Clean up imports and remove them
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- src/accelerator.py +0 -137
- src/big_modeling.py +0 -35
- src/checkpointing.py +0 -35
- src/commands/accelerate_cli.py +0 -13
- src/commands/config/__init__.py +0 -40
- src/commands/config/cluster.py +0 -34
- src/commands/config/config.py +0 -14
- src/commands/config/config_args.py +0 -15
- src/commands/config/config_utils.py +0 -15
- src/commands/config/default.py +0 -12
- src/commands/config/sagemaker.py +0 -24
- src/commands/config/update.py +0 -9
- src/commands/env.py +0 -17
- src/commands/estimate.py +0 -24
- src/commands/launch.py +0 -50
- src/commands/menu/__init__.py +0 -1
- src/commands/menu/cursor.py +0 -53
- src/commands/menu/helpers.py +0 -47
- src/commands/menu/input.py +0 -74
- src/commands/menu/keymap.py +0 -122
- src/commands/menu/selection_menu.py +0 -131
- src/commands/test.py +0 -9
- src/commands/tpu.py +0 -12
- src/data_loader.py +0 -26
- src/hooks.py +0 -19
- src/launchers.py +0 -19
- src/local_sgd.py +0 -6
- src/logging.py +0 -9
- src/memory_utils.py +0 -10
- src/optimizer.py +0 -15
- src/scheduler.py +0 -8
- src/state.py +0 -44
- src/test_utils/examples.py +0 -134
- src/test_utils/scripts/__init__.py +0 -0
- src/test_utils/scripts/external_deps/__init__.py +0 -0
- src/test_utils/scripts/external_deps/test_checkpointing.py +0 -257
- src/test_utils/scripts/external_deps/test_metrics.py +0 -280
- src/test_utils/scripts/external_deps/test_peak_memory_usage.py +0 -265
- src/test_utils/scripts/external_deps/test_performance.py +0 -219
- src/test_utils/scripts/test_cli.py +0 -13
- src/test_utils/scripts/test_distributed_data_loop.py +0 -226
- src/test_utils/scripts/test_notebook.py +0 -40
- src/test_utils/scripts/test_ops.py +0 -147
- src/test_utils/scripts/test_script.py +0 -660
- src/test_utils/scripts/test_sync.py +0 -355
- src/test_utils/testing.py +0 -501
- src/test_utils/training.py +0 -89
- src/tracking.py +0 -23
- src/utils/bnb.py +0 -28
- src/utils/constants.py +0 -5
src/accelerator.py
CHANGED
@@ -1,140 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import contextlib
|
6 |
-
import functools
|
7 |
-
import json
|
8 |
-
import math
|
9 |
-
import os
|
10 |
-
import re
|
11 |
-
import shutil
|
12 |
-
import sys
|
13 |
-
import warnings
|
14 |
-
from collections import OrderedDict
|
15 |
-
from contextlib import contextmanager
|
16 |
-
from functools import partial
|
17 |
-
from types import MethodType
|
18 |
-
from typing import Any, Callable, Union
|
19 |
-
|
20 |
-
import torch
|
21 |
-
import torch.utils.hooks as hooks
|
22 |
-
|
23 |
-
from .checkpointing import load_accelerator_state, load_custom_state, save_accelerator_state, save_custom_state
|
24 |
-
from .data_loader import DataLoaderDispatcher, prepare_data_loader, skip_first_batches
|
25 |
-
from .hooks import AlignDevicesHook
|
26 |
-
from .logging import get_logger
|
27 |
-
from .optimizer import AcceleratedOptimizer
|
28 |
-
from .scheduler import AcceleratedScheduler
|
29 |
-
from .state import AcceleratorState, GradientState, PartialState
|
30 |
-
from .tracking import LOGGER_TYPE_TO_CLASS, GeneralTracker, filter_trackers
|
31 |
-
from .utils import (
|
32 |
-
MODEL_NAME,
|
33 |
-
SAFE_WEIGHTS_INDEX_NAME,
|
34 |
-
SAFE_WEIGHTS_NAME,
|
35 |
-
WEIGHTS_INDEX_NAME,
|
36 |
-
WEIGHTS_NAME,
|
37 |
-
AutocastKwargs,
|
38 |
-
DeepSpeedPlugin,
|
39 |
-
DistributedDataParallelKwargs,
|
40 |
-
DistributedType,
|
41 |
-
DynamoBackend,
|
42 |
-
FP8RecipeKwargs,
|
43 |
-
FullyShardedDataParallelPlugin,
|
44 |
-
GradientAccumulationPlugin,
|
45 |
-
GradScalerKwargs,
|
46 |
-
InitProcessGroupKwargs,
|
47 |
-
KwargsHandler,
|
48 |
-
LoggerType,
|
49 |
-
MegatronLMPlugin,
|
50 |
-
PrecisionType,
|
51 |
-
ProjectConfiguration,
|
52 |
-
RNGType,
|
53 |
-
TorchDynamoPlugin,
|
54 |
-
check_os_kernel,
|
55 |
-
clean_state_dict_for_safetensors,
|
56 |
-
compare_versions,
|
57 |
-
convert_model,
|
58 |
-
convert_outputs_to_fp32,
|
59 |
-
extract_model_from_parallel,
|
60 |
-
gather,
|
61 |
-
gather_object,
|
62 |
-
get_mixed_precision_context_manager,
|
63 |
-
get_pretty_name,
|
64 |
-
has_transformer_engine_layers,
|
65 |
-
is_bf16_available,
|
66 |
-
is_deepspeed_available,
|
67 |
-
is_fp8_available,
|
68 |
-
is_ipex_available,
|
69 |
-
is_megatron_lm_available,
|
70 |
-
is_msamp_available,
|
71 |
-
is_npu_available,
|
72 |
-
is_torch_version,
|
73 |
-
is_tpu_available,
|
74 |
-
is_xpu_available,
|
75 |
-
load_fsdp_model,
|
76 |
-
load_fsdp_optimizer,
|
77 |
-
pad_across_processes,
|
78 |
-
parse_choice_from_env,
|
79 |
-
recursively_apply,
|
80 |
-
reduce,
|
81 |
-
release_memory,
|
82 |
-
save,
|
83 |
-
save_fsdp_model,
|
84 |
-
save_fsdp_optimizer,
|
85 |
-
shard_checkpoint,
|
86 |
-
wait_for_everyone,
|
87 |
-
)
|
88 |
-
from .utils.constants import FSDP_PYTORCH_VERSION
|
89 |
-
from .utils.modeling import get_state_dict_offloaded_model
|
90 |
-
from .utils.other import is_compiled_module
|
91 |
-
|
92 |
-
|
93 |
-
if is_deepspeed_available():
|
94 |
-
from .utils import (
|
95 |
-
DeepSpeedEngineWrapper,
|
96 |
-
DeepSpeedOptimizerWrapper,
|
97 |
-
DeepSpeedSchedulerWrapper,
|
98 |
-
DummyOptim,
|
99 |
-
DummyScheduler,
|
100 |
-
)
|
101 |
-
|
102 |
-
if is_fp8_available():
|
103 |
-
import transformer_engine.common.recipe as te_recipe
|
104 |
-
from transformer_engine.pytorch import fp8_autocast
|
105 |
-
|
106 |
-
|
107 |
-
if is_megatron_lm_available():
|
108 |
-
from .utils import (
|
109 |
-
MegatronEngine,
|
110 |
-
MegatronLMDummyDataLoader,
|
111 |
-
MegatronLMDummyScheduler,
|
112 |
-
MegatronLMOptimizerWrapper,
|
113 |
-
MegatronLMSchedulerWrapper,
|
114 |
-
megatron_lm_initialize,
|
115 |
-
megatron_lm_prepare_data_loader,
|
116 |
-
megatron_lm_prepare_model,
|
117 |
-
megatron_lm_prepare_optimizer,
|
118 |
-
megatron_lm_prepare_scheduler,
|
119 |
-
)
|
120 |
-
|
121 |
-
from torch.distributed.algorithms.join import Join
|
122 |
-
|
123 |
-
|
124 |
-
if is_tpu_available(check_device=False):
|
125 |
-
import torch_xla.core.xla_model as xm
|
126 |
-
import torch_xla.distributed.xla_multiprocessing as xmp
|
127 |
-
|
128 |
-
|
129 |
-
if is_npu_available(check_device=False):
|
130 |
-
import torch_npu # noqa: F401
|
131 |
-
|
132 |
-
|
133 |
-
try:
|
134 |
-
from torch.optim.lr_scheduler import LRScheduler
|
135 |
-
except ImportError:
|
136 |
-
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
137 |
-
|
138 |
logger = get_logger(__name__)
|
139 |
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
logger = get_logger(__name__)
|
2 |
|
3 |
|
src/big_modeling.py
CHANGED
@@ -1,38 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import logging
|
4 |
-
import os
|
5 |
-
from contextlib import contextmanager
|
6 |
-
from functools import wraps
|
7 |
-
from typing import Dict, List, Optional, Union
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
|
12 |
-
from .hooks import (
|
13 |
-
AlignDevicesHook,
|
14 |
-
CpuOffload,
|
15 |
-
UserCpuOffloadHook,
|
16 |
-
add_hook_to_module,
|
17 |
-
attach_align_device_hook,
|
18 |
-
attach_align_device_hook_on_blocks,
|
19 |
-
)
|
20 |
-
from .utils import (
|
21 |
-
OffloadedWeightsLoader,
|
22 |
-
check_device_map,
|
23 |
-
extract_submodules_state_dict,
|
24 |
-
find_tied_parameters,
|
25 |
-
get_balanced_memory,
|
26 |
-
infer_auto_device_map,
|
27 |
-
is_npu_available,
|
28 |
-
is_torch_version,
|
29 |
-
load_checkpoint_in_model,
|
30 |
-
offload_state_dict,
|
31 |
-
parse_flag_from_env,
|
32 |
-
retie_parameters,
|
33 |
-
)
|
34 |
-
|
35 |
-
|
36 |
logger = logging.getLogger(__name__)
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
logger = logging.getLogger(__name__)
|
2 |
|
3 |
|
src/checkpointing.py
CHANGED
@@ -1,38 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import random
|
4 |
-
from pathlib import Path
|
5 |
-
from typing import List
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
from safetensors.torch import load_file
|
10 |
-
from torch.cuda.amp import GradScaler
|
11 |
-
|
12 |
-
from .utils import (
|
13 |
-
MODEL_NAME,
|
14 |
-
OPTIMIZER_NAME,
|
15 |
-
RNG_STATE_NAME,
|
16 |
-
SAFE_MODEL_NAME,
|
17 |
-
SAFE_WEIGHTS_NAME,
|
18 |
-
SAMPLER_NAME,
|
19 |
-
SCALER_NAME,
|
20 |
-
SCHEDULER_NAME,
|
21 |
-
WEIGHTS_NAME,
|
22 |
-
get_pretty_name,
|
23 |
-
is_tpu_available,
|
24 |
-
is_xpu_available,
|
25 |
-
save,
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
-
if is_tpu_available(check_device=False):
|
30 |
-
import torch_xla.core.xla_model as xm
|
31 |
-
|
32 |
-
from .logging import get_logger
|
33 |
-
from .state import PartialState
|
34 |
-
|
35 |
-
|
36 |
logger = get_logger(__name__)
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
logger = get_logger(__name__)
|
2 |
|
3 |
|
src/commands/accelerate_cli.py
CHANGED
@@ -1,17 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
from argparse import ArgumentParser
|
6 |
-
|
7 |
-
from accelerate.commands.config import get_config_parser
|
8 |
-
from accelerate.commands.env import env_command_parser
|
9 |
-
from accelerate.commands.estimate import estimate_command_parser
|
10 |
-
from accelerate.commands.launch import launch_command_parser
|
11 |
-
from accelerate.commands.test import test_command_parser
|
12 |
-
from accelerate.commands.tpu import tpu_command_parser
|
13 |
-
|
14 |
-
|
15 |
def main():
|
16 |
parser = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False)
|
17 |
subparsers = parser.add_subparsers(help="accelerate command helpers")
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
def main():
|
3 |
parser = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False)
|
4 |
subparsers = parser.add_subparsers(help="accelerate command helpers")
|
src/commands/config/__init__.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
from .config import config_command_parser
|
8 |
-
from .config_args import default_config_file, load_config_from_file # noqa: F401
|
9 |
-
from .default import default_command_parser
|
10 |
-
from .update import update_command_parser
|
11 |
-
|
12 |
-
|
13 |
-
def get_config_parser(subparsers=None):
|
14 |
-
parent_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
|
15 |
-
# The main config parser
|
16 |
-
config_parser = config_command_parser(subparsers)
|
17 |
-
# The subparser to add commands to
|
18 |
-
subcommands = config_parser.add_subparsers(title="subcommands", dest="subcommand")
|
19 |
-
|
20 |
-
# Then add other parsers with the parent parser
|
21 |
-
default_command_parser(subcommands, parents=[parent_parser])
|
22 |
-
update_command_parser(subcommands, parents=[parent_parser])
|
23 |
-
|
24 |
-
return config_parser
|
25 |
-
|
26 |
-
|
27 |
-
def main():
|
28 |
-
config_parser = get_config_parser()
|
29 |
-
args = config_parser.parse_args()
|
30 |
-
|
31 |
-
if not hasattr(args, "func"):
|
32 |
-
config_parser.print_help()
|
33 |
-
exit(1)
|
34 |
-
|
35 |
-
# Run
|
36 |
-
args.func(args)
|
37 |
-
|
38 |
-
|
39 |
-
if __name__ == "__main__":
|
40 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/commands/config/cluster.py
CHANGED
@@ -1,38 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import os
|
6 |
-
|
7 |
-
from ...utils import (
|
8 |
-
ComputeEnvironment,
|
9 |
-
DistributedType,
|
10 |
-
is_deepspeed_available,
|
11 |
-
is_mps_available,
|
12 |
-
is_npu_available,
|
13 |
-
is_transformers_available,
|
14 |
-
is_xpu_available,
|
15 |
-
)
|
16 |
-
from ...utils.constants import (
|
17 |
-
DEEPSPEED_MULTINODE_LAUNCHERS,
|
18 |
-
FSDP_AUTO_WRAP_POLICY,
|
19 |
-
FSDP_BACKWARD_PREFETCH,
|
20 |
-
FSDP_SHARDING_STRATEGY,
|
21 |
-
FSDP_STATE_DICT_TYPE,
|
22 |
-
TORCH_DYNAMO_MODES,
|
23 |
-
)
|
24 |
-
from .config_args import ClusterConfig
|
25 |
-
from .config_utils import (
|
26 |
-
DYNAMO_BACKENDS,
|
27 |
-
_ask_field,
|
28 |
-
_ask_options,
|
29 |
-
_convert_distributed_mode,
|
30 |
-
_convert_dynamo_backend,
|
31 |
-
_convert_mixed_precision,
|
32 |
-
_convert_yes_no_to_bool,
|
33 |
-
)
|
34 |
-
|
35 |
-
|
36 |
def get_cluster_input():
|
37 |
distributed_type = _ask_options(
|
38 |
"Which type of machine are you using?",
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
def get_cluster_input():
|
3 |
distributed_type = _ask_options(
|
4 |
"Which type of machine are you using?",
|
src/commands/config/config.py
CHANGED
@@ -1,18 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
import os
|
7 |
-
|
8 |
-
from accelerate.utils import ComputeEnvironment
|
9 |
-
|
10 |
-
from .cluster import get_cluster_input
|
11 |
-
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
|
12 |
-
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
|
13 |
-
from .sagemaker import get_sagemaker_input
|
14 |
-
|
15 |
-
|
16 |
description = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
|
17 |
|
18 |
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
description = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
|
3 |
|
4 |
|
src/commands/config/config_args.py
CHANGED
@@ -1,19 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import json
|
6 |
-
import os
|
7 |
-
from dataclasses import dataclass
|
8 |
-
from enum import Enum
|
9 |
-
from typing import List, Optional, Union
|
10 |
-
|
11 |
-
import yaml
|
12 |
-
|
13 |
-
from ...utils import ComputeEnvironment, DistributedType, SageMakerDistributedType
|
14 |
-
from ...utils.constants import SAGEMAKER_PYTHON_VERSION, SAGEMAKER_PYTORCH_VERSION, SAGEMAKER_TRANSFORMERS_VERSION
|
15 |
-
|
16 |
-
|
17 |
hf_cache_home = os.path.expanduser(
|
18 |
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
|
19 |
)
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
hf_cache_home = os.path.expanduser(
|
3 |
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
|
4 |
)
|
src/commands/config/config_utils.py
CHANGED
@@ -1,19 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
from ...utils.dataclasses import (
|
8 |
-
ComputeEnvironment,
|
9 |
-
DistributedType,
|
10 |
-
DynamoBackend,
|
11 |
-
PrecisionType,
|
12 |
-
SageMakerDistributedType,
|
13 |
-
)
|
14 |
-
from ..menu import BulletMenu
|
15 |
-
|
16 |
-
|
17 |
DYNAMO_BACKENDS = [
|
18 |
"EAGER",
|
19 |
"AOT_EAGER",
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
DYNAMO_BACKENDS = [
|
3 |
"EAGER",
|
4 |
"AOT_EAGER",
|
src/commands/config/default.py
CHANGED
@@ -1,16 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
from pathlib import Path
|
6 |
-
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from ...utils import is_npu_available, is_xpu_available
|
10 |
-
from .config_args import ClusterConfig, default_json_config_file
|
11 |
-
from .config_utils import SubcommandHelpFormatter
|
12 |
-
|
13 |
-
|
14 |
description = "Create a default config file for Accelerate with only a few flags set."
