|
from evaluation_utils import * |
|
|
|
import unicodedata as ud |
|
|
|
|
|
from konlpy.tag import Okt |
|
|
|
|
|
import hausastemmer |
|
|
|
|
|
from stemmer.stemmer import Stemmer as AZStemmer |
|
from string import punctuation |
|
|
|
|
|
from nlp_id.lemmatizer import Lemmatizer as IDLemmatizer |
|
|
|
|
|
from hazm import Lemmatizer as PRLemmatizer |
|
|
|
|
|
from qalsadi.lemmatizer import Lemmatizer as ARLeammatizer |
|
|
|
|
|
from cltk import NLP |
|
|
|
|
|
from sparknlp.base import * |
|
from sparknlp.annotator import * |
|
from sparknlp.pretrained import PretrainedPipeline |
|
import sparknlp |
|
|
|
from SUSTEM.SUSTEM_S import * |
|
|
|
import spacy |
|
|
|
|
|
import jieba |
|
|
|
|
|
|
|
INDIC_NLP_LIB_HOME=os.path.abspath("./indic_nlp_library") |
|
|
|
|
|
INDIC_NLP_RESOURCES=os.path.abspath("./indic_nlp_resources") |
|
|
|
sys.path.append(INDIC_NLP_LIB_HOME) |
|
from indicnlp import common |
|
from indicnlp import loader |
|
from indicnlp.tokenize import indic_tokenize |
|
|
|
|
|
|
|
def lemma_check(answer,llm_response,nlp_pipeline,language='Korean'): |
|
if answer in llm_response or answer.replace('-',' ') in llm_response or answer.replace(' ','-') in llm_response: |
|
return True |
|
|
|
if language == 'Korean': |
|
okt = Okt() |
|
answer_tokens = okt.morphs(' '.join([w for w,p in okt.pos(answer) if p!='Josa']),stem=True) |
|
llm_tokens = okt.morphs(' '.join([w for w,p in okt.pos(llm_response) if p!='Josa']),stem=True) |
|
|
|
elif language == 'Hausa': |
|
answer_tokens = [hausastemmer.stem(term.strip('-')) for term in answer.split()] |
|
llm_tokens = [hausastemmer.stem(term.strip('-')) for term in llm_response.split()] |
|
|
|
elif language == 'Amharic': |
|
answer_tokens = [token.result if lemma.result.startswith('_') else lemma.result for token,lemma in zip(nlp_pipeline.fullAnnotate(answer)[0]['lemma'],nlp_pipeline.fullAnnotate(answer)[0]['token'])] |
|
llm_tokens = [token.result if lemma.result.startswith('_') else lemma.result for token,lemma in zip(nlp_pipeline.fullAnnotate(llm_response)[0]['lemma'],nlp_pipeline.fullAnnotate(llm_response)[0]['token'])] |
|
|
|
elif language == 'Azerbaijani': |
|
|
|
my_stemmer = AZStemmer() |
|
|
|
def stem_words(my_text): |
|
my_text=my_text.replace("İ", "I") |
|
my_text=my_text.replace("“", "") |
|
my_text=my_text.replace("”", "") |
|
my_text=my_text.replace("'", "") |
|
my_text=my_text.replace('"', "") |
|
my_text=my_text.split() |
|
my_words=[] |
|
for word in my_text: |
|
my_words.append(''.join(c for c in word if (c not in punctuation) or (c == '-'))) |
|
|
|
my_words = my_stemmer.stem_words(my_words) |
|
|
|
return my_words |
|
|
|
answer_tokens = stem_words(answer) |
|
llm_tokens = stem_words(llm_response) |
|
|
|
elif language == 'Indonesian': |
|
lemmatizer = IDLemmatizer() |
|
answer_tokens = lemmatizer.lemmatize(answer).split() |
|
llm_tokens = lemmatizer.lemmatize(llm_response).split() |
|
|
|
elif language == 'Persian': |
|
lemmatizer = PRLemmatizer() |
|
answer_tokens = [lemmatizer.lemmatize(term) for term in answer.split()] |
|
llm_tokens = [lemmatizer.lemmatize(term) for term in llm_response.split()] |
|
|
|
elif language == 'Arabic': |
|
lemmatizer = ARLeammatizer() |
|
answer_tokens = lemmatizer.lemmatize(answer) |
|
llm_tokens = lemmatizer.lemmatize(llm_response) |
|
|
|
elif language == 'Greek': |
|
cltk_nlp = NLP(language="grc", suppress_banner=True) |
|
answer_tokens = cltk_nlp.analyze(text=answer).lemmata |
|
llm_tokens = cltk_nlp.analyze(text=llm_response).lemmata |
|
|
|
elif language == 'Spanish': |
|
answer_tokens = [lemma.result for lemma in nlp_pipeline.fullAnnotate(answer)[0]['lemma']] |
|
llm_tokens = [lemma.result for lemma in nlp_pipeline.fullAnnotate(llm_response)[0]['lemma']] |
|
|
|
elif language == 'Sundanese': |
|
stemmer = EcsStemmer() |
|
answer_tokens = [stemmer.stemmingProcess(word.replace('(','').replace(')','')) for word in answer.split()] |
|
llm_tokens = [stemmer.stemmingProcess(word.replace('(','').replace(')','')) for word in llm_response.split()] |
|
|
|
|
|
elif language == 'English': |
|
answer_tokens = [token.lemma_ for token in nlp_pipeline(answer)] |
|
llm_tokens = [token.lemma_ for token in nlp_pipeline(llm_response)] |
|
|
|
elif language == 'Chinese': |
|
answer_tokens = list(jieba.cut(answer)) |
|
llm_tokens = list(jieba.cut(llm_response)) |
|
|
|
elif language == 'Assamese': |
|
common.set_resources_path(INDIC_NLP_RESOURCES) |
|
loader.load() |
|
|
|
