import numpy as np | |
from scipy.signal import butter, lfilter, filtfilt, freqz | |
from scipy import signal | |
def BPfilter(x, minHz, maxHz, fs, order=6): | |
"""Band Pass filter (using BPM band)""" | |
#nyq = fs * 0.5 | |
#low = minHz/nyq | |
#high = maxHz/nyq | |
#print(low, high) | |
#-- filter type | |
#print('filtro=%f' % minHz) | |
b, a = butter(order, Wn=[minHz, maxHz], fs=fs, btype='bandpass') | |
#TODO verificare filtfilt o lfilter | |
#y = lfilter(b, a, x) | |
y = filtfilt(b, a, x) | |
#w, h = freqz(b, a) | |
#import matplotlib.pyplot as plt | |
#fig, ax1 = plt.subplots() | |
#ax1.set_title('Digital filter frequency response') | |
#ax1.plot((fs * 0.5 / np.pi) * w, abs(h), 'b') | |
#ax1.set_ylabel('Amplitude [dB]', color='b') | |
#plt.show() | |
return y | |
def zeroMeanSTDnorm(x): | |
# -- normalization along rows (1-3 channels) | |
mx = x.mean(axis=1).reshape(-1,1) | |
sx = x.std(axis=1).reshape(-1,1) | |
y = (x - mx) / sx | |
return y |