|
15 |
|
16 |
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
description = "Create a default config file for Accelerate with only a few flags set."
|
3 |
|
4 |
|
src/commands/config/sagemaker.py
CHANGED
@@ -1,28 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
|
7 |
-
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
|
8 |
-
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
|
9 |
-
from ...utils.imports import is_boto3_available
|
10 |
-
from .config_args import SageMakerConfig
|
11 |
-
from .config_utils import (
|
12 |
-
DYNAMO_BACKENDS,
|
13 |
-
_ask_field,
|
14 |
-
_ask_options,
|
15 |
-
_convert_dynamo_backend,
|
16 |
-
_convert_mixed_precision,
|
17 |
-
_convert_sagemaker_distributed_mode,
|
18 |
-
_convert_yes_no_to_bool,
|
19 |
-
)
|
20 |
-
|
21 |
-
|
22 |
-
if is_boto3_available():
|
23 |
-
import boto3 # noqa: F401
|
24 |
-
|
25 |
-
|
26 |
def _create_iam_role_for_sagemaker(role_name):
|
27 |
iam_client = boto3.client("iam")
|
28 |
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
def _create_iam_role_for_sagemaker(role_name):
|
3 |
iam_client = boto3.client("iam")
|
4 |
|
src/commands/config/update.py
CHANGED
@@ -1,13 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
from pathlib import Path
|
6 |
-
|
7 |
-
from .config_args import default_config_file, load_config_from_file
|
8 |
-
from .config_utils import SubcommandHelpFormatter
|
9 |
-
|
10 |
-
|
11 |
description = "Update an existing config file with the latest defaults while maintaining the old configuration."
|
12 |
|
13 |
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
description = "Update an existing config file with the latest defaults while maintaining the old configuration."
|
3 |
|
4 |
|
src/commands/env.py
CHANGED
@@ -1,21 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
import os
|
7 |
-
import platform
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
import psutil
|
11 |
-
import torch
|
12 |
-
|
13 |
-
from accelerate import __version__ as version
|
14 |
-
from accelerate.commands.config import default_config_file, load_config_from_file
|
15 |
-
|
16 |
-
from ..utils import is_npu_available, is_xpu_available
|
17 |
-
|
18 |
-
|
19 |
def env_command_parser(subparsers=None):
|
20 |
if subparsers is not None:
|
21 |
parser = subparsers.add_parser("env")
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
def env_command_parser(subparsers=None):
|
3 |
if subparsers is not None:
|
4 |
parser = subparsers.add_parser("env")
|
src/commands/estimate.py
CHANGED
@@ -1,28 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
import argparse
|
5 |
-
|
6 |
-
from huggingface_hub import model_info
|
7 |
-
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
8 |
-
|
9 |
-
from accelerate import init_empty_weights
|
10 |
-
from accelerate.utils import (
|
11 |
-
calculate_maximum_sizes,
|
12 |
-
convert_bytes,
|
13 |
-
is_timm_available,
|
14 |
-
is_transformers_available,
|
15 |
-
)
|
16 |
-
|
17 |
-
|
18 |
-
if is_transformers_available():
|
19 |
-
import transformers
|
20 |
-
from transformers import AutoConfig, AutoModel
|
21 |
-
|
22 |
-
if is_timm_available():
|
23 |
-
import timm
|
24 |
-
|
25 |
-
|
26 |
def verify_on_hub(repo: str, token: str = None):
|
27 |
"Verifies that the model is on the hub and returns the model info."
|
28 |
try:
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
def verify_on_hub(repo: str, token: str = None):
|
3 |
"Verifies that the model is on the hub and returns the model info."
|
4 |
try:
|
src/commands/launch.py
CHANGED
@@ -1,54 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
import importlib
|
7 |
-
import logging
|
8 |
-
import os
|
9 |
-
import subprocess
|
10 |
-
import sys
|
11 |
-
from pathlib import Path
|
12 |
-
|
13 |
-
import psutil
|
14 |
-
import torch
|
15 |
-
|
16 |
-
from accelerate.commands.config import default_config_file, load_config_from_file
|
17 |
-
from accelerate.commands.config.config_args import SageMakerConfig
|
18 |
-
from accelerate.commands.config.config_utils import DYNAMO_BACKENDS
|
19 |
-
from accelerate.state import get_int_from_env
|
20 |
-
from accelerate.utils import (
|
21 |
-
ComputeEnvironment,
|
22 |
-
DistributedType,
|
23 |
-
PrepareForLaunch,
|
24 |
-
_filter_args,
|
25 |
-
check_cuda_p2p_ib_support,
|
26 |
-
is_bf16_available,
|
27 |
-
is_deepspeed_available,
|
28 |
-
is_npu_available,
|
29 |
-
is_rich_available,
|
30 |
-
is_sagemaker_available,
|
31 |
-
is_torch_version,
|
32 |
-
is_tpu_available,
|
33 |
-
is_xpu_available,
|
34 |
-
patch_environment,
|
35 |
-
prepare_deepspeed_cmd_env,
|
36 |
-
prepare_multi_gpu_env,
|
37 |
-
prepare_sagemager_args_inputs,
|
38 |
-
prepare_simple_launcher_cmd_env,
|
39 |
-
prepare_tpu,
|
40 |
-
)
|
41 |
-
from accelerate.utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS, TORCH_DYNAMO_MODES
|
42 |
-
|
43 |
-
|
44 |
-
if is_rich_available():
|
45 |
-
from rich import get_console
|
46 |
-
from rich.logging import RichHandler
|
47 |
-
|
48 |
-
FORMAT = "%(message)s"
|
49 |
-
logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[RichHandler()])
|
50 |
-
|
51 |
-
|
52 |
logger = logging.getLogger(__name__)
|
53 |
|
54 |
options_to_group = {
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
logger = logging.getLogger(__name__)
|
3 |
|
4 |
options_to_group = {
|
src/commands/menu/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .selection_menu import BulletMenu
|
|
|
|
src/commands/menu/cursor.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
"""
|
4 |
-
A utility for showing and hiding the terminal cursor on Windows and Linux, based on https://github.com/bchao1/bullet
|
5 |
-
"""
|
6 |
-
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
-
from contextlib import contextmanager
|
10 |
-
|
11 |
-
|
12 |
-
# Windows only
|
13 |
-
if os.name == "nt":
|
14 |
-
import ctypes
|
15 |
-
import msvcrt # noqa
|
16 |
-
|
17 |
-
class CursorInfo(ctypes.Structure):
|
18 |
-
# _fields is a specific attr expected by ctypes
|
19 |
-
_fields_ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)]
|
20 |
-
|
21 |
-
|
22 |
-
def hide_cursor():
|
23 |
-
if os.name == "nt":
|
24 |
-
ci = CursorInfo()
|
25 |
-
handle = ctypes.windll.kernel32.GetStdHandle(-11)
|
26 |
-
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
|
27 |
-
ci.visible = False
|
28 |
-
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
|
29 |
-
elif os.name == "posix":
|
30 |
-
sys.stdout.write("\033[?25l")
|
31 |
-
sys.stdout.flush()
|
32 |
-
|
33 |
-
|
34 |
-
def show_cursor():
|
35 |
-
if os.name == "nt":
|
36 |
-
ci = CursorInfo()
|
37 |
-
handle = ctypes.windll.kernel32.GetStdHandle(-11)
|
38 |
-
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
|
39 |
-
ci.visible = True
|
40 |
-
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
|
41 |
-
elif os.name == "posix":
|
42 |
-
sys.stdout.write("\033[?25h")
|
43 |
-
sys.stdout.flush()
|
44 |
-
|
45 |
-
|
46 |
-
@contextmanager
|
47 |
-
def hide():
|
48 |
-
"Context manager to hide the terminal cursor"
|
49 |
-
try:
|
50 |
-
hide_cursor()
|
51 |
-
yield
|
52 |
-
finally:
|
53 |
-
show_cursor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/commands/menu/helpers.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
"""
|
4 |
-
A variety of helper functions and constants when dealing with terminal menu choices, based on
|
5 |
-
https://github.com/bchao1/bullet
|
6 |
-
"""
|
7 |
-
|
8 |
-
import enum
|
9 |
-
import shutil
|
10 |
-
import sys
|
11 |
-
|
12 |
-
|
13 |
-
TERMINAL_WIDTH, _ = shutil.get_terminal_size()
|
14 |
-
|
15 |
-
CURSOR_TO_CHAR = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
|
16 |
-
|
17 |
-
|
18 |
-
class Direction(enum.Enum):
|
19 |
-
UP = 0
|
20 |
-
DOWN = 1
|
21 |
-
|
22 |
-
|
23 |
-
def forceWrite(content, end=""):
|
24 |
-
sys.stdout.write(str(content) + end)
|
25 |
-
sys.stdout.flush()
|
26 |
-
|
27 |
-
|
28 |
-
def writeColor(content, color, end=""):
|
29 |
-
forceWrite(f"\u001b[{color}m{content}\u001b[0m", end)
|
30 |
-
|
31 |
-
|
32 |
-
def reset_cursor():
|
33 |
-
forceWrite("\r")
|
34 |
-
|
35 |
-
|
36 |
-
def move_cursor(num_lines: int, direction: str):
|
37 |
-
forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}")
|
38 |
-
|
39 |
-
|
40 |
-
def clear_line():
|
41 |
-
forceWrite(" " * TERMINAL_WIDTH)
|
42 |
-
reset_cursor()
|
43 |
-
|
44 |
-
|
45 |
-
def linebreak():
|
46 |
-
reset_cursor()
|
47 |
-
forceWrite("-" * TERMINAL_WIDTH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/commands/menu/input.py
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
"""
|
4 |
-
This file contains utilities for handling input from the user and registering specific keys to specific functions,
|
5 |
-
based on https://github.com/bchao1/bullet
|
6 |
-
"""
|
7 |
-
|
8 |
-
from typing import List
|
9 |
-
|
10 |
-
from .keymap import KEYMAP, get_character
|
11 |
-
|
12 |
-
|
13 |
-
def mark(key: str):
|
14 |
-
"""
|
15 |
-
Mark the function with the key code so it can be handled in the register
|
16 |
-
"""
|
17 |
-
|
18 |
-
def decorator(func):
|
19 |
-
handle = getattr(func, "handle_key", [])
|
20 |
-
handle += [key]
|
21 |
-
setattr(func, "handle_key", handle)
|
22 |
-
return func
|
23 |
-
|
24 |
-
return decorator
|
25 |
-
|
26 |
-
|
27 |
-
def mark_multiple(*keys: List[str]):
|
28 |
-
"""
|
29 |
-
Mark the function with the key codes so it can be handled in the register
|
30 |
-
"""
|
31 |
-
|
32 |
-
def decorator(func):
|
33 |
-
handle = getattr(func, "handle_key", [])
|
34 |
-
handle += keys
|
35 |
-
setattr(func, "handle_key", handle)
|
36 |
-
return func
|
37 |
-
|
38 |
-
return decorator
|
39 |
-
|
40 |
-
|
41 |
-
class KeyHandler(type):
|
42 |
-
"""
|
43 |
-
Metaclass that adds the key handlers to the class
|
44 |
-
"""
|
45 |
-
|
46 |
-
def __new__(cls, name, bases, attrs):
|
47 |
-
new_cls = super().__new__(cls, name, bases, attrs)
|
48 |
-
if not hasattr(new_cls, "key_handler"):
|
49 |
-
setattr(new_cls, "key_handler", {})
|
50 |
-
setattr(new_cls, "handle_input", KeyHandler.handle_input)
|
51 |
-
|
52 |
-
for value in attrs.values():
|
53 |
-
handled_keys = getattr(value, "handle_key", [])
|
54 |
-
for key in handled_keys:
|
55 |
-
new_cls.key_handler[key] = value
|
56 |
-
return new_cls
|
57 |
-
|
58 |
-
@staticmethod
|
59 |
-
def handle_input(cls):
|
60 |
-
"Finds and returns the selected character if it exists in the handler"
|
61 |
-
char = get_character()
|
62 |
-
if char != KEYMAP["undefined"]:
|
63 |
-
char = ord(char)
|
64 |
-
handler = cls.key_handler.get(char)
|
65 |
-
if handler:
|
66 |
-
cls.current_selection = char
|
67 |
-
return handler(cls)
|
68 |
-
else:
|
69 |
-
return None
|
70 |
-
|
71 |
-
|
72 |
-
def register(cls):
|
73 |
-
"""Adds KeyHandler metaclass to the class"""
|
74 |
-
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/commands/menu/keymap.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
"""
|
4 |
-
Utilities relating to parsing raw characters from the keyboard, based on https://github.com/bchao1/bullet
|
5 |
-
"""
|
6 |
-
|
7 |
-
|
8 |
-
import os
|
9 |
-
import string
|
10 |
-
import sys
|
11 |
-
|
12 |
-
|
13 |
-
ARROW_KEY_FLAG = 1 << 8
|
14 |
-
|
15 |
-
KEYMAP = {
|
16 |
-
"tab": ord("\t"),
|
17 |
-
"newline": ord("\r"),
|
18 |
-
"esc": 27,
|
19 |
-
"up": 65 + ARROW_KEY_FLAG,
|
20 |
-
"down": 66 + ARROW_KEY_FLAG,
|
21 |
-
"right": 67 + ARROW_KEY_FLAG,
|
22 |
-
"left": 68 + ARROW_KEY_FLAG,
|
23 |
-
"mod_int": 91,
|
24 |
-
"undefined": sys.maxsize,
|
25 |
-
"interrupt": 3,
|
26 |
-
"insert": 50,
|
27 |
-
"delete": 51,
|
28 |
-
"pg_up": 53,
|
29 |
-
"pg_down": 54,
|
30 |
-
}
|
31 |
-
|
32 |
-
KEYMAP["arrow_begin"] = KEYMAP["up"]
|
33 |
-
KEYMAP["arrow_end"] = KEYMAP["left"]
|
34 |
-
|
35 |
-
if sys.platform == "win32":
|
36 |
-
WIN_CH_BUFFER = []
|
37 |
-
WIN_KEYMAP = {
|
38 |
-
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
|
39 |
-
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
|
40 |
-
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
|
41 |
-
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
|
42 |
-
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
|
43 |
-
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
|
44 |
-
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
|
45 |
-
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
|
46 |
-
}
|
47 |
-
|
48 |
-
for i in range(10):
|
49 |
-
KEYMAP[str(i)] = ord(str(i))
|
50 |
-
|
51 |
-
|
52 |
-
def get_raw_chars():
|
53 |
-
"Gets raw characters from inputs"
|
54 |
-
if os.name == "nt":
|
55 |
-
import msvcrt
|
56 |
-
|
57 |
-
encoding = "mbcs"
|
58 |
-
# Flush the keyboard buffer
|
59 |
-
while msvcrt.kbhit():
|
60 |
-
msvcrt.getch()
|
61 |
-
if len(WIN_CH_BUFFER) == 0:
|
62 |
-
# Read the keystroke
|
63 |
-
ch = msvcrt.getch()
|
64 |
-
|
65 |
-
# If it is a prefix char, get second part
|
66 |
-
if ch in (b"\x00", b"\xe0"):
|
67 |
-
ch2 = ch + msvcrt.getch()
|
68 |
-
# Translate actual Win chars to bullet char types
|
69 |
-
try:
|
70 |
-
chx = chr(WIN_KEYMAP[ch2])
|
71 |
-
WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"]))
|
72 |
-
WIN_CH_BUFFER.append(chx)
|
73 |
-
if ord(chx) in (
|
74 |
-
KEYMAP["insert"] - 1 << 9,
|
75 |
-
KEYMAP["delete"] - 1 << 9,
|
76 |
-
KEYMAP["pg_up"] - 1 << 9,
|
77 |
-
KEYMAP["pg_down"] - 1 << 9,
|
78 |
-
):
|
79 |
-
WIN_CH_BUFFER.append(chr(126))
|
80 |
-
ch = chr(KEYMAP["esc"])
|
81 |
-
except KeyError:
|
82 |
-
ch = ch2[1]
|
83 |
-
else:
|
84 |
-
ch = ch.decode(encoding)
|
85 |
-
else:
|
86 |
-
ch = WIN_CH_BUFFER.pop(0)
|
87 |
-
elif os.name == "posix":
|
88 |
-
import termios
|
89 |
-
import tty
|
90 |
-
|
91 |
-
fd = sys.stdin.fileno()
|
92 |
-
old_settings = termios.tcgetattr(fd)
|
93 |
-
try:
|
94 |
-
tty.setraw(fd)
|
95 |
-
ch = sys.stdin.read(1)
|
96 |
-
finally:
|
97 |
-
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
|
98 |
-
return ch
|
99 |
-
|
100 |
-
|
101 |
-
def get_character():
|
102 |
-
"Gets a character from the keyboard and returns the key code"
|
103 |
-
char = get_raw_chars()
|
104 |
-
if ord(char) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
|
105 |
-
return char
|
106 |
-
|
107 |
-
elif ord(char) == KEYMAP["esc"]:
|
108 |
-
combo = get_raw_chars()
|
109 |
-
if ord(combo) == KEYMAP["mod_int"]:
|
110 |
-
key = get_raw_chars()
|
111 |
-
if ord(key) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(key) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
|
112 |
-
return chr(ord(key) + ARROW_KEY_FLAG)
|
113 |
-
else:
|
114 |
-
return KEYMAP["undefined"]
|
115 |
-
else:
|
116 |
-
return get_raw_chars()
|
117 |
-
|
118 |
-
else:
|
119 |
-
if char in string.printable:
|
120 |
-
return char
|
121 |
-
else:
|
122 |
-
return KEYMAP["undefined"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/commands/menu/selection_menu.py
DELETED
@@ -1,131 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
"""
|
4 |
-
Main driver for the selection menu, based on https://github.com/bchao1/bullet
|
5 |
-
"""
|
6 |
-
import builtins
|
7 |
-
import sys
|
8 |
-
|
9 |
-
from ...utils.imports import _is_package_available
|
10 |
-
from . import cursor, input
|
11 |
-
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
|
12 |
-
from .keymap import KEYMAP
|
13 |
-
|
14 |
-
|
15 |
-
in_colab = False
|
16 |
-
try:
|
17 |
-
in_colab = _is_package_available("google.colab")
|
18 |
-
except ModuleNotFoundError:
|
19 |
-
pass
|
20 |
-
|
21 |
-
|
22 |
-
@input.register
|
23 |
-
class BulletMenu:
|
24 |
-
"""
|
25 |
-
A CLI menu to select a choice from a list of choices using the keyboard.
