|
import numpy as np |
|
import ast |
|
import plotly.graph_objects as go |
|
from scipy.signal import medfilt, detrend |
|
from abc import ABCMeta, abstractmethod |
|
from importlib import import_module |
|
from ..signals.bvp import BVPsignal |
|
from ..utils import filters, printutils |
|
from ..utils import detrending |
|
|
|
def methodFactory(methodName, *args, **kwargs): |
|
try: |
|
moduleName = methodName.lower() |
|
className = methodName.upper() |
|
methodModule = import_module('.methods.' + moduleName, package='pyVHR') |
|
classOBJ = getattr(methodModule, className) |
|
obj = classOBJ(**kwargs) |
|
|
|
except (AttributeError, ModuleNotFoundError): |
|
raise ImportError('{} is not part of pyVHR method collection!'.format(methodName)) |
|
|
|
return obj |
|
|
|
class VHRMethod(metaclass=ABCMeta): |
|
""" |
|
Manage VHR approaches (parent class for new approach) |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
self.video = kwargs['video'] |
|
self.verb = kwargs['verb'] |
|
|
|
@abstractmethod |
|
def apply(self, X): |
|
pass |
|
|
|
def runOffline(self, **kwargs): |
|
|
|
|
|
startTime, endTime, winSize, timeStep, zeroMeanSTDnorm, BPfilter, minHz, maxHz, detrFilter, \ |
|
detrMethod, detrLambda = self.__readparams(**kwargs) |
|
|
|
fs = self.video.frameRate |
|
|
|
|
|
if endTime > self.video.duration: |
|
endTime = self.video.duration |
|
assert startTime <= endTime, "Time interval error!" |
|
assert timeStep > 0, "Time step must be positive!" |
|
assert winSize < (endTime-startTime),"Winsize too big!" |
|
|
|
|
|
if '1' in str(self.verb): |
|
self.__verbose(startTime, endTime, winSize) |
|
|
|
if self.video.doEVM is True: |
|
self.video.applyEVM() |
|
else: |
|
self.video.processedFaces = self.video.faces |
|
|
|
timeSteps = np.arange(startTime,endTime,timeStep) |
|
T = startTime |
|
RADIUS = winSize/2 |
|
|
|
bpmES = [] |
|
timesES = [] |
|
|
|
|
|
startFrame = int(T*self.video.frameRate) |
|
count = 0 |
|
while T <= endTime: |
|
endFrame = np.min([self.video.numFrames, int((T+RADIUS)*self.video.frameRate)]) |
|
|
|
|
|
self.frameSubset = np.arange(startFrame, endFrame) |
|
|
|
self.ROImask = kwargs['ROImask'] |
|
|
|
|
|
if self.ROImask == 'rect': |
|
rects = ast.literal_eval(kwargs['rectCoords']) |
|
self.rectCoords = [] |
|
for x in rects: |
|
rect = [] |
|
for y in x: |
|
rect.append(int(y)) |
|
self.rectCoords.append(rect) |
|
self.video.setMask(self.ROImask, rectCoords=self.rectCoords) |
|
elif self.ROImask == 'skin_adapt': |
|
self.video.setMask(self.ROImask, skinThresh_adapt=float(kwargs['skinAdapt'])) |
|
elif self.ROImask == 'skin_fix': |
|
threshs = ast.literal_eval(kwargs['skinFix']) |
|
self.threshSkinFix = [int(x) for x in threshs] |
|
self.video.setMask(self.ROImask, skinThresh_fix=self.threshSkinFix) |
|
else: |
|
raise ValueError(self.ROImask + " : Unimplemented Signal Extractor!") |
|
|
|
self.video.extractSignal(self.frameSubset, count) |
|
|
|
|
|
RGBsig = self.video.getMeanRGB() |
|
|
|
|
|
if '2' in str(self.verb): |
|
printutils.multiplot(y=RGBsig, name=['ch B', 'ch R','ch G'], title='RGB raw data') |
|
|
|
|
|
if zeroMeanSTDnorm: |
|
RGBsig = filters.zeroMeanSTDnorm(RGBsig) |
|
if detrFilter: |
|
if detrMethod == 'tarvainen': |
|
|
|
RGBsig[0] = detrending.detrend(RGBsig[0], detrLambda) |
|
