|
""" |
|
A utils module used in the actual evm module performing such tasks as |
|
pyramid construction, video io and filter application |
|
|
|
functions were originally written by flyingzhao but adapted for this module |
|
""" |
|
|
|
import cv2 |
|
import numpy as np |
|
import scipy.signal as signal |
|
import scipy.fftpack as fftpack |
|
|
|
def build_gaussian_pyramid(src, levels=3): |
|
""" |
|
Function: build_gaussian_pyramid |
|
-------------------------------- |
|
Builds a gaussian pyramid |
|
|
|
Args: |
|
----- |
|
src: the input image |
|
levels: the number levels in the gaussian pyramid |
|
|
|
Returns: |
|
-------- |
|
A gaussian pyramid |
|
""" |
|
s=src.copy() |
|
pyramid=[s] |
|
for i in range(levels): |
|
s=cv2.pyrDown(s) |
|
pyramid.append(s) |
|
return pyramid |
|
|
|
|
|
def gaussian_video(video, levels=3): |
|
""" |
|
Function: gaussian_video |
|
------------------------ |
|
generates a gaussian pyramid for each frame in a video |
|
|
|
Args: |
|
----- |
|
video: the input video array |
|
levels: the number of levels in the gaussian pyramid |
|
|
|
Returns: |
|
-------- |
|
the gaussian video |
|
""" |
|
n = video.shape[0] |
|
for i in range(0, n): |
|
pyr = build_gaussian_pyramid(video[i], levels=levels) |
|
gaussian_frame=pyr[-1] |
|
if i==0: |
|
vid_data = np.zeros((n, *gaussian_frame.shape)) |
|
vid_data[i] = gaussian_frame |
|
return vid_data |
|
|
|
|
|
def reconstruct_video_g(amp_video, original_video, levels=3): |
|
""" |
|
Function: reconstruct_video_g |
|
----------------------------- |
|
reconstructs a video from a gaussian pyramid and the original |
|
|
|
Args: |
|
----- |
|
amp_video: the amplified gaussian video |
|
original_video: the original video |
|
levels: the levels in the gaussian video |
|
|
|
Returns: |
|
-------- |
|
the reconstructed video |
|
""" |
|
final_video = np.zeros(original_video.shape) |
|
for i in range(0, amp_video.shape[0]): |
|
img = amp_video[i] |
|
for x in range(levels): |
|
img = cv2.pyrUp(img) |
|
img = img + original_video[i] |
|
final_video[i] = img |
|
return final_video |
|
|
|
|
|
def build_laplacian_pyramid(src,levels=3): |
|
""" |
|
Function: build_laplacian_pyramid |
|
--------------------------------- |
|
Builds a Laplacian Pyramid |
|
|
|
Args: |
|
----- |
|
src: the input image |
|
levels: the number levels in the laplacian pyramid |
|
|
|
Returns: |
|
-------- |
|
A Laplacian pyramid |
|
""" |
|
gaussianPyramid = build_gaussian_pyramid(src, levels) |
|
pyramid=[] |
|
for i in range(levels,0,-1): |
|
GE=cv2.pyrUp(gaussianPyramid[i]) |
|
L=cv2.subtract(gaussianPyramid[i-1],GE) |
|
pyramid.append(L) |
|
return pyramid |
|
|
|
|
|
def laplacian_video(video, levels=3): |
|
""" |
|
Function: laplacian_video |
|
------------------------- |
|
generates a laplaican pyramid for each frame in a video |
|
|
|
Args: |
|
----- |
|
video: the input video array |
|
levels: the number of levels for each laplacian pyramid |
|
|
|
Returns: |
|
-------- |
|
The laplacian video |
|
""" |
|
tensor_list=[] |
|
n = video.shape[0] |
|
for i in range(0, n): |
|
frame=video[i] |
|
pyr = build_laplacian_pyramid(frame,levels=levels) |
|
if i==0: |
|
for k in range(levels): |
|
tensor_list.append(np.zeros((n, *pyr[k].shape))) |
|
for n in range(levels): |
|
tensor_list[n][i] = pyr[n] |
|
return tensor_list |
|
|
|
|
|