|
26 |
-
"""
|
27 |
-
|
28 |
-
def __init__(self, prompt: str = None, choices: list = []):
|
29 |
-
self.position = 0
|
30 |
-
self.choices = choices
|
31 |
-
self.prompt = prompt
|
32 |
-
if sys.platform == "win32":
|
33 |
-
self.arrow_char = "*"
|
34 |
-
else:
|
35 |
-
self.arrow_char = "➔ "
|
36 |
-
|
37 |
-
def write_choice(self, index, end: str = ""):
|
38 |
-
if sys.platform != "win32":
|
39 |
-
writeColor(self.choices[index], 32, end)
|
40 |
-
else:
|
41 |
-
forceWrite(self.choices[index], end)
|
42 |
-
|
43 |
-
def print_choice(self, index: int):
|
44 |
-
"Prints the choice at the given index"
|
45 |
-
if index == self.position:
|
46 |
-
forceWrite(f" {self.arrow_char} ")
|
47 |
-
self.write_choice(index)
|
48 |
-
else:
|
49 |
-
forceWrite(f" {self.choices[index]}")
|
50 |
-
reset_cursor()
|
51 |
-
|
52 |
-
def move_direction(self, direction: Direction, num_spaces: int = 1):
|
53 |
-
"Should not be directly called, used to move a direction of either up or down"
|
54 |
-
old_position = self.position
|
55 |
-
if direction == Direction.DOWN:
|
56 |
-
if self.position + 1 >= len(self.choices):
|
57 |
-
return
|
58 |
-
self.position += num_spaces
|
59 |
-
else:
|
60 |
-
if self.position - 1 < 0:
|
61 |
-
return
|
62 |
-
self.position -= num_spaces
|
63 |
-
clear_line()
|
64 |
-
self.print_choice(old_position)
|
65 |
-
move_cursor(num_spaces, direction.name)
|
66 |
-
self.print_choice(self.position)
|
67 |
-
|
68 |
-
@input.mark(KEYMAP["up"])
|
69 |
-
def move_up(self):
|
70 |
-
self.move_direction(Direction.UP)
|
71 |
-
|
72 |
-
@input.mark(KEYMAP["down"])
|
73 |
-
def move_down(self):
|
74 |
-
self.move_direction(Direction.DOWN)
|
75 |
-
|
76 |
-
@input.mark(KEYMAP["newline"])
|
77 |
-
def select(self):
|
78 |
-
move_cursor(len(self.choices) - self.position, "DOWN")
|
79 |
-
return self.position
|
80 |
-
|
81 |
-
@input.mark(KEYMAP["interrupt"])
|
82 |
-
def interrupt(self):
|
83 |
-
move_cursor(len(self.choices) - self.position, "DOWN")
|
84 |
-
raise KeyboardInterrupt
|
85 |
-
|
86 |
-
@input.mark_multiple(*[KEYMAP[str(number)] for number in range(10)])
|
87 |
-
def select_row(self):
|
88 |
-
index = int(chr(self.current_selection))
|
89 |
-
movement = index - self.position
|
90 |
-
if index == self.position:
|
91 |
-
return
|
92 |
-
if index < len(self.choices):
|
93 |
-
if self.position > index:
|
94 |
-
self.move_direction(Direction.UP, -movement)
|
95 |
-
elif self.position < index:
|
96 |
-
self.move_direction(Direction.DOWN, movement)
|
97 |
-
else:
|
98 |
-
return
|
99 |
-
else:
|
100 |
-
return
|
101 |
-
|
102 |
-
def run(self, default_choice: int = 0):
|
103 |
-
"Start the menu and return the selected choice"
|
104 |
-
if self.prompt:
|
105 |
-
linebreak()
|
106 |
-
forceWrite(self.prompt, "\n")
|
107 |
-
if in_colab:
|
108 |
-
forceWrite("Please input a choice index (starting from 0), and press enter", "\n")
|
109 |
-
else:
|
110 |
-
forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n")
|
111 |
-
self.position = default_choice
|
112 |
-
for i in range(len(self.choices)):
|
113 |
-
self.print_choice(i)
|
114 |
-
forceWrite("\n")
|
115 |
-
move_cursor(len(self.choices) - self.position, "UP")
|
116 |
-
with cursor.hide():
|
117 |
-
while True:
|
118 |
-
if in_colab:
|
119 |
-
try:
|
120 |
-
choice = int(builtins.input())
|
121 |
-
except ValueError:
|
122 |
-
choice = default_choice
|
123 |
-
else:
|
124 |
-
choice = self.handle_input()
|
125 |
-
if choice is not None:
|
126 |
-
reset_cursor()
|
127 |
-
for _ in range(len(self.choices) + 1):
|
128 |
-
move_cursor(1, "UP")
|
129 |
-
clear_line()
|
130 |
-
self.write_choice(choice, "\n")
|
131 |
-
return choice
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/commands/test.py
CHANGED
@@ -1,13 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
import os
|
7 |
-
|
8 |
-
from accelerate.test_utils import execute_subprocess_async
|
9 |
-
|
10 |
-
|
11 |
def test_command_parser(subparsers=None):
|
12 |
if subparsers is not None:
|
13 |
parser = subparsers.add_parser("test")
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
def test_command_parser(subparsers=None):
|
3 |
if subparsers is not None:
|
4 |
parser = subparsers.add_parser("test")
|
src/commands/tpu.py
CHANGED
@@ -1,16 +1,4 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
import os
|
7 |
-
import subprocess
|
8 |
-
|
9 |
-
from packaging.version import Version, parse
|
10 |
-
|
11 |
-
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
|
12 |
-
|
13 |
-
|
14 |
_description = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
|
15 |
|
16 |
|
|
|
1 |
#!/usr/bin/env python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
_description = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
|
3 |
|
4 |
|
src/data_loader.py
CHANGED
@@ -1,29 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import math
|
4 |
-
from contextlib import suppress
|
5 |
-
from typing import Callable, List, Optional, Union
|
6 |
-
|
7 |
-
import torch
|
8 |
-
from torch.utils.data import BatchSampler, DataLoader, IterableDataset, RandomSampler
|
9 |
-
|
10 |
-
from .logging import get_logger
|
11 |
-
from .state import AcceleratorState, DistributedType, GradientState, is_tpu_available
|
12 |
-
from .utils import (
|
13 |
-
RNGType,
|
14 |
-
broadcast,
|
15 |
-
broadcast_object_list,
|
16 |
-
concatenate,
|
17 |
-
find_batch_size,
|
18 |
-
get_data_structure,
|
19 |
-
initialize_tensors,
|
20 |
-
is_torch_version,
|
21 |
-
send_to_device,
|
22 |
-
slice_tensors,
|
23 |
-
synchronize_rng_states,
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
logger = get_logger(__name__)
|
28 |
|
29 |
# kwargs of the DataLoader in min version 1.4.0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
logger = get_logger(__name__)
|
2 |
|
3 |
# kwargs of the DataLoader in min version 1.4.0.
|
src/hooks.py
CHANGED
@@ -1,22 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import functools
|
4 |
-
from typing import Dict, List, Mapping, Optional, Union
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
|
9 |
-
from .state import PartialState
|
10 |
-
from .utils import (
|
11 |
-
PrefixedDataset,
|
12 |
-
find_device,
|
13 |
-
named_module_tensors,
|
14 |
-
send_to_device,
|
15 |
-
set_module_tensor_to_device,
|
16 |
-
)
|
17 |
-
from .utils.modeling import get_non_persistent_buffers
|
18 |
-
|
19 |
-
|
20 |
class ModelHook:
|
21 |
"""
|
22 |
A hook that contains callbacks to be executed just before and after the forward method of a model. The difference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class ModelHook:
|
2 |
"""
|
3 |
A hook that contains callbacks to be executed just before and after the forward method of a model. The difference
|
src/launchers.py
CHANGED
@@ -1,22 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os
|
4 |
-
import sys
|
5 |
-
import tempfile
|
6 |
-
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from .state import AcceleratorState, PartialState
|
10 |
-
from .utils import (
|
11 |
-
PrecisionType,
|
12 |
-
PrepareForLaunch,
|
13 |
-
are_libraries_initialized,
|
14 |
-
check_cuda_p2p_ib_support,
|
15 |
-
is_mps_available,
|
16 |
-
patch_environment,
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
def test_launch():
|
21 |
"Verify a `PartialState` can be initialized."
|
22 |
_ = PartialState()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def test_launch():
|
2 |
"Verify a `PartialState` can be initialized."
|
3 |
_ = PartialState()
|
src/local_sgd.py
CHANGED
@@ -1,9 +1,3 @@
|
|
1 |
-
|
2 |
-
import torch
|
3 |
-
|
4 |
-
from accelerate import Accelerator, DistributedType
|
5 |
-
|
6 |
-
|
7 |
class LocalSGD:
|
8 |
"""
|
9 |
A helper class to support local SGD on top of Accelerator. It simply runs a given number of updates independently
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class LocalSGD:
|
2 |
"""
|
3 |
A helper class to support local SGD on top of Accelerator. It simply runs a given number of updates independently
|
src/logging.py
CHANGED
@@ -1,12 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import functools
|
4 |
-
import logging
|
5 |
-
import os
|
6 |
-
|
7 |
-
from .state import PartialState
|
8 |
-
|
9 |
-
|
10 |
class MultiProcessAdapter(logging.LoggerAdapter):
|
11 |
"""
|
12 |
An adapter to assist with logging in multiprocess.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
class MultiProcessAdapter(logging.LoggerAdapter):
|
2 |
"""
|
3 |
An adapter to assist with logging in multiprocess.
|
src/memory_utils.py
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import warnings
|
4 |
-
|
5 |
-
|
6 |
-
warnings.warn(
|
7 |
-
"memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: "
|
8 |
-
"`from accelerate import find_executable_batch_size` to avoid this warning.",
|
9 |
-
FutureWarning,
|
10 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/optimizer.py
CHANGED
@@ -1,18 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import inspect
|
4 |
-
import warnings
|
5 |
-
|
6 |
-
import torch
|
7 |
-
|
8 |
-
from .state import AcceleratorState, GradientState
|
9 |
-
from .utils import DistributedType, honor_type, is_tpu_available
|
10 |
-
|
11 |
-
|
12 |
-
if is_tpu_available(check_device=False):
|
13 |
-
import torch_xla.core.xla_model as xm
|
14 |
-
|
15 |
-
|
16 |
def move_to_device(state, device):
|
17 |
if isinstance(state, (list, tuple)):
|
18 |
return honor_type(state, (move_to_device(t, device) for t in state))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def move_to_device(state, device):
|
2 |
if isinstance(state, (list, tuple)):
|
3 |
return honor_type(state, (move_to_device(t, device) for t in state))
|
src/scheduler.py
CHANGED
@@ -2,14 +2,6 @@
|
|
2 |
|
3 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
|
4 |
|
5 |
-
import warnings
|
6 |
-
|
7 |
-
from .state import AcceleratorState, GradientState
|
8 |
-
|
9 |
-
|
10 |
-
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
|
11 |
-
|
12 |
-
|
13 |
class AcceleratedScheduler:
|
14 |
"""
|
15 |
A wrapper around a learning rate scheduler that will only step when the optimizer(s) have a training step. Useful
|
|
|
2 |
|
3 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
class AcceleratedScheduler:
|
6 |
"""
|
7 |
A wrapper around a learning rate scheduler that will only step when the optimizer(s) have a training step. Useful
|
src/state.py
CHANGED
@@ -1,47 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import logging
|
6 |
-
import math
|
7 |
-
import os
|
8 |
-
import threading
|
9 |
-
import warnings
|
10 |
-
from contextlib import contextmanager
|
11 |
-
from functools import partial
|
12 |
-
from typing import Any, Callable, Optional
|
13 |
-
|
14 |
-
import torch
|
15 |
-
|
16 |
-
from .utils import (
|
17 |
-
DistributedType,
|
18 |
-
DynamoBackend,
|
19 |
-
GradientAccumulationPlugin,
|
20 |
-
check_cuda_p2p_ib_support,
|
21 |
-
check_fp8_capability,
|
22 |
-
get_ccl_version,
|
23 |
-
get_int_from_env,
|
24 |
-
is_ccl_available,
|
25 |
-
is_deepspeed_available,
|
26 |
-
is_fp8_available,
|
27 |
-
is_ipex_available,
|
28 |
-
is_mps_available,
|
29 |
-
is_npu_available,
|
30 |
-
is_tpu_available,
|
31 |
-
is_xpu_available,
|
32 |
-
parse_choice_from_env,
|
33 |
-
parse_flag_from_env,
|
34 |
-
)
|
35 |
-
from .utils.dataclasses import SageMakerDistributedType
|
36 |
-
|
37 |
-
|
38 |
-
if is_tpu_available(check_device=False):
|
39 |
-
import torch_xla.core.xla_model as xm
|
40 |
-
|
41 |
-
|
42 |
-
if is_npu_available(check_device=False):
|
43 |
-
import torch_npu # noqa: F401
|
44 |
-
|
45 |
logger = logging.getLogger(__name__)
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
logger = logging.getLogger(__name__)
|
2 |
|
3 |
|
src/test_utils/examples.py
DELETED
@@ -1,134 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
"""
|
5 |
-
A collection of utilities for comparing `examples/complete_*_example.py` scripts with the capabilities inside of each
|
6 |
-
`examples/by_feature` example. `compare_against_test` is the main function that should be used when testing, while the
|
7 |
-
others are used to either get the code that matters, or to preprocess them (such as stripping comments)
|
8 |
-
"""
|
9 |
-
|
10 |
-
import os
|
11 |
-
from typing import List
|
12 |
-
|
13 |
-
|
14 |
-
def get_function_contents_by_name(lines: List[str], name: str):
|
15 |
-
"""
|
16 |
-
Extracts a function from `lines` of segmented source code with the name `name`.
|
17 |
-
|
18 |
-
Args:
|
19 |
-
lines (`List[str]`):
|
20 |
-
Source code of a script seperated by line.
|
21 |
-
name (`str`):
|
22 |
-
The name of the function to extract. Should be either `training_function` or `main`
|
23 |
-
"""
|
24 |
-
if name != "training_function" and name != "main":
|
25 |
-
raise ValueError(f"Incorrect function name passed: {name}, choose either 'main' or 'training_function'")
|
26 |
-
good_lines, found_start = [], False
|
27 |
-
for line in lines:
|
28 |
-
if not found_start and f"def {name}" in line:
|
29 |
-
found_start = True
|
30 |
-
good_lines.append(line)
|
31 |
-
continue
|
32 |
-
if found_start:
|
33 |
-
if name == "training_function" and "def main" in line:
|
34 |
-
return good_lines
|
35 |
-
if name == "main" and "if __name__" in line:
|
36 |
-
return good_lines
|
37 |
-
good_lines.append(line)
|
38 |
-
|
39 |
-
|
40 |
-
def clean_lines(lines: List[str]):
|
41 |
-
"""
|
42 |
-
Filters `lines` and removes any entries that start with a comment ('#') or is just a newline ('\n')
|
43 |
-
|
44 |
-
Args:
|
45 |
-
lines (`List[str]`):
|
46 |
-
Source code of a script seperated by line.