RGBsig[1] = detrending.detrend(RGBsig[1], detrLambda) |
|
RGBsig[2] = detrending.detrend(RGBsig[2], detrLambda) |
|
else: |
|
RGBsig = detrend(RGBsig) |
|
if BPfilter: |
|
RGBsig = filters.BPfilter(RGBsig, minHz, maxHz, fs) |
|
|
|
|
|
if '2' in str(self.verb): |
|
printutils.multiplot(y=RGBsig, name=['ch B', 'ch R','ch G'], title='RGB postprocessing') |
|
|
|
|
|
rPPG = self.apply(RGBsig) |
|
|
|
|
|
startTime = np.max([0, T-winSize/self.video.frameRate]) |
|
bvpChunk = BVPsignal(rPPG, self.video.frameRate, startTime, minHz, maxHz, self.verb) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if '2' in str(self.verb): |
|
bvpChunk.plot(title='BVP estimate by ' + self.methodName) |
|
|
|
|
|
bvpChunk.PSD2BPM(chooseBest=True) |
|
|
|
|
|
bpmES.append(bvpChunk.bpm) |
|
timesES.append(T) |
|
|
|
|
|
T += timeStep |
|
startFrame = np.max([0, int((T-RADIUS)*self.video.frameRate)]) |
|
|
|
count += 1 |
|
|
|
|
|
self.bpm = np.array(bpmES).T |
|
|
|
|
|
|
|
self.times = np.array(timesES) |
|
|
|
return self.bpm, self.times |
|
|
|
@staticmethod |
|
def makeMethodObject(video, methodName='ICA'): |
|
if methodName == 'CHROM': |
|
m = methods.CHROM(video) |
|
elif methodName == 'LGI': |
|
m = methods.LGI(video) |
|
elif methodName == 'SSR': |
|
m = methods.SSR(video) |
|
elif methodName == 'PBV': |
|
m = methods.PBV(video) |
|
elif methodName == 'POS': |
|
m = methods.POS(video) |
|
elif methodName == 'Green': |
|
m = methods.Green(video) |
|
elif methodName == 'PCA': |
|
m = methods.PCA(video) |
|
elif methodName == 'ICA': |
|
m = methods.ICA(video) |
|
else: |
|
raise ValueError("Unknown method!") |
|
return m |
|
|
|
def __readparams(self, **kwargs): |
|
|
|
|
|
if 'startTime' in kwargs: |
|
startTime = float(kwargs['startTime']) |
|
else: |
|
startTime = 0 |
|
if 'endTime' in kwargs: |
|
if kwargs['endTime']=='INF': |
|
endTime = np.Inf |
|
else: |
|
endTime = float(kwargs['endTime']) |
|
else: |
|
endTime=np.Inf |
|
if 'winSize' in kwargs: |
|
winSize = int(kwargs['winSize']) |
|
else: |
|
winSize = 5 |
|
if 'timeStep' in kwargs: |
|
timeStep = float(kwargs['timeStep']) |
|
else: |
|
timeStep = 1 |
|
if 'zeroMeanSTDnorm' in kwargs: |
|
zeroMeanSTDnorm = int(kwargs['zeroMeanSTDnorm']) |
|
else: |
|
zeroMeanSTDnorm = 0 |
|
if 'BPfilter' in kwargs: |
|
BPfilter = int(kwargs['BPfilter']) |
|
else: |
|
BPfilter = 1 |
|
if 'minHz' in kwargs: |
|
minHz = float(kwargs['minHz']) |
|
else: |
|
minHz = .75 |
|
if 'maxHz' in kwargs: |
|
maxHz = float(kwargs['maxHz']) |
|
else: |
|
maxHz = 4. |
|
if 'detrending' in kwargs: |
|
detrending = int(kwargs['detrending']) |
|
else: |
|
detrending = 0 |
|
if detrending: |
|
if 'detrLambda' in kwargs: |
|
detrLambda = kwargs['detrLambda'] |
|
else: |
|
detrLambda = 10 |
|
else: |
|
detrLambda = 10 |
|
if 'detrMethod' in kwargs: |
|
detrMethod = kwargs['detrMethod'] |
|
else: |
|
detrMethod = 'tarvainen' |
|
|
|
return startTime, endTime, winSize, timeStep, zeroMeanSTDnorm, BPfilter, minHz, maxHz,\ |
|
detrending, detrMethod, detrLambda |
|
|
|
def RMSEerror(self, bvpGT): |
|
""" RMSE: """ |
|
|
|
diff = self.__diff(bvpGT) |
|
n,m = diff.shape |
|
df = np.zeros(n) |
|
for j in range(m): |
|
for c in range(n): |
|
df[c] += np.power(diff[c,j],2) |
|
|
|
|
|
RMSE = np.sqrt(df/m) |
|
return RMSE |
|
|
|
def MAEerror(self, bvpGT): |
|
""" MAE: """ |
|
|
|