def reconstruct_video_l(lap_pyr, levels=3): |
|
""" |
|
Function: reconstruct_video_l |
|
----------------------------- |
|
reconstructs a video from a laplacian pyramid and the original |
|
|
|
Args: |
|
----- |
|
lap_pyr: the amplified laplacian pyramid |
|
levels: the levels in the laplacian video |
|
|
|
Returns: |
|
-------- |
|
the reconstructed video |
|
""" |
|
final = np.zeros(lap_pyr[-1].shape) |
|
for i in range(lap_pyr[0].shape[0]): |
|
up = lap_pyr[0][i] |
|
for n in range(levels-1): |
|
up = cv2.pyrUp(up) + lap_pyr[n + 1][i] |
|
final[i] = up |
|
return final |
|
|
|
|
|
def save_video(video, filename='out.avi'): |
|
""" |
|
Function: save_video |
|
-------------------- |
|
saves a video to a file |
|
|
|
Args: |
|
----- |
|
video: the numpy array representing the video |
|
filename: the name of the output file |
|
|
|
Returns: |
|
None |
|
""" |
|
fourcc = cv2.VideoWriter_fourcc('M','J','P','G') |
|
n, h, w, _ = video.shape |
|
writer = cv2.VideoWriter(filename, fourcc, 30, (w, h), 1) |
|
for i in range(0, n): |
|
writer.write(cv2.convertScaleAbs(video[i])) |
|
writer.release() |
|
|
|
|
|
def load_video(video_filename): |
|
""" |
|
Function: load_video |
|
-------------------- |
|
Loads a video from a file |
|
|
|
Args: |
|
----- |
|
video_filename: the name of the video file |
|
|
|
Returns: |
|
-------- |
|
a numpy array with shape (num_frames, height, width, channels) |
|
the frame rate of the video |
|
""" |
|
cap = cv2.VideoCapture(video_filename) |
|
|
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
|
|
video = np.zeros((frame_count, height, width, 3), dtype='float') |
|
x = 0 |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if ret is True: |
|
video[x] = frame |
|
x += 1 |
|
else: |
|
break |
|
return video, fps |
|
|
|
|
|
def temporal_ideal_filter(arr, low, high, fps, axis=0): |
|
""" |
|
Function: temporal_ideal_filter |
|
------------------------------- |
|
Applies a temporal ideal filter to a numpy array |
|
|
|
Args: |
|
----- |
|
arr: a numpy array with shape (N, H, W, C) |
|
N: number of frames |
|
H: height |
|
W: width |
|
C: channels |
|
low: the low frequency bound |
|
high: the high frequency bound |
|
fps: the video frame rate |
|
axis: the axis of video, should always be 0 |
|
|
|
Returns: |
|
-------- |
|
the array with the filter applied |
|
""" |
|
fft = fftpack.fft(arr, axis=axis) |
|
frequencies = fftpack.fftfreq(arr.shape[0], d=1.0 / fps) |
|
bound_low = (np.abs(frequencies - low)).argmin() |
|
bound_high = (np.abs(frequencies - high)).argmin() |
|
fft[:bound_low] = 0 |
|
fft[bound_high:-bound_high] = 0 |
|
fft[-bound_low:] = 0 |
|
iff=fftpack.ifft(fft, axis=axis) |
|
return np.abs(iff) |
|
|
|
|
|
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5): |
|
""" |
|
Function: butter_bandpass_filter |
|
-------------------------------- |
|
applies a buttersworth bandpass filter |
|
|
|
Args: |
|
----- |
|
data: the input data |
|
lowcut: the low cut value |
|
highcut: the high cut value |
|
fs: the frame rate in frames per second |
|
order: the order for butter |
|
|
|
Returns: |
|
-------- |
|
the result of the buttersworth bandpass filter |
|
""" |
|
omega = 0.5 * fs |
|
low = lowcut / omega |
|
high = highcut / omega |
|
b, a = signal.butter(order, [low, high], btype='band') |
|
y = signal.lfilter(b, a, data, axis=0) |
|
return y |
|
|