|
47 |
-
"""
|
48 |
-
return [line for line in lines if not line.lstrip().startswith("#") and line != "\n"]
|
49 |
-
|
50 |
-
|
51 |
-
def compare_against_test(base_filename: str, feature_filename: str, parser_only: bool, secondary_filename: str = None):
|
52 |
-
"""
|
53 |
-
Tests whether the additional code inside of `feature_filename` was implemented in `base_filename`. This should be
|
54 |
-
used when testing to see if `complete_*_.py` examples have all of the implementations from each of the
|
55 |
-
`examples/by_feature/*` scripts.
|
56 |
-
|
57 |
-
It utilizes `nlp_example.py` to extract out all of the repeated training code, so that only the new additional code
|
58 |
-
is examined and checked. If something *other* than `nlp_example.py` should be used, such as `cv_example.py` for the
|
59 |
-
`complete_cv_example.py` script, it should be passed in for the `secondary_filename` parameter.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
base_filename (`str` or `os.PathLike`):
|
63 |
-
The filepath of a single "complete" example script to test, such as `examples/complete_cv_example.py`
|
64 |
-
feature_filename (`str` or `os.PathLike`):
|
65 |
-
The filepath of a single feature example script. The contents of this script are checked to see if they
|
66 |
-
exist in `base_filename`
|
67 |
-
parser_only (`bool`):
|
68 |
-
Whether to compare only the `main()` sections in both files, or to compare the contents of
|
69 |
-
`training_loop()`
|
70 |
-
secondary_filename (`str`, *optional*):
|
71 |
-
A potential secondary filepath that should be included in the check. This function extracts the base
|
72 |
-
functionalities off of "examples/nlp_example.py", so if `base_filename` is a script other than
|
73 |
-
`complete_nlp_example.py`, the template script should be included here. Such as `examples/cv_example.py`
|
74 |
-
"""
|
75 |
-
with open(base_filename, "r") as f:
|
76 |
-
base_file_contents = f.readlines()
|
77 |
-
with open(os.path.abspath(os.path.join("examples", "nlp_example.py")), "r") as f:
|
78 |
-
full_file_contents = f.readlines()
|
79 |
-
with open(feature_filename, "r") as f:
|
80 |
-
feature_file_contents = f.readlines()
|
81 |
-
if secondary_filename is not None:
|
82 |
-
with open(secondary_filename, "r") as f:
|
83 |
-
secondary_file_contents = f.readlines()
|
84 |
-
|
85 |
-
# This is our base, we remove all the code from here in our `full_filename` and `feature_filename` to find the new content
|
86 |
-
if parser_only:
|
87 |
-
base_file_func = clean_lines(get_function_contents_by_name(base_file_contents, "main"))
|
88 |
-
full_file_func = clean_lines(get_function_contents_by_name(full_file_contents, "main"))
|
89 |
-
feature_file_func = clean_lines(get_function_contents_by_name(feature_file_contents, "main"))
|
90 |
-
if secondary_filename is not None:
|
91 |
-
secondary_file_func = clean_lines(get_function_contents_by_name(secondary_file_contents, "main"))
|
92 |
-
else:
|
93 |
-
base_file_func = clean_lines(get_function_contents_by_name(base_file_contents, "training_function"))
|
94 |
-
full_file_func = clean_lines(get_function_contents_by_name(full_file_contents, "training_function"))
|
95 |
-
feature_file_func = clean_lines(get_function_contents_by_name(feature_file_contents, "training_function"))
|
96 |
-
if secondary_filename is not None:
|
97 |
-
secondary_file_func = clean_lines(
|
98 |
-
get_function_contents_by_name(secondary_file_contents, "training_function")
|
99 |
-
)
|
100 |
-
|
101 |
-
_dl_line = "train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)\n"
|
102 |
-
|
103 |
-
# Specific code in our script that differs from the full version, aka what is new
|
104 |
-
new_feature_code = []
|
105 |
-
passed_idxs = [] # We keep track of the idxs just in case it's a repeated statement
|
106 |
-
it = iter(feature_file_func)
|
107 |
-
for i in range(len(feature_file_func) - 1):
|
108 |
-
if i not in passed_idxs:
|
109 |
-
line = next(it)
|
110 |
-
if (line not in full_file_func) and (line.lstrip() != _dl_line):
|
111 |
-
if "TESTING_MOCKED_DATALOADERS" not in line:
|
112 |
-
new_feature_code.append(line)
|
113 |
-
passed_idxs.append(i)
|
114 |
-
else:
|
115 |
-
# Skip over the `config['num_epochs'] = 2` statement
|
116 |
-
_ = next(it)
|
117 |
-
|
118 |
-
# Extract out just the new parts from the full_file_training_func
|
119 |
-
new_full_example_parts = []
|
120 |
-
passed_idxs = [] # We keep track of the idxs just in case it's a repeated statement
|
121 |
-
for i, line in enumerate(base_file_func):
|
122 |
-
if i not in passed_idxs:
|
123 |
-
if (line not in full_file_func) and (line.lstrip() != _dl_line):
|
124 |
-
if "TESTING_MOCKED_DATALOADERS" not in line:
|
125 |
-
new_full_example_parts.append(line)
|
126 |
-
passed_idxs.append(i)
|
127 |
-
|
128 |
-
# Finally, get the overall diff
|
129 |
-
diff_from_example = [line for line in new_feature_code if line not in new_full_example_parts]
|
130 |
-
if secondary_filename is not None:
|
131 |
-
diff_from_two = [line for line in full_file_contents if line not in secondary_file_func]
|
132 |
-
diff_from_example = [line for line in diff_from_example if line not in diff_from_two]
|
133 |
-
|
134 |
-
return diff_from_example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/__init__.py
DELETED
File without changes
|
src/test_utils/scripts/external_deps/__init__.py
DELETED
File without changes
|
src/test_utils/scripts/external_deps/test_checkpointing.py
DELETED
@@ -1,257 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
|
3 |
-
import argparse
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
|
7 |
-
import evaluate
|
8 |
-
import torch
|
9 |
-
from datasets import load_dataset
|
10 |
-
from torch.optim import AdamW
|
11 |
-
from torch.utils.data import DataLoader
|
12 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
|
13 |
-
|
14 |
-
from accelerate import Accelerator, DistributedType
|
15 |
-
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
|
16 |
-
|
17 |
-
|
18 |
-
MAX_GPU_BATCH_SIZE = 16
|
19 |
-
EVAL_BATCH_SIZE = 32
|
20 |
-
|
21 |
-
|
22 |
-
def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased"):
|
23 |
-
"""
|
24 |
-
Creates a set of `DataLoader`s for the `glue` dataset.
|
25 |
-
|
26 |
-
Args:
|
27 |
-
accelerator (`Accelerator`):
|
28 |
-
An `Accelerator` object
|
29 |
-
batch_size (`int`, *optional*):
|
30 |
-
The batch size for the train and validation DataLoaders.
|
31 |
-
model_name (`str`, *optional*):
|
32 |
-
"""
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
-
datasets = load_dataset("glue", "mrpc")
|
35 |
-
|
36 |
-
def tokenize_function(examples):
|
37 |
-
# max_length=None => use the model max length (it's actually the default)
|
38 |
-
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
39 |
-
return outputs
|
40 |
-
|
41 |
-
# Apply the method we just defined to all the examples in all the splits of the dataset
|
42 |
-
tokenized_datasets = datasets.map(
|
43 |
-
tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False
|
44 |
-
)
|
45 |
-
|
46 |
-
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
|
47 |
-
# transformers library
|
48 |
-
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
49 |
-
|
50 |
-
def collate_fn(examples):
|
51 |
-
# On TPU it's best to pad everything to the same length or training will be very slow.
|
52 |
-
if accelerator.distributed_type == DistributedType.TPU:
|
53 |
-
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
|
54 |
-
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
|
55 |
-
|
56 |
-
# Instantiate dataloaders.
|
57 |
-
train_dataloader = DataLoader(
|
58 |
-
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
|
59 |
-
)
|
60 |
-
eval_dataloader = DataLoader(
|
61 |
-
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
|
62 |
-
)
|
63 |
-
|
64 |
-
return train_dataloader, eval_dataloader
|
65 |
-
|
66 |
-
|
67 |
-
def evaluation_loop(accelerator, model, eval_dataloader, metric):
|
68 |
-
model.eval()
|
69 |
-
samples_seen = 0
|
70 |
-
for step, batch in enumerate(eval_dataloader):
|
71 |
-
# We could avoid this line since we set the accelerator with `device_placement=True`.
|
72 |
-
batch.to(accelerator.device)
|
73 |
-
with torch.no_grad():
|
74 |
-
outputs = model(**batch)
|
75 |
-
predictions = outputs.logits.argmax(dim=-1)
|
76 |
-
# It is slightly faster to call this once, than multiple times
|
77 |
-
predictions, references = accelerator.gather(
|
78 |
-
(predictions, batch["labels"])
|
79 |
-
) # If we are in a multiprocess environment, the last batch has duplicates
|
80 |
-
if accelerator.use_distributed:
|
81 |
-
if step == len(eval_dataloader) - 1:
|
82 |
-
predictions = predictions[: len(eval_dataloader.dataset) - samples_seen]
|
83 |
-
references = references[: len(eval_dataloader.dataset) - samples_seen]
|
84 |
-
else:
|
85 |
-
samples_seen += references.shape[0]
|
86 |
-
metric.add_batch(
|
87 |
-
predictions=predictions,
|
88 |
-
references=references,
|
89 |
-
)
|
90 |
-
|
91 |
-
eval_metric = metric.compute()
|
92 |
-
return eval_metric["accuracy"]
|
93 |
-
|
94 |
-
|
95 |
-
def training_function(config, args):
|
96 |
-
# Initialize accelerator
|
97 |
-
accelerator = Accelerator()
|
98 |
-
|
99 |
-
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
|
100 |
-
lr = config["lr"]
|
101 |
-
num_epochs = int(config["num_epochs"])
|
102 |
-
seed = int(config["seed"])
|
103 |
-
batch_size = int(config["batch_size"])
|
104 |
-
model_name = args.model_name_or_path
|
105 |
-
|
106 |
-
set_seed(seed)
|
107 |
-
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name)
|
108 |
-
|
109 |
-
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
|
110 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True)
|
111 |
-
|
112 |
-
# Instantiate optimizer
|
113 |
-
optimizer_cls = (
|
114 |
-
AdamW
|
115 |
-
if accelerator.state.deepspeed_plugin is None
|
116 |
-
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
117 |
-
else DummyOptim
|
118 |
-
)
|
119 |
-
optimizer = optimizer_cls(params=model.parameters(), lr=lr)
|
120 |
-
|
121 |
-
if accelerator.state.deepspeed_plugin is not None:
|
122 |
-
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
|
123 |
-
"gradient_accumulation_steps"
|
124 |
-
]
|
125 |
-
else:
|
126 |
-
gradient_accumulation_steps = 1
|
127 |
-
max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps
|
128 |
-
|
129 |
-
# Instantiate scheduler
|
130 |
-
if (
|
131 |
-
accelerator.state.deepspeed_plugin is None
|
132 |
-
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
133 |
-
):
|
134 |
-
lr_scheduler = get_linear_schedule_with_warmup(
|
135 |
-
optimizer=optimizer,
|
136 |
-
num_warmup_steps=0,
|
137 |
-
num_training_steps=max_training_steps,
|
138 |
-
)
|
139 |
-
else:
|
140 |
-
lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0)
|
141 |
-
|
142 |
-
# Prepare everything
|
143 |
-
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
|
144 |
-
# prepare method.
|
145 |
-
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
146 |
-
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
147 |
-
)
|
148 |
-
|
149 |
-
# We need to keep track of how many total steps we have iterated over
|
150 |
-
overall_step = 0
|
151 |
-
# We also need to keep track of the stating epoch so files are named properly
|
152 |
-
starting_epoch = 0
|
153 |
-
metric = evaluate.load("glue", "mrpc")
|
154 |
-
ending_epoch = num_epochs
|
155 |
-
|
156 |
-
if args.partial_train_epoch is not None:
|
157 |
-
ending_epoch = args.partial_train_epoch
|
158 |
-
|
159 |
-
if args.resume_from_checkpoint:
|
160 |
-
accelerator.load_state(args.resume_from_checkpoint)
|
161 |
-
epoch_string = args.resume_from_checkpoint.split("epoch_")[1]
|
162 |
-
state_epoch_num = ""
|
163 |
-
for char in epoch_string:
|
164 |
-
if char.isdigit():
|
165 |
-
state_epoch_num += char
|
166 |
-
else:
|
167 |
-
break
|
168 |
-
starting_epoch = int(state_epoch_num) + 1
|
169 |
-
accuracy = evaluation_loop(accelerator, model, eval_dataloader, metric)
|
170 |
-
accelerator.print("resumed checkpoint performance:", accuracy)
|
171 |
-
accelerator.print("resumed checkpoint's scheduler's lr:", lr_scheduler.get_lr()[0])
|
172 |
-
accelerator.print("resumed optimizers's lr:", optimizer.param_groups[0]["lr"])
|
173 |
-
with open(os.path.join(args.output_dir, f"state_{starting_epoch-1}.json"), "r") as f:
|
174 |
-
resumed_state = json.load(f)
|
175 |
-
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
|
176 |
-
assert (
|
177 |
-
resumed_state["lr"] == lr_scheduler.get_lr()[0]
|
178 |
-
), "Scheduler learning rate mismatch, loading from checkpoint failed"
|
179 |
-
assert (
|
180 |
-
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
|
181 |
-
), "Optimizer learning rate mismatch, loading from checkpoint failed"
|
182 |
-
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
|
183 |
-
return
|
184 |
-
|
185 |
-
# Now we train the model
|
186 |
-
state = {}
|
187 |
-
for epoch in range(starting_epoch, ending_epoch):
|
188 |
-
model.train()
|
189 |
-
for step, batch in enumerate(train_dataloader):
|
190 |
-
outputs = model(**batch)
|
191 |
-
loss = outputs.loss
|
192 |
-
loss = loss / gradient_accumulation_steps
|
193 |
-
accelerator.backward(loss)
|
194 |
-
if step % gradient_accumulation_steps == 0:
|
195 |
-
optimizer.step()
|
196 |
-
lr_scheduler.step()
|
197 |
-
optimizer.zero_grad()
|
198 |
-
|
199 |
-
overall_step += 1
|
200 |
-
output_dir = f"epoch_{epoch}"
|
201 |
-
output_dir = os.path.join(args.output_dir, output_dir)
|
202 |
-
accelerator.save_state(output_dir)
|
203 |
-
accuracy = evaluation_loop(accelerator, model, eval_dataloader, metric)
|
204 |
-
state["accuracy"] = accuracy
|
205 |
-
state["lr"] = lr_scheduler.get_lr()[0]
|
206 |
-
state["optimizer_lr"] = optimizer.param_groups[0]["lr"]
|
207 |
-
state["epoch"] = epoch
|
208 |
-
state["step"] = overall_step
|
209 |
-
accelerator.print(f"epoch {epoch}:", state)
|
210 |
-
|
211 |
-
accelerator.wait_for_everyone()
|
212 |
-
if accelerator.is_main_process:
|
213 |
-
with open(os.path.join(args.output_dir, f"state_{epoch}.json"), "w") as f:
|
214 |
-
json.dump(state, f)
|
215 |
-
|
216 |
-
|
217 |
-
def main():
|
218 |
-
parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.")
