PyVHR / single_dataset_analysis.py
navagg's picture
Upload 45 files
39b4c8c
import sys
sys.path.append("..")
import pandas as pd
import numpy as np
import os
import re
import matplotlib.pyplot as plt
import scipy.stats as ss
import scikit_posthocs as sp
import pandas as pd
from nonparametric_tests import friedman_aligned_ranks_test as ft
import Orange
def sort_nicely(l):
""" Sort the given list in the way that humans expect.
"""
convert = lambda text: int(text) if text.isdigit() else text
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
l.sort( key=alphanum_key )
return l
#Dataset on which perform analysis
#DATASET = 'LGI-PPGI'
#DATASET = 'PURE'
DATASET = 'UBFC1'
#DATASET = 'UBFC2'
#DATASET = 'Cohface'
#DATASET = 'Mahnob'
#DATASET = 'UBFC_ALL'
CASE = 'full'
#CASE = 'split'
alpha = '0.05'
if DATASET == 'UBFC_ALL':
exp_path1 = '../../results/' + 'UBFC1' + '/'
files1 = sort_nicely(os.listdir(exp_path1))
exp_path2 = '../../results/' + 'UBFC2' + '/'
files2 = sort_nicely(os.listdir(exp_path2))
else:
#Experiment Path
exp_path = '../../results/' + DATASET + '/'
files = sort_nicely(os.listdir(exp_path))
#All rPPG methods used
all_methods = ['CHROM','Green','ICA','LGI','PBV','PCA','POS','SSR']
#Method(s) for the visualization of the performance vs winSize
#methods = ['POS', 'CHROM', 'LGI']
#Metrics to Visualize
#metrics = ['CC', 'MAE', 'RMSE']
metrics = ['MAE']
print(all_methods)
#---------------- Produce Box plots for each method on a given dataset -----------
win_to_use = 10
if DATASET == 'UBFC_ALL':
f_to_use = [i for i in files1 if 'winSize'+str(win_to_use) in i][0]
path = exp_path1 + f_to_use
res1 = pd.read_hdf(path)
f_to_use = [i for i in files2 if 'winSize'+str(win_to_use) in i][0]
path = exp_path2 + f_to_use
res2 = pd.read_hdf(path)
res = res1.append(res2)
else:
f_to_use = [i for i in files if 'winSize'+str(win_to_use) in i][0]
path = exp_path + f_to_use
res = pd.read_hdf(path)
print('\n\n\t\t' + DATASET + '\n\n')
if DATASET == 'UBFC1' or DATASET == 'UBFC2' or DATASET == 'Mahnob' or DATASET == 'UBFC_ALL' or DATASET == 'Cohface':
all_vals_CC = []
all_vals_MAE = []
all_vals_RMSE = []
for metric in metrics:
for method in all_methods:
#print(method)
mean_v = []
raw_values = res[res['method'] == method][metric]
print(raw_values)
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
all_vals_CC.append(np.array(values))
if metric == 'MAE':
all_vals_MAE.append(np.array(values))
data_MAE = np.zeros([len(all_vals_MAE[0]), len(all_vals_MAE)])
for i,m in enumerate(all_vals_MAE):
data_MAE[:,i] = m
print(data_MAE)
'''data_MAE_df = pd.DataFrame(data_MAE, columns=all_methods)
print('\nFriedman Test MAE:')
print(ss.friedmanchisquare(*data_MAE.T))
print(' ')'''
'''pc = sp.posthoc_nemenyi_friedman(data_MAE_df)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test MAE')'''
n_datasets = data_MAE.shape[0]
t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3],
data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7])
avranksMAE = list(np.divide(ranks_mae, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
data_CC = np.zeros([len(all_vals_CC[0]), len(all_vals_CC)])
for i,m in enumerate(all_vals_CC):
data_CC[:,i] = m
'''data_CC_df = pd.DataFrame(data_CC, columns=all_methods)
print('\nFriedman Test MAE:')
print(ss.friedmanchisquare(*data_CC.T))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_CC_df)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test CC')'''
t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3], data_CC[:,4],
data_CC[:,5], data_CC[:,6], data_CC[:,7])
avranksCC = list(np.divide(ranks_cc, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
#plt.figure()
#plt.subplot(1,2,1)
#plt.title('CC')
#plt.boxplot(all_vals_CC, showfliers=False)
#plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
#plt.subplot(1,2,2)
#plt.title('MAE')
#plt.boxplot(all_vals_MAE, showfliers=False)
#plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True)
#plt.title('CD Diagram MAE')
cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5)
#plt.title('CD Diagram CC')
#plt.show()
elif DATASET == 'PURE':
cases = {'01':'steady', '02':'talking', '03':'slow_trans', '04':'fast_trans', '05':'small_rot', '06':'fast_rot'}
all_CC = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]}
all_MAE = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]}
if CASE == 'split':
for metric in metrics:
for method in all_methods:
#print(method)
for curr_case in cases.keys():
curr_res = res[res['videoName'].str.split('/').str[5].str.split('-').str[1] == curr_case]
raw_values = curr_res[curr_res['method'] == method][metric]
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
all_CC[curr_case].append(np.array(values))
if metric == 'MAE':
all_MAE[curr_case].append(np.array(values))
for curr_case in cases.keys():
'''plt.figure()
plt.subplot(1,2,1)
plt.title('CC ' + cases[curr_case])
plt.boxplot(all_CC[curr_case], showfliers=False)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
plt.subplot(1,2,2)
plt.title('MAE ' + cases[curr_case])
plt.boxplot(all_MAE[curr_case], showfliers=False)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)'''
print('\n' + curr_case + '\n')
data_MAE = np.zeros([len(all_MAE[curr_case][0]), len(all_MAE[curr_case])])
for i,m in enumerate(all_MAE[curr_case]):
data_MAE[:,i] = m
n_datasets = data_MAE.shape[0]
data_CC = np.zeros([len(all_CC[curr_case][0]), len(all_CC[curr_case])])
for i,m in enumerate(all_CC[curr_case]):
data_CC[:,i] = m
t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3],
data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7])
avranksMAE = list(np.divide(ranks_mae, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3],
data_CC[:,4], data_CC[:,5], data_CC[:,6], data_CC[:,7])
avranksCC = list(np.divide(ranks_cc, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True)
