|
import numpy as np |
|
from scipy import signal |
|
from .base import VHRMethod |
|
|
|
class PBV(VHRMethod): |
|
methodName = 'PBV' |
|
|
|
def __init__(self, **kwargs): |
|
super(PBV, self).__init__(**kwargs) |
|
|
|
def apply(self, X): |
|
|
|
r_mean = X[0,:]/np.mean(X[0,:]) |
|
g_mean = X[1,:]/np.mean(X[1,:]) |
|
b_mean = X[2,:]/np.mean(X[2,:]) |
|
|
|
pbv_n = np.array([np.std(r_mean), np.std(g_mean), np.std(b_mean)]) |
|
pbv_d = np.sqrt(np.var(r_mean) + np.var(g_mean) + np.var(b_mean)) |
|
pbv = pbv_n / pbv_d |
|
|
|
C = np.array([r_mean, g_mean, b_mean]) |
|
Q = np.matmul(C ,np.transpose(C)) |
|
W = np.linalg.solve(Q,pbv) |
|
|
|
bvp = np.matmul(C.T,W)/(np.matmul(pbv.T,W)) |
|
|
|
return bvp |