|
219 |
-
parser.add_argument(
|
220 |
-
"--model_name_or_path",
|
221 |
-
type=str,
|
222 |
-
default="bert-base-cased",
|
223 |
-
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
224 |
-
required=False,
|
225 |
-
)
|
226 |
-
parser.add_argument(
|
227 |
-
"--output_dir",
|
228 |
-
type=str,
|
229 |
-
default=".",
|
230 |
-
help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.",
|
231 |
-
)
|
232 |
-
parser.add_argument(
|
233 |
-
"--resume_from_checkpoint",
|
234 |
-
type=str,
|
235 |
-
default=None,
|
236 |
-
help="If the training should continue from a checkpoint folder.",
|
237 |
-
)
|
238 |
-
parser.add_argument(
|
239 |
-
"--partial_train_epoch",
|
240 |
-
type=int,
|
241 |
-
default=None,
|
242 |
-
help="If passed, the training will stop after this number of epochs.",
|
243 |
-
)
|
244 |
-
parser.add_argument(
|
245 |
-
"--num_epochs",
|
246 |
-
type=int,
|
247 |
-
default=2,
|
248 |
-
help="Number of train epochs.",
|
249 |
-
)
|
250 |
-
args = parser.parse_args()
|
251 |
-
config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
|
252 |
-
|
253 |
-
training_function(config, args)
|
254 |
-
|
255 |
-
|
256 |
-
if __name__ == "__main__":
|
257 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/external_deps/test_metrics.py
DELETED
@@ -1,280 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import logging
|
4 |
-
import math
|
5 |
-
import os
|
6 |
-
from copy import deepcopy
|
7 |
-
|
8 |
-
import datasets
|
9 |
-
import evaluate
|
10 |
-
import torch
|
11 |
-
import transformers
|
12 |
-
from datasets import load_dataset
|
13 |
-
from torch.utils.data import DataLoader, IterableDataset
|
14 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
15 |
-
|
16 |
-
from accelerate import Accelerator
|
17 |
-
from accelerate.data_loader import DataLoaderDispatcher
|
18 |
-
from accelerate.test_utils import RegressionDataset, RegressionModel, torch_device
|
19 |
-
from accelerate.utils import set_seed
|
20 |
-
|
21 |
-
|
22 |
-
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
23 |
-
|
24 |
-
|
25 |
-
class ListHandler(logging.Handler):
|
26 |
-
def __init__(self, *args, **kwargs):
|
27 |
-
super(ListHandler, self).__init__(*args, **kwargs)
|
28 |
-
self.logs = []
|
29 |
-
|
30 |
-
def emit(self, record):
|
31 |
-
self.logs.append(record)
|
32 |
-
|
33 |
-
|
34 |
-
def get_basic_setup(accelerator, num_samples=82, batch_size=16):
|
35 |
-
"Returns everything needed to perform basic training"
|
36 |
-
set_seed(42)
|
37 |
-
model = RegressionModel()
|
38 |
-
ddp_model = deepcopy(model)
|
39 |
-
dset = RegressionDataset(length=num_samples)
|
40 |
-
dataloader = DataLoader(dset, batch_size=batch_size)
|
41 |
-
model.to(accelerator.device)
|
42 |
-
ddp_model, dataloader = accelerator.prepare(ddp_model, dataloader)
|
43 |
-
return model, ddp_model, dataloader
|
44 |
-
|
45 |
-
|
46 |
-
def get_dataloader(accelerator: Accelerator, use_longest=False):
|
47 |
-
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased")
|
48 |
-
dataset = load_dataset("glue", "mrpc", split="validation")
|
49 |
-
|
50 |
-
def tokenize_function(examples):
|
51 |
-
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
52 |
-
return outputs
|
53 |
-
|
54 |
-
with accelerator.main_process_first():
|
55 |
-
tokenized_datasets = dataset.map(
|
56 |
-
tokenize_function,
|
57 |
-
batched=True,
|
58 |
-
remove_columns=["idx", "sentence1", "sentence2"],
|
59 |
-
)
|
60 |
-
|
61 |
-
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
62 |
-
|
63 |
-
def collate_fn(examples):
|
64 |
-
if use_longest:
|
65 |
-
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
|
66 |
-
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
|
67 |
-
|
68 |
-
return DataLoader(tokenized_datasets, shuffle=False, collate_fn=collate_fn, batch_size=16)
|
69 |
-
|
70 |
-
|
71 |
-
def get_mrpc_setup(dispatch_batches, split_batches):
|
72 |
-
accelerator = Accelerator(dispatch_batches=dispatch_batches, split_batches=split_batches)
|
73 |
-
dataloader = get_dataloader(accelerator, not dispatch_batches)
|
74 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
75 |
-
"hf-internal-testing/mrpc-bert-base-cased", return_dict=True
|
76 |
-
)
|
77 |
-
ddp_model, ddp_dataloader = accelerator.prepare(model, dataloader)
|
78 |
-
return {
|
79 |
-
"ddp": [ddp_model, ddp_dataloader, torch_device],
|
80 |
-
"no": [model, dataloader, accelerator.device],
|
81 |
-
}, accelerator
|
82 |
-
|
83 |
-
|
84 |
-
def generate_predictions(model, dataloader, accelerator):
|
85 |
-
logits_and_targets = []
|
86 |
-
for batch in dataloader:
|
87 |
-
input, target = batch.values()
|
88 |
-
with torch.no_grad():
|
89 |
-
logit = model(input)
|
90 |
-
logit, target = accelerator.gather_for_metrics((logit, target))
|
91 |
-
logits_and_targets.append((logit, target))
|
92 |
-
logits, targs = [], []
|
93 |
-
for logit, targ in logits_and_targets:
|
94 |
-
logits.append(logit)
|
95 |
-
targs.append(targ)
|
96 |
-
logits, targs = torch.cat(logits), torch.cat(targs)
|
97 |
-
return logits, targs
|
98 |
-
|
99 |
-
|
100 |
-
def test_torch_metrics(
|
101 |
-
accelerator: Accelerator, num_samples=82, dispatch_batches=False, split_batches=False, batch_size=16
|
102 |
-
):
|
103 |
-
model, ddp_model, dataloader = get_basic_setup(accelerator, num_samples, batch_size)
|
104 |
-
logits, targs = generate_predictions(ddp_model, dataloader, accelerator)
|
105 |
-
assert (
|
106 |
-
len(logits) == num_samples
|
107 |
-
), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(logits)}"
|
108 |
-
|
109 |
-
|
110 |
-
def test_mrpc(dispatch_batches: bool = False, split_batches: bool = False):
|
111 |
-
metric = evaluate.load("glue", "mrpc")
|
112 |
-
setup, accelerator = get_mrpc_setup(dispatch_batches, split_batches)
|
113 |
-
# First do baseline
|
114 |
-
model, dataloader, device = setup["no"]
|
115 |
-
model.to(device)
|
116 |
-
model.eval()
|
117 |
-
for batch in dataloader:
|
118 |
-
batch.to(device)
|
119 |
-
with torch.inference_mode():
|
120 |
-
outputs = model(**batch)
|
121 |
-
preds = outputs.logits.argmax(dim=-1)
|
122 |
-
metric.add_batch(predictions=preds, references=batch["labels"])
|
123 |
-
baseline = metric.compute()
|
124 |
-
|
125 |
-
# Then do distributed
|
126 |
-
model, dataloader, device = setup["ddp"]
|
127 |
-
model.eval()
|
128 |
-
for batch in dataloader:
|
129 |
-
with torch.inference_mode():
|
130 |
-
outputs = model(**batch)
|
131 |
-
preds = outputs.logits.argmax(dim=-1)
|
132 |
-
references = batch["labels"]
|
133 |
-
preds, references = accelerator.gather_for_metrics((preds, references))
|
134 |
-
metric.add_batch(predictions=preds, references=references)
|
135 |
-
distributed = metric.compute()
|
136 |
-
|
137 |
-
for key in "accuracy f1".split():
|
138 |
-
assert math.isclose(
|
139 |
-
baseline[key], distributed[key]
|
140 |
-
), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"
|
141 |
-
|
142 |
-
|
143 |
-
def test_gather_for_metrics_with_non_tensor_objects_iterable_dataset():
|
144 |
-
class DummyIterableDataset(IterableDataset):
|
145 |
-
def __init__(self, data):
|
146 |
-
self.data = data
|
147 |
-
|
148 |
-
def __len__(self):
|
149 |
-
return len(self.data)
|
150 |
-
|
151 |
-
def __iter__(self):
|
152 |
-
for element in self.data:
|
153 |
-
yield element
|
154 |
-
|
155 |
-
iterable_dataset = DummyIterableDataset([n for n in range(30)])
|
156 |
-
dataloader = DataLoader(iterable_dataset, batch_size=4)
|
157 |
-
accelerator = Accelerator()
|
158 |
-
prepared_dataloader = accelerator.prepare(dataloader)
|
159 |
-
|
160 |
-
if accelerator.is_main_process:
|
161 |
-
logger = logging.root.manager.loggerDict["accelerate.accelerator"]
|
162 |
-
list_handler = ListHandler()
|
163 |
-
logger.addHandler(list_handler)
|
164 |
-
|
165 |
-
batches_for_metrics = []
|
166 |
-
for batch in prepared_dataloader:
|
167 |
-
batches_for_metrics.append(accelerator.gather_for_metrics(batch))
|
168 |
-
|
169 |
-
assert torch.cat(batches_for_metrics).size(0) == 30
|
170 |
-
|
171 |
-
if accelerator.is_main_process:
|
172 |
-
assert len(list_handler.logs) == 0
|
173 |
-
logger.removeHandler(list_handler)
|
174 |
-
|
175 |
-
|
176 |
-
def test_gather_for_metrics_with_iterable_dataset():
|
177 |
-
class DummyIterableDataset(IterableDataset):
|
178 |
-
def __init__(self, data):
|
179 |
-
self.data = data
|
180 |
-
|
181 |
-
def __len__(self):
|
182 |
-
return len(self.data)
|
183 |
-
|
184 |
-
def __iter__(self):
|
185 |
-
for element in self.data:
|
186 |
-
yield element
|
187 |
-
|
188 |
-
iterable_dataset = DummyIterableDataset(torch.as_tensor(range(30)))
|
189 |
-
dataloader = DataLoader(iterable_dataset, batch_size=4)
|
190 |
-
|
191 |
-
accelerator = Accelerator()
|
192 |
-
prepared_dataloader = accelerator.prepare(dataloader)
|
193 |
-
|
194 |
-
assert isinstance(prepared_dataloader, DataLoaderDispatcher)
|
195 |
-
|
196 |
-
if accelerator.is_main_process:
|
197 |
-
logger = logging.root.manager.loggerDict["accelerate.accelerator"]
|
198 |
-
list_handler = ListHandler()
|
199 |
-
logger.addHandler(list_handler)
|
200 |
-
|
201 |
-
batches_for_metrics = []
|
202 |
-
for batch in prepared_dataloader:
|
203 |
-
batches_for_metrics.append(accelerator.gather_for_metrics(batch))
|
204 |
-
|
205 |
-
assert torch.cat(batches_for_metrics).size(0) == 30
|
206 |
-
|
207 |
-
if accelerator.is_main_process:
|
208 |
-
assert len(list_handler.logs) == 0
|
209 |
-
|
210 |
-
logger.removeHandler(list_handler)
|
211 |
-
|
212 |
-
|
213 |
-
def test_gather_for_metrics_drop_last():
|
214 |
-
accelerator = Accelerator()
|
215 |
-
per_device_batch_size = 5
|
216 |
-
num_items = (10 * accelerator.num_processes) + 1
|
217 |
-
dataloader = DataLoader(range(num_items), batch_size=per_device_batch_size, drop_last=True)
|
218 |
-
dataloader = accelerator.prepare(dataloader)
|
219 |
-
|
220 |
-
iterator = iter(dataloader)
|
221 |
-
next(iterator) # Skip first batch tensor([0, 1, 2, 3, 4], device='cuda:0')
|
222 |
-
batch = next(iterator)
|
223 |
-
gathered_items = accelerator.gather_for_metrics(batch)
|
224 |
-
|
225 |
-
# Should return a full set of complete batches from each GPU
|
226 |
-
num_expected_items = per_device_batch_size * accelerator.num_processes
|
227 |
-
assert gathered_items.size(0) == (
|
228 |
-
num_expected_items
|
229 |
-
), f"Expected number of items: {num_expected_items}, Actual: {gathered_items.size(0)}"
|
230 |
-
|
231 |
-
|
232 |
-
def main():
|
233 |
-
accelerator = Accelerator(split_batches=False, dispatch_batches=False)
|
234 |
-
if accelerator.is_local_main_process:
|
235 |
-
datasets.utils.logging.set_verbosity_warning()
|
236 |
-
transformers.utils.logging.set_verbosity_warning()
|
237 |
-
else:
|
238 |
-
datasets.utils.logging.set_verbosity_error()
|
239 |
-
transformers.utils.logging.set_verbosity_error()
|
240 |
-
# These are a bit slower so they should only be ran on the GPU or TPU
|
241 |
-
if accelerator.device.type != "cpu":
|
242 |
-
if accelerator.is_local_main_process:
|
243 |
-
print("**Testing gather_for_metrics**")
|
244 |
-
for split_batches in [True, False]:
|
245 |
-
for dispatch_batches in [True, False]:
|
246 |
-
if accelerator.is_local_main_process:
|
247 |
-
print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`")
|
248 |
-
test_mrpc(dispatch_batches, split_batches)
|
249 |
-
accelerator.state._reset_state()
|
250 |
-
print("test_gather_for_metrics_with_iterable_dataset")
|
251 |
-
test_gather_for_metrics_with_iterable_dataset()
|
252 |
-
print("test gather_for_metrics_with_non_tensor_objects_iterable_dataset")
|
253 |
-
test_gather_for_metrics_with_non_tensor_objects_iterable_dataset()
|
254 |
-
if accelerator.is_local_main_process:
|
255 |
-
print("**Test torch metrics**")
|
256 |
-
for split_batches in [True, False]:
|
257 |
-
for dispatch_batches in [True, False]:
|
258 |
-
accelerator = Accelerator(split_batches=split_batches, dispatch_batches=dispatch_batches)
|
259 |
-
if accelerator.is_local_main_process:
|
260 |
-
print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99")
|
261 |
-
test_torch_metrics(accelerator, 99)
|
262 |
-
accelerator.state._reset_state()
|
263 |
-
if accelerator.is_local_main_process:
|
264 |
-
print("**Test last batch is not dropped when perfectly divisible**")
|
265 |
-
accelerator = Accelerator()
|
266 |
-
test_torch_metrics(accelerator, 512)
|
267 |
-
accelerator.state._reset_state()
|
268 |
-
if accelerator.is_local_main_process:
|
269 |
-
print("**Test that `drop_last` is taken into account**")
|
270 |
-
test_gather_for_metrics_drop_last()
|
271 |
-
accelerator.state._reset_state()
|
272 |
-
|
273 |
-
|
274 |
-
def _mp_fn(index):
|
275 |
-
# For xla_spawn (TPUs)
|
276 |
-
main()
|
277 |
-
|
278 |
-
|
279 |
-
if __name__ == "__main__":
|
280 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/external_deps/test_peak_memory_usage.py
DELETED
@@ -1,265 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
|
3 |
-
import argparse
|
4 |
-
import gc
|
5 |
-
import json
|
6 |
-
import os
|
7 |
-
|
8 |
-
import torch
|
9 |
-
from datasets import load_dataset
|
10 |
-
from torch.optim import AdamW
|
11 |
-
from torch.utils.data import DataLoader
|
12 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
|
13 |
-
|
14 |
-
from accelerate import Accelerator, DistributedType
|
15 |
-
from accelerate.utils import is_npu_available, is_xpu_available
|
16 |
-
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
|
17 |
-
|
18 |
-
|
19 |
-
MAX_GPU_BATCH_SIZE = 16
|
20 |
-
EVAL_BATCH_SIZE = 32
|
21 |
-
|
22 |
-
|
23 |
-
# Converting Bytes to Megabytes
|
24 |
-
def b2mb(x):
|
25 |
-
return int(x / 2**20)
|
26 |
-
|
27 |
-
|
28 |
-
# This context manager is used to track the peak memory usage of the process
|
29 |
-
class TorchTracemalloc:
|
30 |
-
def __enter__(self):
|
31 |
-
gc.collect()
|
32 |
-
if torch.cuda.is_available():
|
33 |
-
torch.cuda.empty_cache()
|
34 |
-
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
|
35 |
-
self.begin = torch.cuda.memory_allocated()
|
36 |
-
elif is_npu_available():
|
37 |
-
torch.npu.empty_cache()
|
38 |
-
torch.npu.reset_max_memory_allocated() # reset the peak gauge to zero
|
39 |
-
self.begin = torch.npu.memory_allocated()
|
40 |
-
elif is_xpu_available():
|
41 |
-
torch.xpu.empty_cache()
|
42 |
-
torch.xpu.reset_max_memory_allocated() # reset the peak gauge to zero
|
43 |
-
self.begin = torch.xpu.memory_allocated()
|
44 |
-
return self
|
45 |
-
|
46 |
-
def __exit__(self, *exc):
|
47 |
-
gc.collect()
|
48 |
-
if torch.cuda.is_available():
|
49 |
-
torch.cuda.empty_cache()
|
50 |
-
self.end = torch.cuda.memory_allocated()
|
51 |
-
self.peak = torch.cuda.max_memory_allocated()
|
52 |
-
elif is_npu_available():
|
53 |
-
torch.npu.empty_cache()
|
54 |
-
self.end = torch.npu.memory_allocated()
|
55 |
-
self.peak = torch.npu.max_memory_allocated()
|
56 |
-
elif is_xpu_available():
|
57 |
-
torch.xpu.empty_cache()
|
58 |
-
self.end = torch.xpu.memory_allocated()
|
59 |
-
self.peak = torch.xpu.max_memory_allocated()
|
60 |
-
self.used = b2mb(self.end - self.begin)
|
61 |
-
self.peaked = b2mb(self.peak - self.begin)
|
62 |
-
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
|
63 |
-
|
64 |
-
|
65 |
-
def get_dataloaders(
|
66 |
-
accelerator: Accelerator,
|
67 |
-
batch_size: int = 16,
|
68 |
-
model_name: str = "bert-base-cased",
|
69 |
-
n_train: int = 320,
|
70 |
-
n_val: int = 160,
|
71 |
-
):
|
72 |
-
"""
|
73 |
-
Creates a set of `DataLoader`s for the `glue` dataset.