answer_tokens = indic_tokenize.trivial_tokenize(answer) |
|
llm_tokens = indic_tokenize.trivial_tokenize(llm_response) |
|
|
|
d = {ord('\N{COMBINING ACUTE ACCENT}'):None} |
|
|
|
answer_tokens = [ud.normalize('NFD',term).translate(d).lower() for term in answer_tokens if term not in punctuation and term != ''] |
|
llm_tokens = [ud.normalize('NFD',term).translate(d).lower() for term in llm_tokens if term not in punctuation and term != ''] |
|
|
|
for a in answer_tokens: |
|
if a not in llm_tokens: |
|
return False |
|
|
|
return True |
|
|
|
def hard_exact_match(annotation_dict,response_df,id_col,r_col,annotations_key='annotations'): |
|
binary_score = 0 |
|
weight_score = 0 |
|
|
|
for qid,data in annotation_dict.items(): |
|
llm_response = get_llm_response_by_id(response_df,qid,id_col,r_col) |
|
|
|
if llm_response and data[annotations_key]: |
|
max_vote = max(list(data[annotations_key].values())) |
|
|
|
for k,v in sorted(data[annotations_key].items(), key=lambda item: item[1],reverse=True): |
|
if k == llm_response: |
|
binary_score += 1 |
|
weight_score += v/max_vote |
|
break |
|
|
|
binary_score = binary_score / len(annotation_dict) * 100 |
|
weight_score = weight_score / len(annotation_dict) * 100 |
|
|
|
print(binary_score) |
|
print(weight_score) |
|
|
|
return binary_score, weight_score |
|
|
|
def soft_exact_match(country,language,annotation_dict,response_df,id_col,r_col,annotations_key='aggregated_answers'): |
|
binary_score = 0 |
|
weight_score = 0 |
|
valid_question_cnt = 0 |
|
|
|
if language == 'Spanish': |
|
spark = sparknlp.start() |
|
|
|
document_assembler = DocumentAssembler() \ |
|
.setInputCol("text") \ |
|
.setOutputCol("document") |
|
|
|
tokenizer = Tokenizer() \ |
|
.setInputCols(["document"]) \ |
|
.setOutputCol("token") |
|
|
|
lemmatizer = LemmatizerModel.pretrained("lemma", "es") \ |
|
.setInputCols(["token"]) \ |
|
.setOutputCol("lemma") |
|
|
|
nlp_pipeline = Pipeline(stages=[document_assembler, tokenizer, lemmatizer]) |
|
nlpPipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF('text'))) |
|
|
|
elif language == 'Amharic': |
|
spark = sparknlp.start() |
|
|
|
document_assembler = DocumentAssembler() \ |
|
.setInputCol("text") \ |
|
.setOutputCol("document") |
|
|
|
tokenizer = Tokenizer() \ |
|
.setInputCols(["document"]) \ |
|
.setOutputCol("token") |
|
|
|
lemmatizer = LemmatizerModel.pretrained("lemma", "am") \ |
|
.setInputCols(["token"]) \ |
|
.setOutputCol("lemma") |
|
|
|
nlp_pipeline = Pipeline(stages=[document_assembler,tokenizer,lemmatizer]) |
|
nlpPipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF('text'))) |
|
|
|
else: |
|
nlpPipeline = None |
|
|
|
en_lemmatizer = spacy.load("en_core_web_sm") |
|
|
|
response_df['binary_score'] = [None]*response_df.shape[0] |
|
response_df['weight_score'] = [None]*response_df.shape[0] |
|
|
|
pb = tqdm(annotation_dict.items(),total=len(annotation_dict)) |
|
|
|
for qid,data in pb: |
|
pb.set_description(qid) |
|
if data['idks']['no-answer']+data['idks']['not-applicable'] >= 3 or data['idks']['idk']>=5 or len(data[annotations_key])==0: |
|
continue |
|
|
|
valid_question_cnt += 1 |
|
|
|
llm_response = get_llm_response_by_id(response_df,qid,id_col,r_col) |
|
flag = False |
|
if llm_response and data[annotations_key]: |
|
max_vote = data[annotations_key][0]['count'] |
|
|
|
for agg_ans in data[annotations_key]: |
|
if language != 'English': |
|
for a in agg_ans['answers']: |
|
if lemma_check(a,llm_response,nlpPipeline,language): |
|
binary_score += 1 |
|
weight_score += agg_ans['count']/max_vote |
|
flag = True |
|
break |
|
if not flag: |
|
for a in agg_ans['en_answers']: |
|
if lemma_check(a,llm_response,en_lemmatizer,'English'): |
|
binary_score += 1 |
|
weight_score += agg_ans['count']/max_vote |
|
flag = True |
|
break |
|
if flag: |
|
break |
|
if flag: |
|
response_df.loc[response_df[id_col]==qid,'binary_score'] = 1 |
|
response_df.loc[response_df[id_col]==qid,'weight_score'] = agg_ans['count']/max_vote |
|
print(response_df.loc[response_df[id_col]==qid]) |
|
else: |
|
response_df.loc[response_df[id_col]==qid,'binary_score'] = 0 |
|
response_df.loc[response_df[id_col]==qid,'weight_score'] = 0 |
|
|
|
pb.set_postfix({'bs':binary_score/valid_question_cnt*100,'ws':weight_score/valid_question_cnt*100}) |
|
|
|
binary_score = binary_score / valid_question_cnt * 100 |
|
weight_score = weight_score / valid_question_cnt * 100 |
|
|
|
print(binary_score) |
|
print(weight_score) |
|
|
|
return binary_score, weight_score, response_df |