|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Dataset class for Food-101 dataset.""" |
|
|
|
import json |
|
from pathlib import Path |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
|
|
_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz" |
|
|
|
_HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/" |
|
|
|
_DESCRIPTION = ( |
|
"This dataset consists of 101 food categories, with 101'000 images. For " |
|
"each class, 250 manually reviewed test images are provided as well as 750" |
|
" training images. On purpose, the training images were not cleaned, and " |
|
"thus still contain some amount of noise. This comes mostly in the form of" |
|
" intense colors and sometimes wrong labels. All images were rescaled to " |
|
"have a maximum side length of 512 pixels." |
|
) |
|
|
|
_CITATION = """\ |
|
@inproceedings{bossard14, |
|
title = {Food-101 -- Mining Discriminative Components with Random Forests}, |
|
author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc}, |
|
booktitle = {European Conference on Computer Vision}, |
|
year = {2014} |
|
} |
|
""" |
|
|
|
_NAMES = [ |
|
"apple_pie", |
|
"baby_back_ribs", |
|
"baklava", |
|
"beef_carpaccio", |
|
"beef_tartare", |
|
"beet_salad", |
|
"beignets", |
|
"bibimbap", |
|
"bread_pudding", |
|
"breakfast_burrito", |
|
"bruschetta", |
|
"caesar_salad", |
|
"cannoli", |
|
"caprese_salad", |
|
"carrot_cake", |
|
"ceviche", |
|
"cheesecake", |
|
"cheese_plate", |
|
"chicken_curry", |
|
"chicken_quesadilla", |
|
"chicken_wings", |
|
"chocolate_cake", |
|
"chocolate_mousse", |
|
"churros", |
|
"clam_chowder", |
|
"club_sandwich", |
|
"crab_cakes", |
|
"creme_brulee", |
|
"croque_madame", |
|
"cup_cakes", |
|
"deviled_eggs", |
|
"donuts", |
|
"dumplings", |
|
"edamame", |
|
"eggs_benedict", |
|
"escargots", |
|
"falafel", |
|
"filet_mignon", |
|
"fish_and_chips", |
|
"foie_gras", |
|
"french_fries", |
|
"french_onion_soup", |
|
"french_toast", |
|
"fried_calamari", |
|
"fried_rice", |
|
"frozen_yogurt", |
|
"garlic_bread", |
|
"gnocchi", |
|
"greek_salad", |
|
"grilled_cheese_sandwich", |
|
"grilled_salmon", |
|
"guacamole", |
|
"gyoza", |
|
"hamburger", |
|
"hot_and_sour_soup", |
|
"hot_dog", |
|
"huevos_rancheros", |
|
"hummus", |
|
"ice_cream", |
|
"lasagna", |
|
"lobster_bisque", |
|
"lobster_roll_sandwich", |
|
"macaroni_and_cheese", |
|
"macarons", |
|
"miso_soup", |
|
"mussels", |
|
"nachos", |
|
"omelette", |
|
"onion_rings", |
|
"oysters", |
|
"pad_thai", |
|
"paella", |
|
"pancakes", |
|
"panna_cotta", |
|
"peking_duck", |
|
"pho", |
|
"pizza", |
|
"pork_chop", |
|
"poutine", |
|
"prime_rib", |
|
"pulled_pork_sandwich", |
|
"ramen", |
|
"ravioli", |
|
"red_velvet_cake", |
|
"risotto", |
|
"samosa", |
|
"sashimi", |
|
"scallops", |
|
"seaweed_salad", |
|
"shrimp_and_grits", |
|
"spaghetti_bolognese", |
|
"spaghetti_carbonara", |
|
"spring_rolls", |
|
"steak", |
|
"strawberry_shortcake", |
|
"sushi", |
|
"tacos", |
|
"takoyaki", |
|
"tiramisu", |
|
"tuna_tartare", |
|
"waffles", |
|
] |
|
|
|
|
|
class Food101(datasets.GeneratorBasedBuilder): |
|
"""Food-101 Images dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage=_HOMEPAGE, |
|
task_templates=[ImageClassification(image_file_path_column="image", label_column="label", labels=_NAMES)], |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_path = Path(dl_manager.download_and_extract(_BASE_URL)) |
|
meta_path = dl_path / "food-101" / "meta" |
|
image_dir_path = dl_path / "food-101" / "images" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"json_file_path": meta_path / "train.json", "image_dir_path": image_dir_path}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"json_file_path": meta_path / "test.json", "image_dir_path": image_dir_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, json_file_path, image_dir_path): |
|
"""Generate images and labels for splits.""" |
|
labels = self.info.features["label"] |
|
data = json.loads(json_file_path.read_text()) |
|
for label, images in data.items(): |
|
for image_name in images: |
|
image = image_dir_path / f"{image_name}.jpg" |
|
features = {"image": str(image), "label": labels.encode_example(label)} |
|
yield image_name, features |
|
|