|
from evaluation_utils import * |
|
|
|
from itertools import combinations |
|
|
|
def no_common_word(s1,s2): |
|
if is_float(s1) and is_float(s2): |
|
if float(s1) == float(s2): |
|
return False |
|
else: |
|
return True |
|
|
|
if s1 in s2 or s2 in s1: |
|
return False |
|
|
|
def split_words(a): |
|
if '/' in a: |
|
a = a.split('/') |
|
else: |
|
a = [a] |
|
tmp_a_list = [] |
|
for tmp_a in a: |
|
tmp_a_list += tmp_a.split() |
|
return tmp_a_list |
|
|
|
s1 = split_words(s1) |
|
s2 = split_words(s2) |
|
|
|
if set(s1) & set(s2): |
|
return False |
|
else: |
|
return True |
|
|
|
def another_similar_term(question,answers,word,country1,country2): |
|
if isinstance(answers,str): |
|
answers = [answers] |
|
simple_flag = False |
|
all_floatortimeordate = True |
|
for c in answers: |
|
if is_float(c) and is_float(word): |
|
if float(c) == float(word): |
|
simple_flag = True |
|
break |
|
elif (is_date_format(c) and is_date_format(word)) or (is_time_format(c) and is_time_format(word)): |
|
if c in word or word in c: |
|
simple_flag=True |
|
break |
|
else: |
|
all_floatortimeordate = False |
|
|
|
if simple_flag: |
|
return True |
|
|
|
if all_floatortimeordate: |
|
return False |
|
|
|
prompt = """Determine if a 'target' word is the same in meaning(e.g., football & soccer or soccer & football) to at least one of the 'answer' words, or one is a subset to another(e.g., fruit & apple or apple & fruit). If so, the 'result' for 'target' word is 'O'. However, if the two simply falls into the same level of hierarchy, the 'result' is 'X' (banana & apple, rose & carnation). |
|
|
|
Note that the 'answer' list is from 'answer_country,' and the 'target' word is from 'target_country,' as written by a person. |
|
|
|
Write down your reasoning first. Do not write any other JSON formatted object in your answer except for the result JSON object, formatted as {"result":"O"} or {"result":"X"}. |
|
|
|
""" |
|
|
|
json_dict = {'answer':answers,'answer_country':country1,'target':word,'target_country':country2} |
|
json_str = json.dumps(json_dict) |
|
print(json_str) |
|
prompt += json_str |
|
prompt += '\n\nReasoning:' |
|
|
|
res = inference_azure(prompt,model_name=MODEL_PATHS['gpt-4-1106-preview']) |
|
res = res.replace('{result:','{"result":') |
|
print(res) |
|
json_res = get_json_str(res) |
|
if type(json_res) == dict and 'result' in json_res: |
|
if json_res['result'] == 'O': |
|
return True |
|
else: |
|
return False |
|
return True |
|
|
|
def filter_mc_questions(original_questions_df,en_annotations,en_annotation_key,mc_dir): |
|
filtered_questions_df = original_questions_df.copy() |
|
|
|
for i,row in original_questions_df.iterrows(): |
|
qid = row['ID'] |
|
|
|
has_idk = False |
|
small_max_vote = False |
|
|
|
for country in en_annotations.keys(): |
|
country_annotation = en_annotations[country] |
|
if qid in country_annotation: |
|
country_annotation_qid = country_annotation[qid] |
|
if ('not-applicable' in country_annotation_qid['idks'] and country_annotation_qid['idks']['not-applicable']>0) or sum(country_annotation_qid['idks'].values()) > 2: |
|
print('idks:',country_annotation_qid['idks']) |
|
has_idk = True |
|
|
|
|
|
elif country_annotation_qid['aggregated_answers'] and country_annotation_qid['aggregated_answers'][0][en_annotation_key] and country_annotation_qid['aggregated_answers'][0]['count'] < 2: |
|
small_max_vote = True |
|
|
|
if has_idk or small_max_vote: |
|
filtered_questions_df = filtered_questions_df.drop(i) |
|
print(qid,country,has_idk,small_max_vote) |
|
break |
|
|
|
print('Leftover questions:',len(filtered_questions_df)) |
|
filtered_questions_df.to_csv(os.path.join(mc_dir,'filtered_questions.csv'),index=False,encoding='utf-8') |
|
return filtered_questions_df |
|
|
|
def generate_answer_choices(country_list,annotation_data_dir,annotation_data_template,question_dir,question_data_template,id_col,question_col,en_annotation_key,mc_dir,output_filename='unique_answer_choice.json'): |
|
country_unique_answer_choice = dict() |
|
|
|
if os.path.exists(os.path.join(mc_dir,output_filename)): |
|
with open(os.path.join(mc_dir,output_filename),'r') as f: |
