Datasets:
Tasks:
Audio Classification
Sub-tasks:
audio-emotion-recognition
Languages:
English
Size:
1K<n<10K
License:
# from pathlib import Path | |
# import pandas as pd | |
# import regex as re | |
# import os | |
# import torchaudio | |
# import argparse | |
# from tqdm import tqdm | |
# from collections import OrderedDict | |
# feat_dict = OrderedDict() | |
# od['Modality'] = ['full-AV', 'video-only', 'audio-only'] | |
# od['Vocal channel'] = ['speech', 'song'] | |
# od['Emotion'] = ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised'] | |
# od['Emotion intensity'] = ['normal', 'strong'] | |
# od['Statement'] = ["Kids are talking by the door", "Dogs are sitting by the door"] | |
# od['Repetition'] = ["1st repetition", "2nd repetition"] | |
# # def filename2feats(filename): | |
# # codes = filename.stem.split('-') | |
# # for i, k in enumerate(od.keys()): | |
# # d = {} | |
# # d[k] = od[k][int(codes[i])-1] | |
# # d['Actor'] = codes[-1] | |
# # d['Gender'] = 'female' if int(codes[-1]) % 2 == 0 else 'male' | |
# # return d | |
# def preprocess(data_root_path): | |
# output_dir = data_root_path / "RAVDESS_ser" | |
# for f in data_root_path.iterdir(): | |
# print(f) | |
# filename2feats(filename) | |
# print("\n\n") | |
# # Filename identifiers | |
# # Modality (01 = full-AV, 02 = video-only, 03 = audio-only). | |
# # Vocal channel (01 = speech, 02 = song). | |
# # Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = sad, 05 = angry, 06 = fearful, 07 = disgust, 08 = surprised). | |
# # Emotional intensity (01 = normal, 02 = strong). NOTE: There is no strong intensity for the 'neutral' emotion. | |
# # Statement (01 = "Kids are talking by the door", 02 = "Dogs are sitting by the door"). | |
# # Repetition (01 = 1st repetition, 02 = 2nd repetition). | |
# # Actor (01 to 24. Odd numbered actors are male, even numbered actors are female). | |
# # Filename example: 02-01-06-01-02-01-12.mp4 | |
# # Video-only (02) | |
# # Speech (01) | |
# # Fearful (06) | |
# # Normal intensity (01) | |
# # Statement "dogs" (02) | |
# # 1st Repetition (01) | |
# # 12th Actor (12) | |
# # Female, as the actor ID number is even. | |
# # self.data_root_path = Path(data_root_path) | |
# # df = pd.DataFrame() | |
# # for session in range(1,5): | |
# # print(f"Processing session {session}") | |
# # df = pd.concat([df, self.read_session_data(session)]) | |
# # # Write the sliced wavs | |
# # print("Writing wav slices to file...") | |
# # sample_rate = 16000 | |
# # for index, row in df.iterrows(): | |
# # old_filename = str(self.data_root_path / Path(row['Path_to_Wav'])) | |
# # new_filename = str(output_dir / (index + ".wav")) | |
# # waveform = self.read_audio(old_filename, | |
# # start=row['Time_Start'], | |
# # end=row['Time_End']) | |
# # torchaudio.save(os.path.join(new_filename), | |
# # src=waveform, | |
# # sample_rate=sample_rate) | |
# # df.at[index, 'Path_to_Wav'] = new_filename | |
# # # Write out the combined data information | |
# # try: | |
# # df.to_csv(output_filename, index=False, header=True) | |
# # except: | |
# # print("Error writing dataframe to csv.") | |
# # def read_session_data(self, session_id): | |
# # d1 = self.read_emotion_labels(session_id) | |
# # d2 = self.read_transcriptions(session_id) | |
# # return d1.join(d2) | |
# # def read_emotion_labels(self, session_id): | |
# # emo_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("EmoEvaluation")) | |
# # emo_files = [f for f in list(emo_path.iterdir()) if f.suffix == ".txt"] | |
# # df = pd.DataFrame() | |
# # for ef in emo_files: | |
# # df2 = self.read_emotion_file(ef) | |
# # for ri, row in df2.iterrows(): | |
# # df2.loc[ri, 'Path_to_Wav'] = os.path.join(f"Session{session_id}", | |
# # "dialog", "wav", | |
# # row['Session_ID'] +".wav") | |
# # df = pd.concat([df, df2]) | |
# # df = df.set_index('ID') | |
# # return df | |
# # def slice_audio(self, session_id): | |
# # for i, row in df.iterrows(): | |
# # filename = row['Session_ID'] + ".wav" | |
# # wav_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("wav") / Path(filename)) | |
# # print("wav path = ", wav_path) | |
# # self.read_audio(wav_path, row['Time_Start'], row['Time_End'], row['Annotations']) | |
# # def read_emotion_file(self, filename): | |
# # time_extract_pattern = "\[([0-9\.]