|
74 |
-
|
75 |
-
Args:
|
76 |
-
accelerator (`Accelerator`):
|
77 |
-
An `Accelerator` object
|
78 |
-
batch_size (`int`, *optional*):
|
79 |
-
The batch size for the train and validation DataLoaders.
|
80 |
-
model_name (`str`, *optional*):
|
81 |
-
The name of the model to use.
|
82 |
-
n_train (`int`, *optional*):
|
83 |
-
The number of training examples to use.
|
84 |
-
n_val (`int`, *optional*):
|
85 |
-
The number of validation examples to use.
|
86 |
-
"""
|
87 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
88 |
-
datasets = load_dataset(
|
89 |
-
"glue", "mrpc", split={"train": f"train[:{n_train}]", "validation": f"validation[:{n_val}]"}
|
90 |
-
)
|
91 |
-
|
92 |
-
def tokenize_function(examples):
|
93 |
-
# max_length=None => use the model max length (it's actually the default)
|
94 |
-
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
95 |
-
return outputs
|
96 |
-
|
97 |
-
# Apply the method we just defined to all the examples in all the splits of the dataset
|
98 |
-
tokenized_datasets = datasets.map(
|
99 |
-
tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False
|
100 |
-
)
|
101 |
-
|
102 |
-
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
|
103 |
-
# transformers library
|
104 |
-
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
105 |
-
|
106 |
-
def collate_fn(examples):
|
107 |
-
# On TPU it's best to pad everything to the same length or training will be very slow.
|
108 |
-
if accelerator.distributed_type == DistributedType.TPU:
|
109 |
-
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
|
110 |
-
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
|
111 |
-
|
112 |
-
# Instantiate dataloaders.
|
113 |
-
train_dataloader = DataLoader(
|
114 |
-
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
|
115 |
-
)
|
116 |
-
eval_dataloader = DataLoader(
|
117 |
-
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
|
118 |
-
)
|
119 |
-
|
120 |
-
return train_dataloader, eval_dataloader
|
121 |
-
|
122 |
-
|
123 |
-
def training_function(config, args):
|
124 |
-
# Initialize accelerator
|
125 |
-
accelerator = Accelerator()
|
126 |
-
|
127 |
-
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
|
128 |
-
lr = config["lr"]
|
129 |
-
num_epochs = int(config["num_epochs"])
|
130 |
-
seed = int(config["seed"])
|
131 |
-
batch_size = int(config["batch_size"])
|
132 |
-
model_name = args.model_name_or_path
|
133 |
-
|
134 |
-
set_seed(seed)
|
135 |
-
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name, args.n_train, args.n_val)
|
136 |
-
|
137 |
-
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
|
138 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True)
|
139 |
-
|
140 |
-
# Instantiate optimizer
|
141 |
-
optimizer_cls = (
|
142 |
-
AdamW
|
143 |
-
if accelerator.state.deepspeed_plugin is None
|
144 |
-
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
145 |
-
else DummyOptim
|
146 |
-
)
|
147 |
-
optimizer = optimizer_cls(params=model.parameters(), lr=lr)
|
148 |
-
|
149 |
-
if accelerator.state.deepspeed_plugin is not None:
|
150 |
-
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
|
151 |
-
"gradient_accumulation_steps"
|
152 |
-
]
|
153 |
-
else:
|
154 |
-
gradient_accumulation_steps = 1
|
155 |
-
max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps
|
156 |
-
|
157 |
-
# Instantiate scheduler
|
158 |
-
if (
|
159 |
-
accelerator.state.deepspeed_plugin is None
|
160 |
-
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
161 |
-
):
|
162 |
-
lr_scheduler = get_linear_schedule_with_warmup(
|
163 |
-
optimizer=optimizer,
|
164 |
-
num_warmup_steps=0,
|
165 |
-
num_training_steps=max_training_steps,
|
166 |
-
)
|
167 |
-
else:
|
168 |
-
lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0)
|
169 |
-
|
170 |
-
# Prepare everything
|
171 |
-
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
|
172 |
-
# prepare method.
|
173 |
-
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
174 |
-
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
175 |
-
)
|
176 |
-
|
177 |
-
# We need to keep track of how many total steps we have iterated over
|
178 |
-
overall_step = 0
|
179 |
-
# We also need to keep track of the stating epoch so files are named properly
|
180 |
-
starting_epoch = 0
|
181 |
-
|
182 |
-
# Now we train the model
|
183 |
-
train_total_peak_memory = {}
|
184 |
-
for epoch in range(starting_epoch, num_epochs):
|
185 |
-
with TorchTracemalloc() as tracemalloc:
|
186 |
-
model.train()
|
187 |
-
for step, batch in enumerate(train_dataloader):
|
188 |
-
outputs = model(**batch)
|
189 |
-
loss = outputs.loss
|
190 |
-
loss = loss / gradient_accumulation_steps
|
191 |
-
accelerator.backward(loss)
|
192 |
-
if step % gradient_accumulation_steps == 0:
|
193 |
-
optimizer.step()
|
194 |
-
lr_scheduler.step()
|
195 |
-
optimizer.zero_grad()
|
196 |
-
|
197 |
-
overall_step += 1
|
198 |
-
|
199 |
-
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
|
200 |
-
accelerator.print("Memory before entering the train : {}".format(b2mb(tracemalloc.begin)))
|
201 |
-
accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used))
|
202 |
-
accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked))
|
203 |
-
accelerator.print(
|
204 |
-
"Total Peak Memory consumed during the train (max): {}".format(
|
205 |
-
tracemalloc.peaked + b2mb(tracemalloc.begin)
|
206 |
-
)
|
207 |
-
)
|
208 |
-
train_total_peak_memory[f"epoch-{epoch}"] = tracemalloc.peaked + b2mb(tracemalloc.begin)
|
209 |
-
if args.peak_memory_upper_bound is not None:
|
210 |
-
assert (
|
211 |
-
train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound
|
212 |
-
), "Peak memory usage exceeded the upper bound"
|
213 |
-
|
214 |
-
accelerator.wait_for_everyone()
|
215 |
-
if accelerator.is_main_process:
|
216 |
-
with open(os.path.join(args.output_dir, "peak_memory_utilization.json"), "w") as f:
|
217 |
-
json.dump(train_total_peak_memory, f)
|
218 |
-
|
219 |
-
|
220 |
-
def main():
|
221 |
-
parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.")
|
222 |
-
parser.add_argument(
|
223 |
-
"--model_name_or_path",
|
224 |
-
type=str,
|
225 |
-
default="bert-base-cased",
|
226 |
-
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
227 |
-
required=False,
|
228 |
-
)
|
229 |
-
parser.add_argument(
|
230 |
-
"--output_dir",
|
231 |
-
type=str,
|
232 |
-
default=".",
|
233 |
-
help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.",
|
234 |
-
)
|
235 |
-
parser.add_argument(
|
236 |
-
"--peak_memory_upper_bound",
|
237 |
-
type=float,
|
238 |
-
default=None,
|
239 |
-
help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.",
|
240 |
-
)
|
241 |
-
parser.add_argument(
|
242 |
-
"--n_train",
|
243 |
-
type=int,
|
244 |
-
default=320,
|
245 |
-
help="Number of training examples to use.",
|
246 |
-
)
|
247 |
-
parser.add_argument(
|
248 |
-
"--n_val",
|
249 |
-
type=int,
|
250 |
-
default=160,
|
251 |
-
help="Number of validation examples to use.",
|
252 |
-
)
|
253 |
-
parser.add_argument(
|
254 |
-
"--num_epochs",
|
255 |
-
type=int,
|
256 |
-
default=1,
|
257 |
-
help="Number of train epochs.",
|
258 |
-
)
|
259 |
-
args = parser.parse_args()
|
260 |
-
config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
|
261 |
-
training_function(config, args)
|
262 |
-
|
263 |
-
|
264 |
-
if __name__ == "__main__":
|
265 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/external_deps/test_performance.py
DELETED
@@ -1,219 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
|
3 |
-
import argparse
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
|
7 |
-
import evaluate
|
8 |
-
import torch
|
9 |
-
from datasets import load_dataset
|
10 |
-
from torch.optim import AdamW
|
11 |
-
from torch.utils.data import DataLoader
|
12 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
|
13 |
-
|
14 |
-
from accelerate import Accelerator, DistributedType
|
15 |
-
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
|
16 |
-
|
17 |
-
|
18 |
-
MAX_GPU_BATCH_SIZE = 16
|
19 |
-
EVAL_BATCH_SIZE = 32
|
20 |
-
|
21 |
-
|
22 |
-
def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased"):
|
23 |
-
"""
|
24 |
-
Creates a set of `DataLoader`s for the `glue` dataset.
|
25 |
-
|
26 |
-
Args:
|
27 |
-
accelerator (`Accelerator`):
|
28 |
-
An `Accelerator` object
|
29 |
-
batch_size (`int`, *optional*):
|
30 |
-
The batch size for the train and validation DataLoaders.
|
31 |
-
model_name (`str`, *optional*):
|
32 |
-
"""
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
-
datasets = load_dataset("glue", "mrpc")
|
35 |
-
|
36 |
-
def tokenize_function(examples):
|
37 |
-
# max_length=None => use the model max length (it's actually the default)
|
38 |
-
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
39 |
-
return outputs
|
40 |
-
|
41 |
-
# Apply the method we just defined to all the examples in all the splits of the dataset
|
42 |
-
tokenized_datasets = datasets.map(
|
43 |
-
tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False
|
44 |
-
)
|
45 |
-
|
46 |
-
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
|
47 |
-
# transformers library
|
48 |
-
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
49 |
-
|
50 |
-
def collate_fn(examples):
|
51 |
-
# On TPU it's best to pad everything to the same length or training will be very slow.
|
52 |
-
if accelerator.distributed_type == DistributedType.TPU:
|
53 |
-
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
|
54 |
-
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
|
55 |
-
|
56 |
-
# Instantiate dataloaders.
|
57 |
-
train_dataloader = DataLoader(
|
58 |
-
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
|
59 |
-
)
|
60 |
-
eval_dataloader = DataLoader(
|
61 |
-
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
|
62 |
-
)
|
63 |
-
|
64 |
-
return train_dataloader, eval_dataloader
|
65 |
-
|
66 |
-
|
67 |
-
def training_function(config, args):
|
68 |
-
# Initialize accelerator
|
69 |
-
accelerator = Accelerator()
|
70 |
-
|
71 |
-
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
|
72 |
-
lr = config["lr"]
|
73 |
-
num_epochs = int(config["num_epochs"])
|
74 |
-
seed = int(config["seed"])
|
75 |
-
batch_size = int(config["batch_size"])
|
76 |
-
model_name = args.model_name_or_path
|
77 |
-
|
78 |
-
set_seed(seed)
|
79 |
-
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name)
|
80 |
-
|
81 |
-
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
|
82 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True)
|
83 |
-
|
84 |
-
# Instantiate optimizer
|
85 |
-
optimizer_cls = (
|
86 |
-
AdamW
|
87 |
-
if accelerator.state.deepspeed_plugin is None
|
88 |
-
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
89 |
-
else DummyOptim
|
90 |
-
)
|
91 |
-
optimizer = optimizer_cls(params=model.parameters(), lr=lr)
|
92 |
-
|
93 |
-
if accelerator.state.deepspeed_plugin is not None:
|
94 |
-
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
|
95 |
-
"gradient_accumulation_steps"
|
96 |
-
]
|
97 |
-
else:
|
98 |
-
gradient_accumulation_steps = 1
|
99 |
-
max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps
|
100 |
-
|
101 |
-
# Instantiate scheduler
|
102 |
-
if (
|
103 |
-
accelerator.state.deepspeed_plugin is None
|
104 |
-
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
105 |
-
):
|
106 |
-
lr_scheduler = get_linear_schedule_with_warmup(
|
107 |
-
optimizer=optimizer,
|
108 |
-
num_warmup_steps=0,
|
109 |
-
num_training_steps=max_training_steps,
|
110 |
-
)
|
111 |
-
else:
|
112 |
-
lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0)
|
113 |
-
|
114 |
-
# Prepare everything
|
115 |
-
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
|
116 |
-
# prepare method.
|
117 |
-
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
118 |
-
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
119 |
-
)
|
120 |
-
|
121 |
-
# We need to keep track of how many total steps we have iterated over
|
122 |
-
overall_step = 0
|
123 |
-
# We also need to keep track of the stating epoch so files are named properly
|
124 |
-
starting_epoch = 0
|
125 |
-
|
126 |
-
# Now we train the model
|
127 |
-
metric = evaluate.load("glue", "mrpc")
|
128 |
-
best_performance = 0
|
129 |
-
performance_metric = {}
|
130 |
-
for epoch in range(starting_epoch, num_epochs):
|
131 |
-
model.train()
|
132 |
-
for step, batch in enumerate(train_dataloader):
|
133 |
-
outputs = model(**batch)
|
134 |
-
loss = outputs.loss
|
135 |
-
loss = loss / gradient_accumulation_steps
|
136 |
-
accelerator.backward(loss)
|
137 |
-
if step % gradient_accumulation_steps == 0:
|
138 |
-
optimizer.step()
|
139 |
-
lr_scheduler.step()
|
140 |
-
optimizer.zero_grad()
|
141 |
-
|
142 |
-
overall_step += 1
|
143 |
-
|
144 |
-
model.eval()
|
145 |
-
samples_seen = 0
|
146 |
-
for step, batch in enumerate(eval_dataloader):
|
147 |
-
# We could avoid this line since we set the accelerator with `device_placement=True`.
|
148 |
-
batch.to(accelerator.device)
|
149 |
-
with torch.no_grad():
|
150 |
-
outputs = model(**batch)
|
151 |
-
predictions = outputs.logits.argmax(dim=-1)
|
152 |
-
# It is slightly faster to call this once, than multiple times
|
153 |
-
predictions, references = accelerator.gather(
|
154 |
-
(predictions, batch["labels"])
|
155 |
-
) # If we are in a multiprocess environment, the last batch has duplicates
|
156 |
-
if accelerator.use_distributed:
|
157 |
-
if step == len(eval_dataloader) - 1:
|
158 |
-
predictions = predictions[: len(eval_dataloader.dataset) - samples_seen]
|
159 |
-
references = references[: len(eval_dataloader.dataset) - samples_seen]
|
160 |
-
else:
|
161 |
-
samples_seen += references.shape[0]
|
162 |
-
metric.add_batch(
|
163 |
-
predictions=predictions,
|
164 |
-
references=references,
|
165 |
-
)
|
166 |
-
|
167 |
-
eval_metric = metric.compute()
|
168 |
-
# Use accelerator.print to print only on the main process.
|
169 |
-
accelerator.print(f"epoch {epoch}:", eval_metric)
|
170 |
-
performance_metric[f"epoch-{epoch}"] = eval_metric["accuracy"]
|
171 |
-
|
172 |
-
if best_performance < eval_metric["accuracy"]:
|
173 |
-
best_performance = eval_metric["accuracy"]
|
174 |
-
|
175 |
-
if args.performance_lower_bound is not None:
|
176 |
-
assert (
|
177 |
-
args.performance_lower_bound <= best_performance
|
178 |
-
), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}"
|
179 |
-
|
180 |
-
accelerator.wait_for_everyone()
|
181 |
-
if accelerator.is_main_process:
|
182 |
-
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
|
183 |
-
json.dump(performance_metric, f)
|
184 |
-
|
185 |
-
|
186 |
-
def main():
|
187 |
-
parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.")