|
country_unique_answer_choice = json.load(f) |
|
|
|
final_questions = get_questions(data_dir=question_dir,country=country_list[0],template=question_data_template) |
|
english_annotations = {country:get_annotations(data_dir=annotation_data_dir,country=country,template=annotation_data_template) for country in country_list} |
|
|
|
filtered_questions = filter_mc_questions(final_questions,english_annotations,en_annotation_key,mc_dir) |
|
same_dict = defaultdict(dict) |
|
if os.path.exists(os.path.join(mc_dir,'dictionary.json')): |
|
with open(os.path.join(mc_dir,'dictionary.json'),'r') as f: |
|
_same_dict = json.load(f) |
|
for k,v in _same_dict.items(): |
|
same_dict[k] = v |
|
|
|
|
|
for i,row in tqdm(filtered_questions.iterrows(),total=len(filtered_questions)): |
|
qid = row[id_col] |
|
|
|
if qid in country_unique_answer_choice and country_list[-1] in country_unique_answer_choice[qid]['annotations']: |
|
continue |
|
|
|
print(row[question_col]) |
|
|
|
each_qid_dict = dict() |
|
each_qid_dict['question'] = row[question_col] |
|
each_qid_dict['annotations'] = dict() |
|
for country in country_list: |
|
each_country_dict = dict() |
|
annotations = {data[en_annotation_key][0]:data['count'] for data in english_annotations[country][qid]['aggregated_answers'] if len(data[en_annotation_key]) > 0} |
|
print(annotations) |
|
blocked = set() |
|
if annotations: |
|
max_vote = max(list(annotations.values())) |
|
if 'HH:MM' in row[question_col]: |
|
each_country_dict['answer'] = [k for k,v in annotations.items() if v == max_vote and is_time_format(k)] |
|
tmp = {k:v for k,v in annotations.items() if is_time_format(k)} |
|
annotations = tmp |
|
elif 'MM/DD' in row[question_col]: |
|
each_country_dict['answer'] = [k for k,v in annotations.items() if v == max_vote and is_date_format(k)] |
|
tmp = {k:v for k,v in annotations.items() if is_date_format(k)} |
|
annotations = tmp |
|
elif 'Arabic' in row[question_col]: |
|
each_country_dict['answer'] = [k for k,v in annotations.items() if v == max_vote and is_float(k)] |
|
tmp = {k:v for k,v in annotations.items() if is_float(k)} |
|
annotations = tmp |
|
else: |
|
each_country_dict['answer'] = [k for k,v in annotations.items() if v == max_vote] |
|
choices = dict() |
|
|
|
other_countries_annotations = { |
|
other_country: {data[en_annotation_key][0]:data['count'] for data in english_annotations[other_country][qid]['aggregated_answers'] if len(data[en_annotation_key]) > 0} |
|
for other_country in country_list if other_country != country |
|
} |
|
print(other_countries_annotations) |
|
all_answer_choices = sorted( |
|
[(vote_count, answer, other_country) |
|
for other_country, other_annotations in other_countries_annotations.items() |
|
for answer, vote_count in other_annotations.items() |
|
if vote_count >= 2], |
|
key=lambda x: x[0], reverse=True |
|
) |
|
|
|
print(all_answer_choices) |
|
|
|
for vote_count, answer, other_country in all_answer_choices: |
|
|
|
if other_country in choices: |
|
continue |
|
|
|
if answer in blocked: |
|
continue |
|
|
|
if 'HH:MM' in row[question_col] and not is_time_format(answer): |
|
continue |
|
elif 'MM/DD' in row[question_col] and not is_date_format(answer): |
|
continue |
|
elif 'Arabic' in row[question_col] and not is_float(answer): |
|
continue |
|
|
|
flag = True |
|
for candidate in annotations.keys(): |
|
|
|
if candidate in same_dict and answer in same_dict[candidate] and same_dict[candidate][answer]: |
|
flag = False |
|
break |
|
flag = no_common_word(answer,candidate) |
|
|
|
if not flag: |
|
same_dict[candidate][answer] = not flag |
|
same_dict[answer][candidate] = not flag |
|
blocked.add(answer) |
|
|
|
break |
|
if flag: |
|
final_flag = True |
|
for k,c in choices.items(): |
|
if c in same_dict and answer in same_dict[c]: |
|
if same_dict[c][answer]: |
|
blocked.add(answer) |
|
final_flag=False |
|
break |
|
else: |
|
continue |
|
|
|
if not no_common_word(c,answer) or another_similar_term(each_qid_dict['question'],c,answer,k,other_country): |
|
final_flag=False |
|
same_dict[answer][c] = True |
|
same_dict[c][answer] = True |
|
blocked.add(answer) |
|
else: |
|
