|
from __future__ import division |
|
import numpy as np |
|
import scipy.stats.kde as kde |
|
|
|
def calc_min_interval(x, alpha): |
|
"""Internal method to determine the minimum interval of a given width |
|
Assumes that x is sorted numpy array. |
|
""" |
|
|
|
n = len(x) |
|
cred_mass = 1.0-alpha |
|
|
|
interval_idx_inc = int(np.floor(cred_mass*n)) |
|
n_intervals = n - interval_idx_inc |
|
interval_width = x[interval_idx_inc:] - x[:n_intervals] |
|
|
|
if len(interval_width) == 0: |
|
raise ValueError('Too few elements for interval calculation') |
|
|
|
min_idx = np.argmin(interval_width) |
|
hdi_min = x[min_idx] |
|
hdi_max = x[min_idx+interval_idx_inc] |
|
return hdi_min, hdi_max |
|
|
|
|
|
def hdi(x, alpha=0.05): |
|
"""Calculate highest posterior density (HPD) of array for given alpha. |
|
The HPD is the minimum width Bayesian credible interval (BCI). |
|
:Arguments: |
|
x : Numpy array |
|
An array containing MCMC samples |
|
alpha : float |
|
Desired probability of type I error (defaults to 0.05) |
|
""" |
|
|
|
|
|
x = x.copy() |
|
|
|
if x.ndim > 1: |
|
|
|
tx = np.transpose(x, list(range(x.ndim))[1:]+[0]) |
|
dims = np.shape(tx) |
|
|
|
intervals = np.resize(0.0, dims[:-1]+(2,)) |
|
|
|
for index in make_indices(dims[:-1]): |
|
try: |
|
index = tuple(index) |
|
except TypeError: |
|
pass |
|
|
|
|
|
sx = np.sort(tx[index]) |
|
|
|
intervals[index] = calc_min_interval(sx, alpha) |
|
|
|
return np.array(intervals) |
|
else: |
|
|
|
sx = np.sort(x) |
|
return np.array(calc_min_interval(sx, alpha)) |
|
|
|
|
|
def hdi2(sample, alpha=0.05, roundto=2): |
|
"""Calculate highest posterior density (HPD) of array for given alpha. |
|
The HPD is the minimum width Bayesian credible interval (BCI). |
|
The function works for multimodal distributions, returning more than one mode |
|
Parameters |
|
---------- |
|
|
|
sample : Numpy array or python list |
|
An array containing MCMC samples |
|
alpha : float |
|
Desired probability of type I error (defaults to 0.05) |
|
roundto: integer |
|
Number of digits after the decimal point for the results |
|
Returns |
|
---------- |
|
hpd: array with the lower |
|
|
|
""" |
|
sample = np.asarray(sample) |
|
sample = sample[~np.isnan(sample)] |
|
|
|
l = np.min(sample) |
|
u = np.max(sample) |
|
density = kde.gaussian_kde(sample) |
|
x = np.linspace(l, u, 2000) |
|
y = density.evaluate(x) |
|
|
|
xy_zipped = zip(x, y/np.sum(y)) |
|
xy = sorted(xy_zipped, key=lambda x: x[1], reverse=True) |
|
xy_cum_sum = 0 |
|
hdv = [] |
|
|
|
for val in xy: |
|
xy_cum_sum += val[1] |
|
hdv.append(val[0]) |
|
if xy_cum_sum >= (1-alpha): |
|
break |
|
hdv.sort() |
|
diff = (u-l)/20 |
|
hpd = [] |
|
hpd.append(round(min(hdv), roundto)) |
|
|
|
for i in range(1, len(hdv)): |
|
if hdv[i]-hdv[i-1] >= diff: |
|
hpd.append(round(hdv[i-1], roundto)) |
|
hpd.append(round(hdv[i], roundto)) |
|
hpd.append(round(max(hdv), roundto)) |
|
ite = iter(hpd) |
|
hpd = list(zip(ite, ite)) |
|
modes = [] |
|
for value in hpd: |
|
x_hpd = x[(x > value[0]) & (x < value[1])] |
|
y_hpd = y[(x > value[0]) & (x < value[1])] |
|
|
|
modes.append(round(x_hpd[np.argmax(y_hpd)], roundto)) |
|
return hpd, x, y, modes |