plt.title('CD Diagram MAE')
cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5)
plt.title('CD Diagram CC')
plt.show()
elif CASE == 'full':
CC_allcases = []
MAE_allcases = []
for metric in metrics:
for method in all_methods:
raw_values = res[res['method'] == method][metric]
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
CC_allcases.append(np.array(values))
if metric == 'MAE':
MAE_allcases.append(np.array(values))
data_MAE = np.zeros([len(MAE_allcases[0]), len(MAE_allcases)])
for i,m in enumerate(MAE_allcases):
data_MAE[:,i] = m
n_datasets = data_MAE.shape[0]
'''data_MAE_df = pd.DataFrame(data_MAE, columns=all_methods)
print('\nFriedman Test MAE:')
print(ss.friedmanchisquare(*data_MAE.T))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_MAE_df)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test MAE')'''
t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3], data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7])
avranksMAE = list(np.divide(ranks_mae, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
data_CC = np.zeros([len(CC_allcases[0]), len(CC_allcases)])
for i,m in enumerate(CC_allcases):
data_CC[:,i] = m
'''data_CC_df = pd.DataFrame(data_CC, columns=all_methods)
print('\nFriedman Test MAE:')
print(ss.friedmanchisquare(*data_CC.T))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_CC_df)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test CC')'''
t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3], data_CC[:,4], data_CC[:,5], data_CC[:,6], data_CC[:,7])
avranksCC = list(np.divide(ranks_cc, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
'''plt.figure()
plt.subplot(1,2,1)
plt.title('CC')
plt.boxplot(CC_allcases, showfliers=False)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
plt.subplot(1,2,2)
plt.title('MAE')
plt.boxplot(MAE_allcases, showfliers=False)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)'''
cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True)
plt.title('CD Diagram MAE')
cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5)
plt.title('CD Diagram CC')
plt.show()
elif DATASET == 'LGI-PPGI':
cases = ['gym', 'resting', 'rotation', 'talk']
all_CC = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]}
all_MAE = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]}
if CASE == 'split':
for metric in metrics:
for method in all_methods:
#print(method)
for curr_case in cases:
curr_res = res[res['videoName'].str.split('/').str[6].str.split('_').str[1] == curr_case]
raw_values = curr_res[curr_res['method'] == method][metric]
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
all_CC[curr_case].append(np.array(values))
if metric == 'MAE':
all_MAE[curr_case].append(np.array(values))
for curr_case in cases:
plt.figure()
plt.subplot(1,2,1)
plt.title('CC ' + curr_case)
plt.boxplot(all_CC[curr_case], showfliers=False)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
plt.subplot(1,2,2)
plt.title('MAE ' + curr_case)
plt.boxplot(all_MAE[curr_case], showfliers=False)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
print('\n' + curr_case + '\n')
data_MAE = np.zeros([len(all_MAE[curr_case][0]), len(all_MAE[curr_case])])
for i,m in enumerate(all_MAE[curr_case]):
data_MAE[:,i] = m
n_datasets = data_MAE.shape[0]
data_CC = np.zeros([len(all_CC[curr_case][0]), len(all_CC[curr_case])])
for i,m in enumerate(all_CC[curr_case]):
data_CC[:,i] = m
t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3], data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7])
avranksMAE = list(np.divide(ranks_mae, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3], data_CC[:,4], data_CC[:,5], data_CC[:,6], data_CC[:,7])
avranksCC = list(np.divide(ranks_cc, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True)
plt.title('CD Diagram MAE')
cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5)
plt.title('CD Diagram CC')
plt.show()
elif CASE == 'full':
CC_allcases = []
MAE_allcases = []
for metric in metrics:
for method in all_methods:
raw_values = res[res['method'] == method][metric]
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
CC_allcases.append(np.array(values))
if metric == 'MAE':
MAE_allcases.append(np.array(values))
data_MAE = np.zeros([len(MAE_allcases[0]), len(MAE_allcases)])
for i,m in enumerate(MAE_allcases):
data_MAE[:,i] = m
n_datasets = data_MAE.shape[0]
data_MAE_df = pd.DataFrame(data_MAE, columns=all_methods)
print('\nFriedman Test MAE:')
print(ss.friedmanchisquare(*data_MAE.T))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_MAE_df)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test MAE')
t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3], data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7])
avranksMAE = list(np.divide(ranks_mae, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
data_CC = np.zeros([len(CC_allcases[0]), len(CC_allcases)])
for i,m in enumerate(CC_allcases):
data_CC[:,i] = m
data_CC_df = pd.DataFrame(data_CC, columns=all_methods)
print('\nFriedman Test CC:')
print(ss.friedmanchisquare(*data_CC.T))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_CC_df)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test CC')
t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3], data_CC[:,4], data_CC[:,5], data_CC[:,6], data_CC[:,7])
avranksCC = list(np.divide(ranks_cc, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
plt.figure()
plt.subplot(1,2,1)
plt.title('CC')
plt.boxplot(CC_allcases, showfliers=False)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
plt.subplot(1,2,2)
plt.title('MAE')
plt.boxplot(MAE_allcases, showfliers=False)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True)
plt.title('CD Diagram MAE')
cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5)
plt.title('CD Diagram CC')
plt.show()