diff = self.__diff(bvpGT) |
|
n,m = diff.shape |
|
df = np.sum(np.abs(diff),axis=1) |
|
|
|
|
|
MAE = df/m |
|
return MAE |
|
|
|
def MAXError(self, bvpGT): |
|
""" MAE: """ |
|
|
|
diff = self.__diff(bvpGT) |
|
n,m = diff.shape |
|
df = np.max(np.abs(diff),axis=1) |
|
|
|
|
|
MAX = df |
|
return MAX |
|
|
|
def PearsonCorr(self, bvpGT): |
|
from scipy import stats |
|
|
|
diff = self.__diff(bvpGT) |
|
bpmES = self.bpm |
|
n,m = diff.shape |
|
CC = np.zeros(n) |
|
for c in range(n): |
|
|
|
r,p = stats.pearsonr(diff[c,:]+bpmES[c,:],bpmES[c,:]) |
|
CC[c] = r |
|
return CC |
|
|
|
def printErrors(self, bvpGT): |
|
RMSE = self.RMSEerror(bvpGT) |
|
MAE = self.MAEerror(bvpGT) |
|
CC = self.PearsonCorr(bvpGT) |
|
print('\nErrors:') |
|
print(' RMSE: ' + str(RMSE)) |
|
print(' MAE : ' + str(MAE)) |
|
print(' CC : ' + str(CC)) |
|
|
|
def displayError(self, bvpGT): |
|
bpmGT = bvpGT.bpm |
|
timesGT = bvpGT.times |
|
bpmES = self.bpm |
|
timesES = self.times |
|
diff = self.__diff(bvpGT) |
|
n,m = diff.shape |
|
df = np.abs(diff) |
|
dfMean = np.around(np.mean(df,axis=1),1) |
|
|
|
|
|
fig = go.Figure() |
|
name = 'Ch 1 (µ = ' + str(dfMean[0])+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=df[0,:], name=name, mode='lines+markers')) |
|
if n > 1: |
|
name = 'Ch 2 (µ = ' + str(dfMean[1])+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=df[1,:], name=name, mode='lines+markers')) |
|
name = 'Ch 3 (µ = ' + str(dfMean[2])+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=df[2,:], name=name, mode='lines+markers')) |
|
fig.update_layout(xaxis_title='Times (sec)', yaxis_title='MAE', showlegend=True) |
|
fig.show() |
|
|
|
|
|
fig = go.Figure() |
|
GTmean = np.around(np.mean(bpmGT),1) |
|
name = 'GT (µ = ' + str(GTmean)+ ' )' |
|
fig.add_trace(go.Scatter(x=timesGT, y=bpmGT, name=name, mode='lines+markers')) |
|
ESmean = np.around(np.mean(bpmES[0,:]),1) |
|
name = 'ES1 (µ = ' + str(ESmean)+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=bpmES[0,:], name=name, mode='lines+markers')) |
|
if n > 1: |
|
ESmean = np.around(np.mean(bpmES[1,:]),1) |
|
name = 'ES2 (µ = ' + str(ESmean)+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=bpmES[1,:], name=name, mode='lines+markers')) |
|
ESmean = np.around(np.mean(bpmES[2,:]),1) |
|
name = 'E3 (µ = ' + str(ESmean)+ ' )' |
|
fig.add_trace(go.Scatter(x=timesES, y=bpmES[2,:], name=name, mode='lines+markers')) |
|
|
|
|
|
|
|
fig.update_layout(xaxis_title='Times (sec)', yaxis_title='BPM', showlegend=True) |
|
fig.show() |
|
|
|
|
|
|
|
def __diff(self, bvpGT): |
|
bpmGT = bvpGT.bpm |
|
timesGT = bvpGT.times |
|
bpmES = self.bpm |
|
timesES = self.times |
|
n,m = bpmES.shape |
|
|
|
diff = np.zeros((n,m)) |
|
for j in range(m): |
|
t = timesES[j] |
|
i = np.argmin(np.abs(t-timesGT)) |
|
for c in range(n): |
|
diff[c,j] = bpmGT[i]-bpmES[c,j] |
|
return diff |
|
|
|
def bpm_time_filter(self, bpm, w_len): |
|
|
|
n_sig = bpm.shape[0] |
|
filtered_bpm = [] |
|
|
|
for s in range(n_sig): |
|
x = bpm[s,:] |
|
x = medfilt(x, w_len) |
|
filtered_bpm.append(x) |
|
|
|
filtered_bpm = np.vstack(filtered_bpm) |
|
|
|
return filtered_bpm |
|
|
|
|
|
def __verbose(self, startTime, endTime, winSize): |
|
print("\n * %s params: start time = %.1f, end time = %.1f, winsize = %.1f (sec)" |
|
%(self.methodName, startTime, endTime, winSize)) |
|
|