|
188 |
-
parser.add_argument(
|
189 |
-
"--model_name_or_path",
|
190 |
-
type=str,
|
191 |
-
default="bert-base-cased",
|
192 |
-
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
193 |
-
required=False,
|
194 |
-
)
|
195 |
-
parser.add_argument(
|
196 |
-
"--output_dir",
|
197 |
-
type=str,
|
198 |
-
default=".",
|
199 |
-
help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.",
|
200 |
-
)
|
201 |
-
parser.add_argument(
|
202 |
-
"--performance_lower_bound",
|
203 |
-
type=float,
|
204 |
-
default=None,
|
205 |
-
help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.",
|
206 |
-
)
|
207 |
-
parser.add_argument(
|
208 |
-
"--num_epochs",
|
209 |
-
type=int,
|
210 |
-
default=3,
|
211 |
-
help="Number of train epochs.",
|
212 |
-
)
|
213 |
-
args = parser.parse_args()
|
214 |
-
config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
|
215 |
-
training_function(config, args)
|
216 |
-
|
217 |
-
|
218 |
-
if __name__ == "__main__":
|
219 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/test_cli.py
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
def main():
|
5 |
-
if torch.cuda.is_available():
|
6 |
-
num_gpus = torch.cuda.device_count()
|
7 |
-
else:
|
8 |
-
num_gpus = 0
|
9 |
-
print(f"Successfully ran on {num_gpus} GPUs")
|
10 |
-
|
11 |
-
|
12 |
-
if __name__ == "__main__":
|
13 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/test_distributed_data_loop.py
DELETED
@@ -1,226 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
import warnings
|
7 |
-
from typing import List
|
8 |
-
from unittest.mock import Mock
|
9 |
-
|
10 |
-
import torch
|
11 |
-
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
|
12 |
-
|
13 |
-
from accelerate.accelerator import Accelerator
|
14 |
-
from accelerate.utils.dataclasses import DistributedType
|
15 |
-
|
16 |
-
|
17 |
-
class DummyIterableDataset(IterableDataset):
|
18 |
-
def __init__(self, data):
|
19 |
-
self.data = data
|
20 |
-
|
21 |
-
def __iter__(self):
|
22 |
-
for element in self.data:
|
23 |
-
yield element
|
24 |
-
|
25 |
-
|
26 |
-
def create_accelerator(even_batches=True):
|
27 |
-
accelerator = Accelerator(even_batches=even_batches)
|
28 |
-
assert accelerator.num_processes == 2, "this script expects that two GPUs are available"
|
29 |
-
return accelerator
|
30 |
-
|
31 |
-
|
32 |
-
def create_dataloader(accelerator: Accelerator, dataset_size: int, batch_size: int, iterable: bool = False):
|
33 |
-
"""
|
34 |
-
Create a simple DataLoader to use during the test cases
|
35 |
-
"""
|
36 |
-
if iterable:
|
37 |
-
dataset = DummyIterableDataset(torch.as_tensor(range(dataset_size)))
|
38 |
-
else:
|
39 |
-
dataset = TensorDataset(torch.as_tensor(range(dataset_size)))
|
40 |
-
|
41 |
-
dl = DataLoader(dataset, batch_size=batch_size)
|
42 |
-
dl = accelerator.prepare(dl)
|
43 |
-
|
44 |
-
return dl
|
45 |
-
|
46 |
-
|
47 |
-
def verify_dataloader_batch_sizes(
|
48 |
-
accelerator: Accelerator,
|
49 |
-
dataset_size: int,
|
50 |
-
batch_size: int,
|
51 |
-
process_0_expected_batch_sizes: List[int],
|
52 |
-
process_1_expected_batch_sizes: List[int],
|
53 |
-
):
|
54 |
-
"""
|
55 |
-
A helper function for verifying the batch sizes coming from a prepared dataloader in each process
|
56 |
-
"""
|
57 |
-
dl = create_dataloader(accelerator=accelerator, dataset_size=dataset_size, batch_size=batch_size)
|
58 |
-
|
59 |
-
batch_sizes = [len(batch[0]) for batch in dl]
|
60 |
-
|
61 |
-
if accelerator.process_index == 0:
|
62 |
-
assert batch_sizes == process_0_expected_batch_sizes
|
63 |
-
elif accelerator.process_index == 1:
|
64 |
-
assert batch_sizes == process_1_expected_batch_sizes
|
65 |
-
|
66 |
-
|
67 |
-
def test_default_ensures_even_batch_sizes():
|
68 |
-
accelerator = create_accelerator()
|
69 |
-
|
70 |
-
# without padding, we would expect a different number of batches
|
71 |
-
verify_dataloader_batch_sizes(
|
72 |
-
accelerator,
|
73 |
-
dataset_size=3,
|
74 |
-
batch_size=1,
|
75 |
-
process_0_expected_batch_sizes=[1, 1],
|
76 |
-
process_1_expected_batch_sizes=[1, 1],
|
77 |
-
)
|
78 |
-
|
79 |
-
# without padding, we would expect the same number of batches, but different sizes
|
80 |
-
verify_dataloader_batch_sizes(
|
81 |
-
accelerator,
|
82 |
-
dataset_size=7,
|
83 |
-
batch_size=2,
|
84 |
-
process_0_expected_batch_sizes=[2, 2],
|
85 |
-
process_1_expected_batch_sizes=[2, 2],
|
86 |
-
)
|
87 |
-
|
88 |
-
|
89 |
-
def test_can_disable_even_batches():
|
90 |
-
accelerator = create_accelerator(even_batches=False)
|
91 |
-
|
92 |
-
verify_dataloader_batch_sizes(
|
93 |
-
accelerator,
|
94 |
-
dataset_size=3,
|
95 |
-
batch_size=1,
|
96 |
-
process_0_expected_batch_sizes=[1, 1],
|
97 |
-
process_1_expected_batch_sizes=[1],
|
98 |
-
)
|
99 |
-
|
100 |
-
verify_dataloader_batch_sizes(
|
101 |
-
accelerator,
|
102 |
-
dataset_size=7,
|
103 |
-
batch_size=2,
|
104 |
-
process_0_expected_batch_sizes=[2, 2],
|
105 |
-
process_1_expected_batch_sizes=[2, 1],
|
106 |
-
)
|
107 |
-
|
108 |
-
|
109 |
-
def test_can_join_uneven_inputs():
|
110 |
-
accelerator = create_accelerator(even_batches=False)
|
111 |
-
|
112 |
-
model = torch.nn.Linear(1, 1)
|
113 |
-
ddp_model = accelerator.prepare(model)
|
114 |
-
|
115 |
-
dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
|
116 |
-
|
117 |
-
batch_idxs = []
|
118 |
-
with accelerator.join_uneven_inputs([ddp_model]):
|
119 |
-
for batch_idx, batch in enumerate(dl):
|
120 |
-
output = ddp_model(batch[0].float())
|
121 |
-
loss = output.sum()
|
122 |
-
loss.backward()
|
123 |
-
batch_idxs.append(batch_idx)
|
124 |
-
|
125 |
-
accelerator.wait_for_everyone()
|
126 |
-
|
127 |
-
if accelerator.process_index == 0:
|
128 |
-
assert batch_idxs == [0, 1]
|
129 |
-
elif accelerator.process_index == 1:
|
130 |
-
assert batch_idxs == [0]
|
131 |
-
|
132 |
-
|
133 |
-
def test_join_raises_warning_for_non_ddp_distributed(accelerator):
|
134 |
-
with warnings.catch_warnings(record=True) as w:
|
135 |
-
with accelerator.join_uneven_inputs([Mock()]):
|
136 |
-
pass
|
137 |
-
|
138 |
-
assert issubclass(w[-1].category, UserWarning)
|
139 |
-
assert "only supported for multi-GPU" in str(w[-1].message)
|
140 |
-
|
141 |
-
|
142 |
-
def test_join_can_override_even_batches():
|
143 |
-
default_even_batches = True
|
144 |
-
overridden_even_batches = False
|
145 |
-
accelerator = create_accelerator(even_batches=default_even_batches)
|
146 |
-
model = torch.nn.Linear(1, 1)
|
147 |
-
ddp_model = accelerator.prepare(model)
|
148 |
-
train_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
|
149 |
-
valid_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
|
150 |
-
|
151 |
-
with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches):
|
152 |
-
train_dl_overridden_value = train_dl.batch_sampler.even_batches
|
153 |
-
valid_dl_overridden_value = valid_dl.batch_sampler.even_batches
|
154 |
-
|
155 |
-
assert train_dl_overridden_value == overridden_even_batches
|
156 |
-
assert valid_dl_overridden_value == overridden_even_batches
|
157 |
-
assert train_dl.batch_sampler.even_batches == default_even_batches
|
158 |
-
assert valid_dl.batch_sampler.even_batches == default_even_batches
|
159 |
-
|
160 |
-
|
161 |
-
def test_join_can_override_for_mixed_type_dataloaders():
|
162 |
-
default_even_batches = True
|
163 |
-
overridden_even_batches = False
|
164 |
-
accelerator = create_accelerator(even_batches=default_even_batches)
|
165 |
-
model = torch.nn.Linear(1, 1)
|
166 |
-
ddp_model = accelerator.prepare(model)
|
167 |
-
create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True)
|
168 |
-
batch_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
|
169 |
-
|
170 |
-
with warnings.catch_warnings():
|
171 |
-
warnings.filterwarnings("ignore")
|
172 |
-
try:
|
173 |
-
with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches):
|
174 |
-
batch_dl_overridden_value = batch_dl.batch_sampler.even_batches
|
175 |
-
except AttributeError:
|
176 |
-
# ensure attribute error is not raised when processing iterable dl
|
177 |
-
raise AssertionError
|
178 |
-
|
179 |
-
assert batch_dl_overridden_value == overridden_even_batches
|
180 |
-
assert batch_dl.batch_sampler.even_batches == default_even_batches
|
181 |
-
|
182 |
-
|
183 |
-
def test_join_raises_warning_for_iterable_when_overriding_even_batches():
|
184 |
-
accelerator = create_accelerator()
|
185 |
-
model = torch.nn.Linear(1, 1)
|
186 |
-
ddp_model = accelerator.prepare(model)
|
187 |
-
create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True)
|
188 |
-
|
189 |
-
with warnings.catch_warnings(record=True) as w:
|
190 |
-
with accelerator.join_uneven_inputs([ddp_model], even_batches=False):
|
191 |
-
pass
|
192 |
-
|
193 |
-
assert issubclass(w[-1].category, UserWarning)
|
194 |
-
assert "only supported for map-style datasets" in str(w[-1].message)
|
195 |
-
|
196 |
-
|
197 |
-
def main():
|
198 |
-
accelerator = create_accelerator()
|
199 |
-
|
200 |
-
accelerator.print("Test that even_batches variable ensures uniform batches across processes")
|
201 |
-
test_default_ensures_even_batch_sizes()
|
202 |
-
|
203 |
-
accelerator.print("Run tests with even_batches disabled")
|
204 |
-
test_can_disable_even_batches()
|
205 |
-
|
206 |
-
accelerator.print("Test joining uneven inputs")
|
207 |
-
test_can_join_uneven_inputs()
|
208 |
-
|
209 |
-
accelerator.print("Test overriding even_batches when joining uneven inputs")
|
210 |
-
test_join_can_override_even_batches()
|
211 |
-
|
212 |
-
accelerator.print("Test overriding even_batches for mixed dataloader types")
|
213 |
-
test_join_can_override_for_mixed_type_dataloaders()
|
214 |
-
|
215 |
-
accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders")
|
216 |
-
test_join_raises_warning_for_iterable_when_overriding_even_batches()
|
217 |
-
|
218 |
-
accelerator.print("Test join with non DDP distributed raises warning")
|
219 |
-
original_state = accelerator.state.distributed_type
|
220 |
-
accelerator.state.distributed_type = DistributedType.FSDP
|
221 |
-
test_join_raises_warning_for_non_ddp_distributed(accelerator)
|
222 |
-
accelerator.state.distributed_type = original_state
|
223 |
-
|
224 |
-
|
225 |
-
if __name__ == "__main__":
|
226 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/test_notebook.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
# Test file to ensure that in general certain situational setups for notebooks work.
|
2 |
-
import os
|
3 |
-
|
4 |
-
from pytest import raises
|
5 |
-
|
6 |
-
from accelerate import PartialState, notebook_launcher
|
7 |
-
from accelerate.test_utils import require_bnb
|
8 |
-
from accelerate.utils import is_bnb_available
|
9 |
-
|
10 |
-
|
11 |
-
def basic_function():
|
12 |
-
# Just prints the PartialState
|
13 |
-
print(f"PartialState:\n{PartialState()}")
|
14 |
-
|
15 |
-
|
16 |
-
NUM_PROCESSES = int(os.environ.get("ACCELERATE_NUM_PROCESSES", 1))
|
17 |
-
|
18 |
-
|
19 |
-
def test_can_initialize():
|
20 |
-
notebook_launcher(basic_function, (), num_processes=NUM_PROCESSES)
|
21 |
-
|
22 |
-
|
23 |
-
@require_bnb
|
24 |
-
def test_problematic_imports():
|
25 |
-
with raises(RuntimeError, match="Please keep these imports"):
|
26 |
-
import bitsandbytes as bnb # noqa: F401
|
27 |
-
|
28 |
-
notebook_launcher(basic_function, (), num_processes=NUM_PROCESSES)
|
29 |
-
|
30 |
-
|
31 |
-
def main():
|
32 |
-
print("Test basic notebook can be ran")
|
33 |
-
test_can_initialize()
|
34 |
-
if is_bnb_available():
|
35 |
-
print("Test problematic imports (bnb)")
|
36 |
-
test_problematic_imports()
|
37 |
-
|
38 |
-
|
39 |
-
if __name__ == "__main__":
|
40 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/test_ops.py
DELETED
@@ -1,147 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import torch
|
6 |
-
|
7 |
-
from accelerate import PartialState
|
8 |
-
from accelerate.test_utils.testing import assert_exception
|
9 |
-
from accelerate.utils.dataclasses import DistributedType
|
10 |
-
from accelerate.utils.operations import (
|
11 |
-
DistributedOperationException,
|
12 |
-
broadcast,
|
13 |
-
gather,
|
14 |
-
gather_object,
|
15 |
-
pad_across_processes,
|
16 |
-
reduce,
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
def create_tensor(state):
|
21 |
-
return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device)
|
22 |
-
|
23 |
-
|
24 |
-
def test_gather(state):
|
25 |
-
tensor = create_tensor(state)
|
26 |
-
gathered_tensor = gather(tensor)
|
27 |
-
assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1))
|
28 |
-
|
29 |
-
|
30 |
-
def test_gather_object(state):
|
31 |
-
obj = [state.process_index]
|
32 |
-
gathered_obj = gather_object(obj)
|
33 |
-
assert len(gathered_obj) == state.num_processes, f"{gathered_obj}, {len(gathered_obj)} != {state.num_processes}"
|
34 |
-
assert gathered_obj == list(range(state.num_processes)), f"{gathered_obj} != {list(range(state.num_processes))}"
|
35 |
-
|
36 |
-
|
37 |
-
def test_gather_non_contigous(state):
|
38 |
-
# Create a non-contiguous tensor
|
39 |
-
tensor = torch.arange(12).view(4, 3).t().to(state.device)
|
40 |
-
assert not tensor.is_contiguous()
|
41 |
-
# Shouldn't error out
|
42 |
-
_ = gather(tensor)
|
43 |
-
|
44 |
-
|
45 |
-
def test_broadcast(state):
|
46 |
-
tensor = create_tensor(state)
|
47 |
-
broadcasted_tensor = broadcast(tensor)
|
48 |
-
assert broadcasted_tensor.shape == torch.Size([state.num_processes])
|
49 |
-
assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1))
|
50 |
-
|
51 |
-
|
52 |
-
def test_pad_across_processes(state):
|
53 |
-
# We need to pad the tensor with one more element if we are the main process
|
54 |
-
# to ensure that we can pad
|
55 |
-
if state.is_main_process:
|
56 |
-
tensor = torch.arange(state.num_processes + 1).to(state.device)
|
57 |
-
else:
|
58 |
-
tensor = torch.arange(state.num_processes).to(state.device)
|
59 |
-
padded_tensor = pad_across_processes(tensor)
|
60 |
-
assert padded_tensor.shape == torch.Size([state.num_processes + 1])
|
61 |
-
if not state.is_main_process:
|
62 |
-
assert padded_tensor.tolist() == list(range(0, state.num_processes)) + [0]
|
63 |
-
|
64 |
-
|
65 |
-
def test_reduce_sum(state):
|
66 |
-
# For now runs on only two processes
|
67 |
-
if state.num_processes != 2:
|
68 |
-
return
|
69 |
-
tensor = create_tensor(state)
|
70 |
-
reduced_tensor = reduce(tensor, "sum")
|
71 |
-
truth_tensor = torch.tensor([4.0, 6]).to(state.device)
|
72 |
-
assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"
|
73 |
-
|
74 |
-
|
75 |
-
def test_reduce_mean(state):
|
76 |
-
# For now runs on only two processes
|
77 |
-
if state.num_processes != 2:
|
78 |
-
return
|
79 |
-
tensor = create_tensor(state)
|
80 |
-
reduced_tensor = reduce(tensor, "mean")
|
81 |
-
truth_tensor = torch.tensor([2.0, 3]).to(state.device)
|
82 |
-
assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"
|
83 |
-
|
84 |
-
|
85 |
-
def test_op_checker(state):
|
86 |
-
# Must be in a distributed state
|
87 |
-
if state.distributed_type == DistributedType.NO:
|
88 |
-
return
|
89 |
-
state.debug = True
|
90 |
-
# `pad_across_processes`
|
91 |
-
if state.process_index == 0:
|
92 |
-
data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
|
93 |
-
else:
|
94 |
-
data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4, 5]]]).to(state.device)}
|
95 |
-
|
96 |
-
with assert_exception(DistributedOperationException):
|
97 |
-
pad_across_processes(data, dim=0)
|
98 |
-
|
99 |
-
# `reduce`
|
100 |
-
if state.process_index == 0:
|
101 |
-
data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
|
102 |
-
else:
|
103 |
-
data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)}
|
104 |
-
|
105 |
-
with assert_exception(DistributedOperationException):
|
106 |
-
reduce(data)
|
107 |
-
|
108 |
-
# `broadcast`
|
109 |
-
if state.process_index == 0:
|
110 |
-
data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
|
111 |
-
else:
|
112 |
-
data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)}
|
113 |
-
|
114 |
-
with assert_exception(DistributedOperationException):
|
115 |
-
broadcast(data)
|
116 |
-
|
117 |
-
state.debug = False
|
118 |
-
|
119 |
-
|
120 |
-
def _mp_fn(index):
|
121 |
-
# For xla_spawn (TPUs)
|
122 |
-
main()
|
123 |
-
|
124 |
-
|
125 |
-
def main():
|
126 |
-
state = PartialState()
|
127 |
-
state.print(f"State: {state}")
|
128 |
-
state.print("testing gather")
|
129 |
-
test_gather(state)
|
130 |
-
state.print("testing gather_object")
|
131 |
-
test_gather_object(state)
|
132 |
-
state.print("testing gather non-contigous")
|
133 |
-
test_gather_non_contigous(state)
|
134 |
-
state.print("testing broadcast")
|
135 |
-
test_broadcast(state)
|
136 |
-
state.print("testing pad_across_processes")
|
137 |
-
test_pad_across_processes(state)
|
138 |
-
state.print("testing reduce_sum")
|
139 |
-
test_reduce_sum(state)
|
140 |
-
state.print("testing reduce_mean")
|
141 |
-
test_reduce_mean(state)
|
142 |
-
state.print("testing op_checker")
|
143 |
-
test_op_checker(state)
|
144 |
-
|
145 |
-
|
146 |
-
if __name__ == "__main__":
|
147 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/test_script.py
DELETED
@@ -1,660 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import contextlib
|
6 |
-
import io
|
7 |
-
import math
|
8 |
-
import time
|
9 |
-
from copy import deepcopy
|
10 |
-
from pathlib import Path
|
11 |
-
|
12 |
-
import numpy as np
|
13 |
-
import torch
|
14 |
-
from torch.utils.data import DataLoader, Dataset
|
15 |
-
|
16 |
-
from accelerate import Accelerator
|
17 |
-
from accelerate.data_loader import SeedableRandomSampler, prepare_data_loader
|
18 |
-
from accelerate.state import AcceleratorState
|
19 |
-
from accelerate.test_utils import RegressionDataset, are_the_same_tensors
|
20 |
-
from accelerate.utils import (
|
21 |
-
DistributedType,
|
22 |
-
gather,
|
23 |
-
is_bf16_available,
|
24 |
-
is_ipex_available,
|
25 |
-
is_npu_available,
|
26 |
-
is_xpu_available,
|
27 |
-
set_seed,
|
28 |
-
synchronize_rng_states,
|
29 |
-
)