+) - ([0-9\.]+)\] +([^ ]+) +([^ ]+) \[([^\]]+)\]" | |
# # df = pd.DataFrame() #columns=columns) | |
# # i = 0 | |
# # with open(filename) as file: | |
# # lines = file.readlines() | |
# # lines = lines[2:] #:10] | |
# # while i < len(lines): | |
# # # Remove header | |
# # if match := re.search(time_extract_pattern, lines[i].replace("\t", " ")): | |
# # time_start = float(match.group(1)) | |
# # time_end = float(match.group(2)) | |
# # filename = match.group(3) | |
# # mys_id = match.group(4) | |
# # digits = [float(x) for x in match.group(5).split(", ")] | |
# # annotations = [] | |
# # while lines[i] != "\n": | |
# # i += 1 | |
# # if lines[i].startswith("C-"): | |
# # aid, anns, _ = lines[i].split("\t") | |
# # for an in anns.split(";")[:-1]: | |
# # annotations.append(an.strip()) | |
# # elif lines[i].startswith("A-"): | |
# # pass | |
# # annotations = list(set(annotations)) | |
# # annotations = ','.join(annotations) | |
# # session_id = filename[:filename.rindex("_")] | |
# # utt_id = filename[filename.rindex("_")+1:] | |
# # df2 = pd.DataFrame([{ | |
# # 'ID': filename, # ID for join between dataframes is the filename | |
# # 'Session_ID': session_id, | |
# # 'Utterance_ID': utt_id, | |
# # 'Time_Start': time_start, | |
# # 'Time_End': time_end, | |
# # 'Labels': annotations}]) | |
# # df = pd.concat([df, df2], ignore_index=True) | |
# # else: | |
# # i += 1 | |
# # return df | |
# # def read_transcriptions(self, session_id): | |
# # df = pd.DataFrame() | |
# # transcripts_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("transcriptions")) | |
# # transcript_files = [f for f in list(transcripts_path.iterdir()) if f.suffix == ".txt"] | |
# # for f in transcript_files: | |
# # df = pd.concat([df, self.read_transcript(f)], ignore_index=True) | |
# # df = df.set_index('ID') | |
# # return df | |
# # def read_transcript(self, filename): | |
# # df = pd.DataFrame() | |
# # with open(filename, "r") as f: | |
# # for l in f.readlines(): | |
# # cols = l.strip().split(" ") | |
# # if l[1] != ":" and len(cols) > 2: # There are some lines like "F:Mmhmm." that get ignored here | |
# # df2 = pd.DataFrame([{ | |
# # 'ID': cols[0], | |
# # 'Transcription': ' '.join(cols[2:]) | |
# # }]) | |
# # df = pd.concat([df, df2]) | |
# # return df | |
# # def read_audio(self, filename, start, end, sample_rate=16000): | |
# # waveform, sample_rate = torchaudio.load(filename, | |
# # frame_offset=int(start * sample_rate), | |
# # num_frames=int((end-start) * sample_rate)) | |
# # return waveform | |
# # if __name__ == '__main__': | |
# # # osx_path = '/Users/narad/Downloads/RAVDESS_full_release' | |
# # # windows_path = r'C:\Users\jasonn\Desktop\ser\data\RAVDESS_full_release' | |
# # parser = argparse.ArgumentParser(description='Process some integers.') | |
# # parser.add_argument('--data_dir', type=Path, required=True, | |
# # help='Path to IEOMCAP release directory.') | |
# # parser.add_argument('--output_file', type=Path, default="data.csv", | |
# # help='Filename for Huggingface-compatible dataset csv file.') | |
# # parser.add_argument('--output_dir', type=Path, default="processed", | |
# # help='Directory for processed wav files') | |
# # args = parser.parse_args() | |
# # print(args) | |
# # reader = RAVDESS(data_root_path=args.data_dir, | |
# # output_filename=args.output_file) | |
# # columns = ['Utterance_ID', | |
# # 'Time_Start', | |
# # 'Time-End', | |
# # 'Annotations'] | |