same_dict[answer][c] = False |
|
same_dict[c][answer] = False |
|
|
|
if not final_flag: |
|
break |
|
|
|
if final_flag: |
|
all_checked = True |
|
at_least_one = False |
|
for candidate in annotations.keys(): |
|
if not (candidate in same_dict and answer in same_dict[candidate]): |
|
all_checked = False |
|
if candidate in same_dict and answer in same_dict[candidate] and same_dict[candidate][answer]: |
|
at_least_one = True |
|
|
|
if not all_checked or at_least_one: |
|
break |
|
|
|
print('all_checked',all_checked) |
|
print('at_least_one',at_least_one) |
|
if answer in same_dict: |
|
print(same_dict[answer]) |
|
|
|
if at_least_one: |
|
blocked.add(answer) |
|
continue |
|
elif all_checked or not another_similar_term(each_qid_dict['question'],list(annotations.keys()),answer,country,other_country): |
|
choices[other_country] = answer |
|
if not all_checked: |
|
for candidate in annotations.keys(): |
|
same_dict[candidate][answer] = False |
|
same_dict[answer][candidate] = False |
|
|
|
else: |
|
blocked.add(answer) |
|
each_country_dict['choices'] = choices |
|
|
|
with open(os.path.join(mc_dir,'dictionary.json'),'w') as f: |
|
json.dump(same_dict,f,indent=4,ensure_ascii=False) |
|
|
|
|
|
each_qid_dict[country] = each_country_dict |
|
|
|
each_qid_dict['annotations'][country] = annotations |
|
print(each_qid_dict) |
|
country_unique_answer_choice[qid] = each_qid_dict |
|
|
|
with open(os.path.join(mc_dir,output_filename),'w') as f: |
|
json.dump(country_unique_answer_choice,f,indent=4,ensure_ascii=False) |
|
|
|
|
|
|
|
def generate_prompt_mc(question,country,answers,choices,min_choice,dummy_choices): |
|
res = [] |
|
|
|
for answer in answers: |
|
if country in ['US','UK']: |
|
prompt = question.replace('your country',f'the {country}') |
|
else: |
|
prompt = question.replace('your country',country.replace('_',' ')) |
|
|
|
prompt += ' Without any explanation, choose only one from the given alphabet choices(e.g., A, B, C). Provide as JSON format: {"answer_choice":""}\n\n' |
|
|
|
for chosen_choices in combinations(choices.items(),min_choice): |
|
all_choices = sorted([(v,k) for k,v in chosen_choices]+[(answer,country)]+[(dummy,'dummy') for dummy in dummy_choices]) |
|
all_choices_idx = dict() |
|
all_choices_country = dict() |
|
answer_idx = -1 |
|
|
|
this_prompt = prompt |
|
for i,(a,a_country) in enumerate(all_choices): |
|
if a == answer: |
|
answer_idx = chr(ord('A')+i) |
|
all_choices_idx[chr(ord('A')+i)] = a |
|
all_choices_country[chr(ord('A')+i)] = a_country |
|
this_prompt += f'{chr(ord("A")+i)}. {a}\n' |
|
this_prompt += '\nAnswer:' |
|
|
|
res.append((this_prompt,all_choices_idx,all_choices_country,answer_idx)) |
|
return res |
|
|
|
def get_dummy_choices(question,annotations,num): |
|
prompt = 'Provide '+str(num)+' dummy option(s) that makes sense to be the answer(s) of the given "question", and has to exist in real-life (non-fiction), but is totally different from the given "answers" without any explanation. Make sure that the options are different from each other, and cannot be an answer from any country. Provide as JSON format: {"dummy_options":[]}\n\n' |
|
json_str = json.dumps({'question':question,'answers':list(set([v for k in annotations for v in annotations[k] ]))},ensure_ascii=False, indent=4) |
|
prompt += json_str |
|
|
|
print(prompt) |
|
|
|
while True: |
|
res = inference_azure(prompt,temperature=1,top_p=1,model_name=MODEL_PATHS['gpt-4-1106-preview']) |
|
res = res.replace('{dummy_options:','{"dummy_options":') |
|
json_res = get_json_str(res) |
|
print(json_res) |
|
|
|
if type(json_res) == dict and 'dummy_options' in json_res and type(json_res['dummy_options']) == list and len(json_res['dummy_options']) == num and len(set(json_res['dummy_options']))==num and len(set(json_res['dummy_options'])&set([v for k in annotations for v in annotations[k]])) == 0: |
|
return [s.lower() for s in json_res['dummy_options']] |
|
|
|
|
|
def generate_multiple_choice(country_list,mc_dir,answer_choice_file,questions_file,generate_dummy=True): |
|
with open(os.path.join(mc_dir,answer_choice_file),'r') as f: |
|
answer_choices = json.load(f) |
