|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CoNaLa dataset.""" |
|
|
|
import json |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{yin2018learning, |
|
title={Learning to mine aligned code and natural language pairs from stack overflow}, |
|
author={Yin, Pengcheng and Deng, Bowen and Chen, Edgar and Vasilescu, Bogdan and Neubig, Graham}, |
|
booktitle={2018 IEEE/ACM 15th international conference on mining software repositories (MSR)}, |
|
pages={476--486}, |
|
year={2018}, |
|
organization={IEEE} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
CoNaLa is a dataset of code and natural language pairs crawled from Stack Overflow, for more details please refer to this paper: https://arxiv.org/pdf/1805.08949.pdf or the dataset page https://conala-corpus.github.io/. |
|
""" |
|
|
|
_HOMEPAGE = "https://conala-corpus.github.io/" |
|
_URLs = { |
|
"mined": "data/conala-mined.json", |
|
"curated": {"train": "data/conala-paired-train.json", "test": "data/conala-paired-test.json" }, |
|
} |
|
|
|
class Conala(datasets.GeneratorBasedBuilder): |
|
"""CoNaLa Code dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="curated", |
|
version=datasets.Version("1.1.0"), |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig(name="mined", version=datasets.Version("1.1.0"), description=_DESCRIPTION), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "curated" |
|
|
|
|
|
def _info(self): |
|
if self.config.name == "curated": |
|
features=datasets.Features({"question_id": datasets.Value("int64"), |
|
"intent": datasets.Value("string"), |
|
"rewritten_intent": datasets.Value("string"), |
|
"snippet": datasets.Value("string"), |
|
}) |
|
else: |
|
features=datasets.Features({"question_id": datasets.Value("int64"), |
|
"parent_answer_post_id": datasets.Value("int64"), |
|
"prob": datasets.Value("float64"), |
|
"snippet": datasets.Value("string"), |
|
"intent": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
}) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
homepage=_HOMEPAGE) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
config_urls = _URLs[self.config.name] |
|
data_dir = dl_manager.download_and_extract(config_urls) |
|
if self.config.name == "curated": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir["train"], "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir["test"], "split": "test"}, |
|
), |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir, "split": "train"}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
key = 0 |
|
for line in open(filepath, encoding="utf-8"): |
|
line = json.loads(line) |
|
yield key, line |
|
key += 1 |