|
import numpy as np |
|
import plotly.graph_objects as go |
|
from pyVHR.signals.bvp import BVPsignal |
|
|
|
def getErrors(bpmES, bpmGT, timesES, timesGT): |
|
RMSE = RMSEerror(bpmES, bpmGT, timesES, timesGT) |
|
MAE = MAEerror(bpmES, bpmGT, timesES, timesGT) |
|
MAX = MAXError(bpmES, bpmGT, timesES, timesGT) |
|
PCC = PearsonCorr(bpmES, bpmGT, timesES, timesGT) |
|
return RMSE, MAE, MAX, PCC |
|
|
|
def RMSEerror(bpmES, bpmGT, timesES=None, timesGT=None): |
|
""" RMSE: """ |
|
|
|
diff = bpm_diff(bpmES, bpmGT, timesES, timesGT) |
|
n,m = diff.shape |
|
df = np.zeros(n) |
|
for j in range(m): |
|
for c in range(n): |
|
df[c] += np.power(diff[c,j],2) |
|
|
|
|
|
RMSE = np.sqrt(df/m) |
|
return RMSE |
|
|
|
def MAEerror(bpmES, bpmGT, timesES=None, timesGT=None): |
|
""" MAE: """ |
|
|
|
diff = bpm_diff(bpmES, bpmGT, timesES, timesGT) |
|
n,m = diff.shape |
|
df = np.sum(np.abs(diff),axis=1) |
|
|
|
|
|
MAE = df/m |
|
return MAE |
|
|
|
def MAXError(bpmES, bpmGT, timesES=None, timesGT=None): |
|
""" MAE: """ |
|
|
|
diff = bpm_diff(bpmES, bpmGT, timesES, timesGT) |
|
n,m = diff.shape |
|
df = np.max(np.abs(diff),axis=1) |
|
|
|
|
|
MAX = df |
|
return MAX |
|
|
|
def PearsonCorr(bpmES, bpmGT, timesES=None, timesGT=None): |
|
from scipy import stats |
|
|
|
diff = bpm_diff(bpmES, bpmGT, timesES, timesGT) |
|
n,m = diff.shape |
|
CC = np.zeros(n) |
|
for c in range(n): |
|
|
|
r,p = stats.pearsonr(diff[c,:]+bpmES[c,:],bpmES[c,:]) |
|
CC[c] = r |
|
return CC |
|
|
|
def printErrors(RMSE, MAE, MAX, PCC): |
|
print("\n * Errors: RMSE = %.2f, MAE = %.2f, MAX = %.2f, PCC = %.2f" %(RMSE,MAE,MAX,PCC)) |
|
|
|
def displayErrors(bpmES, bpmGT, timesES=None, timesGT=None): |
|
|
|
if (timesES is None) or (timesGT is None): |
|
timesES = np.arange(m) |
|
timesGT = timesES |
|
|
|
diff = bpm_diff(bpmES, bpmGT, timesES, timesGT) |
|
n,m = diff.shape |
|
df = np.abs(diff) |
|
dfMean = np.around(np.mean(df,axis=1),1) |
|
|
|
|
|
fig = go.Figure() |
|
name = 'Ch 1 (µ = ' + str(dfMean[0])+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=df[0,:], name=name, mode='lines+markers')) |
|
if n > 1: |
|
name = 'Ch 2 (µ = ' + str(dfMean[1])+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=df[1,:], name=name, mode='lines+markers')) |
|
name = 'Ch 3 (µ = ' + str(dfMean[2])+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=df[2,:], name=name, mode='lines+markers')) |
|
fig.update_layout(xaxis_title='Times (sec)', yaxis_title='MAE', showlegend=True) |
|
fig.show() |
|
|
|
|
|
fig = go.Figure() |
|
GTmean = np.around(np.mean(bpmGT),1) |
|
name = 'GT (µ = ' + str(GTmean)+ ' )' |
|
fig.add_trace(go.Scatter(x=timesGT, y=bpmGT, name=name, mode='lines+markers')) |
|
ESmean = np.around(np.mean(bpmES[0,:]),1) |
|
name = 'ES1 (µ = ' + str(ESmean)+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=bpmES[0,:], name=name, mode='lines+markers')) |
|
if n > 1: |
|
ESmean = np.around(np.mean(bpmES[1,:]),1) |
|
name = 'ES2 (µ = ' + str(ESmean)+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=bpmES[1,:], name=name, mode='lines+markers')) |
|
ESmean = np.around(np.mean(bpmES[2,:]),1) |
|
name = 'E3 (µ = ' + str(ESmean)+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=bpmES[2,:], name=name, mode='lines+markers')) |
|
|
|
fig.update_layout(xaxis_title='Times (sec)', yaxis_title='BPM', showlegend=True) |
|
fig.show() |
|
|
|
|
|
def bpm_diff(bpmES, bpmGT, timesES=None, timesGT=None): |
|
n,m = bpmES.shape |
|
|
|
if (timesES is None) or (timesGT is None): |
|
timesES = np.arange(m) |
|
timesGT = timesES |
|
|
|
diff = np.zeros((n,m)) |
|
for j in range(m): |
|
t = timesES[j] |
|
i = np.argmin(np.abs(t-timesGT)) |
|
for c in range(n): |
|
diff[c,j] = bpmGT[i]-bpmES[c,j] |
|
return diff |
|
|