|
|
|
if os.path.exists(os.path.join(mc_dir,questions_file)): |
|
os.remove(os.path.join(mc_dir,questions_file)) |
|
|
|
write_csv_row(['MCQID','ID','country','prompt','choices','choice_countries','answer_idx'],os.path.join(mc_dir,questions_file)) |
|
|
|
pb = tqdm(answer_choices,total=len(answer_choices)) |
|
for qid in pb: |
|
pb.set_description(qid) |
|
question = answer_choices[qid]['question'] |
|
cnt = 0 |
|
|
|
|
|
min_choice = min([len(answer_choices[qid][country]['choices']) for country in country_list]) |
|
|
|
dummy_choices = [] |
|
|
|
if min_choice < 3: |
|
if generate_dummy and 'dummy_choices' not in answer_choices[qid][country]: |
|
dummy_choices = get_dummy_choices(question,answer_choices[qid]['annotations'],3-min_choice) |
|
answer_choices[qid][country]['dummy_choices'] = dummy_choices |
|
with open(os.path.join(mc_dir,answer_choice_file),'w') as f: |
|
json.dump(answer_choices,f,indent=4,ensure_ascii=False) |
|
elif 'dummy_choices' in answer_choices[qid][country]: |
|
dummy_choices = answer_choices[qid][country]['dummy_choices'] |
|
else: |
|
print('ERROR: No dummy choices for',qid,'in',country,'and min_choice:',min_choice) |
|
continue |
|
|
|
for country in country_list: |
|
pb.set_postfix({'country':country}) |
|
prompt_questions = generate_prompt_mc(question,country,answer_choices[qid][country]['answer'],answer_choices[qid][country]['choices'],min(min_choice,3),dummy_choices) |
|
if prompt_questions: |
|
for q,choices,choice_countries,answer_idx in prompt_questions: |
|
write_csv_row([f'{qid}_{cnt}',qid,country,q,json.dumps(choices,indent=4,ensure_ascii=False),json.dumps(choice_countries,indent=4,ensure_ascii=False),answer_idx],os.path.join(mc_dir,questions_file)) |
|
cnt += 1 |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description='Choose your model(s) & language(s)') |
|
|
|
parser.add_argument('--id_col',type=str,default='ID', |
|
help='Provide the column name from the final question file name with question IDs.') |
|
parser.add_argument('--question_col',type=str,default='Question', |
|
help='Provide the column name from the final question file name with questions.') |
|
|
|
parser.add_argument('--question_dir',type=str,default='../data/questions/', |
|
help='Provide the directory for the output files to be saved.') |
|
parser.add_argument('--question_data_template',type=str,default='{country}_questions.csv', |
|
help='Provide the filename template of the question data file.') |
|
parser.add_argument('--annotation_dir',type=str,default='../data/annotations/', |
|
help='Provide the directory for the data files from the human annotators.') |
|
parser.add_argument('--annotation_data_template',type=str,default='{country}_data.json',) |
|
parser.add_argument('--mc_dir',type=str,default='./mc_data', |
|
help='Provide the directory for the data files from the human annotators.') |
|
parser.add_argument('--answer_choice_file',type=str,default='unique_answer_choice.json', |
|
help='Provide the directory for the data files from the human annotators.') |
|
parser.add_argument('--mc_questions_file',type=str,default='mc_questions_file.csv', |
|
help='Provide the directory for the data files from the human annotators.') |
|
parser.add_argument('--en_annotation_key',type=str,default='en_answers', |
|
help='Provide the directory for the data files from the human annotators.') |
|
args = parser.parse_args() |
|
|
|
if not os.path.exists(args.mc_dir): |
|
os.mkdir(args.mc_dir) |
|
|
|
country_list = list(COUNTRY_LANG.keys()) |
|
print(country_list) |
|
generate_answer_choices(country_list=country_list, |
|
annotation_data_dir=args.annotation_dir, |
|
annotation_data_template=args.annotation_data_template, |
|
question_dir=args.question_dir, |
|
question_data_template=args.question_data_template, |
|
id_col=args.id_col, |
|
question_col=args.question_col, |
|
en_annotation_key=args.en_annotation_key, |
|
mc_dir=args.mc_dir, |
|
output_filename=args.answer_choice_file) |
|
|
|
generate_multiple_choice(country_list=country_list, |
|
mc_dir=args.mc_dir, |
|
answer_choice_file=args.answer_choice_file, |
|
questions_file=args.mc_questions_file) |