PyVHR / utils.py
navagg's picture
Upload 45 files
39b4c8c
"""
A utils module used in the actual evm module performing such tasks as
pyramid construction, video io and filter application
functions were originally written by flyingzhao but adapted for this module
"""
import cv2
import numpy as np
import scipy.signal as signal
import scipy.fftpack as fftpack
def build_gaussian_pyramid(src, levels=3):
"""
Function: build_gaussian_pyramid
--------------------------------
Builds a gaussian pyramid
Args:
-----
src: the input image
levels: the number levels in the gaussian pyramid
Returns:
--------
A gaussian pyramid
"""
s=src.copy()
pyramid=[s]
for i in range(levels):
s=cv2.pyrDown(s)
pyramid.append(s)
return pyramid
def gaussian_video(video, levels=3):
"""
Function: gaussian_video
------------------------
generates a gaussian pyramid for each frame in a video
Args:
-----
video: the input video array
levels: the number of levels in the gaussian pyramid
Returns:
--------
the gaussian video
"""
n = video.shape[0]
for i in range(0, n):
pyr = build_gaussian_pyramid(video[i], levels=levels)
gaussian_frame=pyr[-1]
if i==0:
vid_data = np.zeros((n, *gaussian_frame.shape))
vid_data[i] = gaussian_frame
return vid_data
def reconstruct_video_g(amp_video, original_video, levels=3):
"""
Function: reconstruct_video_g
-----------------------------
reconstructs a video from a gaussian pyramid and the original
Args:
-----
amp_video: the amplified gaussian video
original_video: the original video
levels: the levels in the gaussian video
Returns:
--------
the reconstructed video
"""
final_video = np.zeros(original_video.shape)
for i in range(0, amp_video.shape[0]):
img = amp_video[i]
for x in range(levels):
img = cv2.pyrUp(img)
img = img + original_video[i]
final_video[i] = img
return final_video
def build_laplacian_pyramid(src,levels=3):
"""
Function: build_laplacian_pyramid
---------------------------------
Builds a Laplacian Pyramid
Args:
-----
src: the input image
levels: the number levels in the laplacian pyramid
Returns:
--------
A Laplacian pyramid
"""
gaussianPyramid = build_gaussian_pyramid(src, levels)
pyramid=[]
for i in range(levels,0,-1):
GE=cv2.pyrUp(gaussianPyramid[i])
L=cv2.subtract(gaussianPyramid[i-1],GE)
pyramid.append(L)
return pyramid
def laplacian_video(video, levels=3):
"""
Function: laplacian_video
-------------------------
generates a laplaican pyramid for each frame in a video
Args:
-----
video: the input video array
levels: the number of levels for each laplacian pyramid
Returns:
--------
The laplacian video
"""
tensor_list=[]
n = video.shape[0]
for i in range(0, n):
frame=video[i]
pyr = build_laplacian_pyramid(frame,levels=levels)
if i==0:
for k in range(levels):
tensor_list.append(np.zeros((n, *pyr[k].shape)))
for n in range(levels):
tensor_list[n][i] = pyr[n]
return tensor_list
def reconstruct_video_l(lap_pyr, levels=3):
"""
Function: reconstruct_video_l
-----------------------------
reconstructs a video from a laplacian pyramid and the original
Args:
-----
lap_pyr: the amplified laplacian pyramid
levels: the levels in the laplacian video
Returns:
--------
the reconstructed video
"""
final = np.zeros(lap_pyr[-1].shape)
for i in range(lap_pyr[0].shape[0]):
up = lap_pyr[0][i]
for n in range(levels-1):
up = cv2.pyrUp(up) + lap_pyr[n + 1][i]
final[i] = up
return final
def save_video(video, filename='out.avi'):
"""
Function: save_video
--------------------
saves a video to a file
Args:
-----
video: the numpy array representing the video
filename: the name of the output file
Returns:
None
"""
fourcc = cv2.VideoWriter_fourcc('M','J','P','G')
n, h, w, _ = video.shape
writer = cv2.VideoWriter(filename, fourcc, 30, (w, h), 1)
for i in range(0, n):
writer.write(cv2.convertScaleAbs(video[i]))
writer.release()
def load_video(video_filename):
"""
Function: load_video
--------------------
Loads a video from a file
Args:
-----
video_filename: the name of the video file
Returns:
--------
a numpy array with shape (num_frames, height, width, channels)
the frame rate of the video
"""
cap = cv2.VideoCapture(video_filename)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
video = np.zeros((frame_count, height, width, 3), dtype='float')
x = 0
while cap.isOpened():
ret, frame = cap.read()
if ret is True:
video[x] = frame
x += 1
else:
break
return video, fps
def temporal_ideal_filter(arr, low, high, fps, axis=0):
"""
Function: temporal_ideal_filter
-------------------------------
Applies a temporal ideal filter to a numpy array
Args:
-----
arr: a numpy array with shape (N, H, W, C)
N: number of frames
H: height
W: width
C: channels
low: the low frequency bound
high: the high frequency bound
fps: the video frame rate
axis: the axis of video, should always be 0
Returns:
--------
the array with the filter applied
"""
fft = fftpack.fft(arr, axis=axis)
frequencies = fftpack.fftfreq(arr.shape[0], d=1.0 / fps)
bound_low = (np.abs(frequencies - low)).argmin()
bound_high = (np.abs(frequencies - high)).argmin()
fft[:bound_low] = 0
fft[bound_high:-bound_high] = 0
fft[-bound_low:] = 0
iff=fftpack.ifft(fft, axis=axis)
return np.abs(iff)
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
"""
Function: butter_bandpass_filter
--------------------------------
applies a buttersworth bandpass filter
Args:
-----
data: the input data
lowcut: the low cut value
highcut: the high cut value
fs: the frame rate in frames per second
order: the order for butter
Returns:
--------
the result of the buttersworth bandpass filter
"""
omega = 0.5 * fs
low = lowcut / omega
high = highcut / omega
b, a = signal.butter(order, [low, high], btype='band')
y = signal.lfilter(b, a, data, axis=0)
return y