31
- def __init__(self, data_urls, **kwargs):
32
- """
33
- BuilderConfig for recycling_app.
34
-
35
- Args:
36
- data_urls: `dict`, name to url to download the zip file from.
37
- **kwargs: keyword arguments forwarded to super.
38
- """
39
- super(RECYCLING_APPConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
40
- self.data_urls = data_urls
41
-
42
-
43
- class RECYCLING_APP(datasets.GeneratorBasedBuilder):
44
- """recycling_app object detection dataset"""
45
-
46
- VERSION = datasets.Version("1.0.0")
47
- BUILDER_CONFIGS = [
48
- RECYCLING_APPConfig(
49
- name="full",
50
- description="Full version of recycling_app dataset.",
51
- data_urls={
52
- "train": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/train.zip",
53
- "validation": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/valid.zip",
54
- "test": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/test.zip",
55
- },
56
- ),
57
- RECYCLING_APPConfig(
58
- name="mini",
59
- description="Mini version of recycling_app dataset.",
60
- data_urls={
61
- "train": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/valid-mini.zip",
62
- "validation": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/valid-mini.zip",
63
- "test": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/valid-mini.zip",
64
- },
65
- )
66
- ]
67
-
68
- def _info(self):
69
- features = datasets.Features(
70
- {
71
- "image_id": datasets.Value("int64"),
72
- "image": datasets.Image(),
73
- "width": datasets.Value("int32"),
74
- "height": datasets.Value("int32"),
75
- "objects": datasets.Sequence(
76
- {
77
- "id": datasets.Value("int64"),
78
- "area": datasets.Value("int64"),
79
- "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
80
- "category": datasets.ClassLabel(names=_CATEGORIES),
81
- }
82
- ),
83
- }
84
- )
85
- return datasets.DatasetInfo(
86
- features=features,
87
- homepage=_HOMEPAGE,
88
- citation=_CITATION,
89
- license=_LICENSE,
90
- )
91
-
92
- def _split_generators(self, dl_manager):
93
- data_files = dl_manager.download_and_extract(self.config.data_urls)
94
- return [
95
- datasets.SplitGenerator(
96
- name=datasets.Split.TRAIN,
97
- gen_kwargs={
98
- "folder_dir": data_files["train"],
99
- },
100
- ),
101
- datasets.SplitGenerator(
102
- name=datasets.Split.VALIDATION,
103
- gen_kwargs={
104
- "folder_dir": data_files["validation"],
105
- },
106
- ),
107
- datasets.SplitGenerator(
108
- name=datasets.Split.TEST,
109
- gen_kwargs={
110
- "folder_dir": data_files["test"],
111
- },
112
- ),
113
- ]
114
-
115
- def _generate_examples(self, folder_dir):
116
- def process_annot(annot, category_id_to_category):
117
- return {
118
- "id": annot["id"],
119
- "area": annot["area"],
120
- "bbox": annot["bbox"],
121
- "category": category_id_to_category[annot["category_id"]],
122
- }
123
-
124
- image_id_to_image = {}
125
- idx = 0
126
-
127
- annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
128
- with open(annotation_filepath, "r") as f:
129
- annotations = json.load(f)
130
- category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
131
- image_id_to_annotations = collections.defaultdict(list)
132
- for annot in annotations["annotations"]:
133
- image_id_to_annotations[annot["image_id"]].append(annot)
134
- filename_to_image = {image["file_name"]: image for image in annotations["images"]}
135
-
136
- for filename in os.listdir(folder_dir):
137
- filepath = os.path.join(folder_dir, filename)
138
- if filename in filename_to_image:
139
- image = filename_to_image[filename]
140
- objects = [
141
- process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
142
- ]
143
- with open(filepath, "rb") as f:
144
- image_bytes = f.read()
145
- yield idx, {
146
- "image_id": image["id"],
147
- "image": {"path": filepath, "bytes": image_bytes},
148
- "width": image["width"],
149
- "height": image["height"],
150
- "objects": objects,
151
- }
152
- idx += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
split_name_to_num_samples.json DELETED
@@ -1 +0,0 @@
1
- {"valid": 2098, "test": 1042, "train": 7324}