|
30 |
-
|
31 |
-
|
32 |
-
# TODO: remove RegressionModel4XPU once ccl support empty buffer in broadcasting.
|
33 |
-
if is_xpu_available():
|
34 |
-
from accelerate.test_utils import RegressionModel4XPU as RegressionModel
|
35 |
-
else:
|
36 |
-
from accelerate.test_utils import RegressionModel
|
37 |
-
|
38 |
-
|
39 |
-
def print_main(state):
|
40 |
-
print(f"Printing from the main process {state.process_index}")
|
41 |
-
|
42 |
-
|
43 |
-
def print_local_main(state):
|
44 |
-
print(f"Printing from the local main process {state.local_process_index}")
|
45 |
-
|
46 |
-
|
47 |
-
def print_last(state):
|
48 |
-
print(f"Printing from the last process {state.process_index}")
|
49 |
-
|
50 |
-
|
51 |
-
def print_on(state, process_idx):
|
52 |
-
print(f"Printing from process {process_idx}: {state.process_index}")
|
53 |
-
|
54 |
-
|
55 |
-
def process_execution_check():
|
56 |
-
accelerator = Accelerator()
|
57 |
-
num_processes = accelerator.num_processes
|
58 |
-
# Test main_process_first context manager
|
59 |
-
path = Path("check_main_process_first.txt")
|
60 |
-
with accelerator.main_process_first():
|
61 |
-
if accelerator.is_main_process:
|
62 |
-
time.sleep(0.1) # ensure main process takes longest
|
63 |
-
with open(path, "a+") as f:
|
64 |
-
f.write("Currently in the main process\n")
|
65 |
-
else:
|
66 |
-
with open(path, "a+") as f:
|
67 |
-
f.write("Now on another process\n")
|
68 |
-
accelerator.wait_for_everyone()
|
69 |
-
|
70 |
-
if accelerator.is_main_process:
|
71 |
-
with open(path, "r") as f:
|
72 |
-
text = "".join(f.readlines())
|
73 |
-
try:
|
74 |
-
assert text.startswith("Currently in the main process\n"), "Main process was not first"
|
75 |
-
if num_processes > 1:
|
76 |
-
assert text.endswith("Now on another process\n"), "Main process was not first"
|
77 |
-
assert (
|
78 |
-
text.count("Now on another process\n") == accelerator.num_processes - 1
|
79 |
-
), f"Only wrote to file {text.count('Now on another process') + 1} times, not {accelerator.num_processes}"
|
80 |
-
except AssertionError:
|
81 |
-
path.unlink()
|
82 |
-
raise
|
83 |
-
|
84 |
-
if accelerator.is_main_process and path.exists():
|
85 |
-
path.unlink()
|
86 |
-
accelerator.wait_for_everyone()
|
87 |
-
# Test the decorators
|
88 |
-
f = io.StringIO()
|
89 |
-
with contextlib.redirect_stdout(f):
|
90 |
-
accelerator.on_main_process(print_main)(accelerator.state)
|
91 |
-
result = f.getvalue().rstrip()
|
92 |
-
if accelerator.is_main_process:
|
93 |
-
assert result == "Printing from the main process 0", f"{result} != Printing from the main process 0"
|
94 |
-
else:
|
95 |
-
assert f.getvalue().rstrip() == "", f'{result} != ""'
|
96 |
-
f.truncate(0)
|
97 |
-
f.seek(0)
|
98 |
-
|
99 |
-
with contextlib.redirect_stdout(f):
|
100 |
-
accelerator.on_local_main_process(print_local_main)(accelerator.state)
|
101 |
-
if accelerator.is_local_main_process:
|
102 |
-
assert f.getvalue().rstrip() == "Printing from the local main process 0"
|
103 |
-
else:
|
104 |
-
assert f.getvalue().rstrip() == ""
|
105 |
-
f.truncate(0)
|
106 |
-
f.seek(0)
|
107 |
-
|
108 |
-
with contextlib.redirect_stdout(f):
|
109 |
-
accelerator.on_last_process(print_last)(accelerator.state)
|
110 |
-
if accelerator.is_last_process:
|
111 |
-
assert f.getvalue().rstrip() == f"Printing from the last process {accelerator.state.num_processes - 1}"
|
112 |
-
else:
|
113 |
-
assert f.getvalue().rstrip() == ""
|
114 |
-
f.truncate(0)
|
115 |
-
f.seek(0)
|
116 |
-
|
117 |
-
for process_idx in range(num_processes):
|
118 |
-
with contextlib.redirect_stdout(f):
|
119 |
-
accelerator.on_process(print_on, process_index=process_idx)(accelerator.state, process_idx)
|
120 |
-
if accelerator.process_index == process_idx:
|
121 |
-
assert f.getvalue().rstrip() == f"Printing from process {process_idx}: {accelerator.process_index}"
|
122 |
-
else:
|
123 |
-
assert f.getvalue().rstrip() == ""
|
124 |
-
f.truncate(0)
|
125 |
-
f.seek(0)
|
126 |
-
|
127 |
-
|
128 |
-
def init_state_check():
|
129 |
-
# Test we can instantiate this twice in a row.
|
130 |
-
state = AcceleratorState()
|
131 |
-
if state.local_process_index == 0:
|
132 |
-
print("Testing, testing. 1, 2, 3.")
|
133 |
-
print(state)
|
134 |
-
|
135 |
-
|
136 |
-
def rng_sync_check():
|
137 |
-
state = AcceleratorState()
|
138 |
-
synchronize_rng_states(["torch"])
|
139 |
-
assert are_the_same_tensors(torch.get_rng_state()), "RNG states improperly synchronized on CPU."
|
140 |
-
if state.distributed_type == DistributedType.MULTI_GPU:
|
141 |
-
synchronize_rng_states(["cuda"])
|
142 |
-
assert are_the_same_tensors(torch.cuda.get_rng_state()), "RNG states improperly synchronized on GPU."
|
143 |
-
elif state.distributed_type == DistributedType.MULTI_XPU:
|
144 |
-
synchronize_rng_states(["xpu"])
|
145 |
-
assert are_the_same_tensors(torch.xpu.get_rng_state()), "RNG states improperly synchronized on XPU."
|
146 |
-
generator = torch.Generator()
|
147 |
-
synchronize_rng_states(["generator"], generator=generator)
|
148 |
-
assert are_the_same_tensors(generator.get_state()), "RNG states improperly synchronized in generator."
|
149 |
-
|
150 |
-
if state.local_process_index == 0:
|
151 |
-
print("All rng are properly synched.")
|
152 |
-
|
153 |
-
|
154 |
-
def dl_preparation_check():
|
155 |
-
state = AcceleratorState()
|
156 |
-
length = 32 * state.num_processes
|
157 |
-
|
158 |
-
dl = DataLoader(range(length), batch_size=8)
|
159 |
-
dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True)
|
160 |
-
result = []
|
161 |
-
for batch in dl:
|
162 |
-
result.append(gather(batch))
|
163 |
-
result = torch.cat(result)
|
164 |
-
|
165 |
-
print(state.process_index, result, type(dl))
|
166 |
-
assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result."
|
167 |
-
|
168 |
-
dl = DataLoader(range(length), batch_size=8)
|
169 |
-
dl = prepare_data_loader(
|
170 |
-
dl,
|
171 |
-
state.device,
|
172 |
-
state.num_processes,
|
173 |
-
state.process_index,
|
174 |
-
put_on_device=True,
|
175 |
-
split_batches=True,
|
176 |
-
)
|
177 |
-
result = []
|
178 |
-
for batch in dl:
|
179 |
-
result.append(gather(batch))
|
180 |
-
result = torch.cat(result)
|
181 |
-
assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result."
|
182 |
-
|
183 |
-
if state.process_index == 0:
|
184 |
-
print("Non-shuffled dataloader passing.")
|
185 |
-
|
186 |
-
dl = DataLoader(range(length), batch_size=8, shuffle=True)
|
187 |
-
dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True)
|
188 |
-
result = []
|
189 |
-
for batch in dl:
|
190 |
-
result.append(gather(batch))
|
191 |
-
result = torch.cat(result).tolist()
|
192 |
-
result.sort()
|
193 |
-
assert result == list(range(length)), "Wrong shuffled dataloader result."
|
194 |
-
|
195 |
-
dl = DataLoader(range(length), batch_size=8, shuffle=True)
|
196 |
-
dl = prepare_data_loader(
|
197 |
-
dl,
|
198 |
-
state.device,
|
199 |
-
state.num_processes,
|
200 |
-
state.process_index,
|
201 |
-
put_on_device=True,
|
202 |
-
split_batches=True,
|
203 |
-
)
|
204 |
-
result = []
|
205 |
-
for batch in dl:
|
206 |
-
result.append(gather(batch))
|
207 |
-
result = torch.cat(result).tolist()
|
208 |
-
result.sort()
|
209 |
-
assert result == list(range(length)), "Wrong shuffled dataloader result."
|
210 |
-
|
211 |
-
if state.local_process_index == 0:
|
212 |
-
print("Shuffled dataloader passing.")
|
213 |
-
|
214 |
-
|
215 |
-
def central_dl_preparation_check():
|
216 |
-
state = AcceleratorState()
|
217 |
-
length = 32 * state.num_processes
|
218 |
-
|
219 |
-
dl = DataLoader(range(length), batch_size=8)
|
220 |
-
dl = prepare_data_loader(
|
221 |
-
dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True
|
222 |
-
)
|
223 |
-
result = []
|
224 |
-
for batch in dl:
|
225 |
-
result.append(gather(batch))
|
226 |
-
result = torch.cat(result)
|
227 |
-
assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result."
|
228 |
-
|
229 |
-
dl = DataLoader(range(length), batch_size=8)
|
230 |
-
dl = prepare_data_loader(
|
231 |
-
dl,
|
232 |
-
state.device,
|
233 |
-
state.num_processes,
|
234 |
-
state.process_index,
|
235 |
-
put_on_device=True,
|
236 |
-
split_batches=True,
|
237 |
-
dispatch_batches=True,
|
238 |
-
)
|
239 |
-
result = []
|
240 |
-
for batch in dl:
|
241 |
-
result.append(gather(batch))
|
242 |
-
result = torch.cat(result)
|
243 |
-
assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result."
|
244 |
-
|
245 |
-
if state.process_index == 0:
|
246 |
-
print("Non-shuffled central dataloader passing.")
|
247 |
-
|
248 |
-
dl = DataLoader(range(length), batch_size=8, shuffle=True)
|
249 |
-
dl = prepare_data_loader(
|
250 |
-
dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True
|
251 |
-
)
|
252 |
-
result = []
|
253 |
-
for batch in dl:
|
254 |
-
result.append(gather(batch))
|
255 |
-
result = torch.cat(result).tolist()
|
256 |
-
result.sort()
|
257 |
-
assert result == list(range(length)), "Wrong shuffled dataloader result."
|
258 |
-
|
259 |
-
dl = DataLoader(range(length), batch_size=8, shuffle=True)
|
260 |
-
dl = prepare_data_loader(
|
261 |
-
dl,
|
262 |
-
state.device,
|
263 |
-
state.num_processes,
|
264 |
-
state.process_index,
|
265 |
-
put_on_device=True,
|
266 |
-
split_batches=True,
|
267 |
-
dispatch_batches=True,
|
268 |
-
)
|
269 |
-
result = []
|
270 |
-
for batch in dl:
|
271 |
-
result.append(gather(batch))
|
272 |
-
result = torch.cat(result).tolist()
|
273 |
-
result.sort()
|
274 |
-
assert result == list(range(length)), "Wrong shuffled dataloader result."
|
275 |
-
|
276 |
-
if state.local_process_index == 0:
|
277 |
-
print("Shuffled central dataloader passing.")
|
278 |
-
|
279 |
-
|
280 |
-
def custom_sampler_check():
|
281 |
-
state = AcceleratorState()
|
282 |
-
|
283 |
-
class CustomDataset(Dataset):
|
284 |
-
def __init__(self, data):
|
285 |
-
self.data = data
|
286 |
-
|
287 |
-
def __len__(self):
|
288 |
-
return len(self.data)
|
289 |
-
|
290 |
-
def __getitem__(self, index):
|
291 |
-
return self.data[index]
|
292 |
-
|
293 |
-
class CustomBatchSampler:
|
294 |
-
def __init__(self, dataset_length: int, batch_size: int, shuffle: bool = True):
|
295 |
-
self.batch_size = batch_size
|
296 |
-
self.data_index = np.arange(dataset_length)
|
297 |
-
self.shuffle = shuffle
|
298 |
-
|
299 |
-
def __iter__(self):
|
300 |
-
num_batches = len(self)
|
301 |
-
if self.shuffle:
|
302 |
-
index = np.random.permutation(self.data_index)
|
303 |
-
else:
|
304 |
-
index = self.data_index
|
305 |
-
output = np.array_split(index, num_batches)
|
306 |
-
yield from output
|
307 |
-
|
308 |
-
def __len__(self):
|
309 |
-
return math.ceil(len(self.data_index) / self.batch_size)
|
310 |
-
|
311 |
-
dataset = CustomDataset(range(32 * state.num_processes))
|
312 |
-
sampler = CustomBatchSampler(len(dataset), batch_size=8)
|
313 |
-
dl = DataLoader(dataset, batch_sampler=sampler)
|
314 |
-
dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index)
|
315 |
-
# We need just ensure that `dl.batch_sampler` (or `dl.batch_sampler.batch_sampler` is indeed the old batch sampler
|
316 |
-
if hasattr(dl.batch_sampler, "batch_sampler"):
|
317 |
-
assert isinstance(
|
318 |
-
dl.batch_sampler.batch_sampler, CustomBatchSampler
|
319 |
-
), "Custom sampler was changed after calling `prepare_data_loader`"
|
320 |
-
else:
|
321 |
-
assert isinstance(
|
322 |
-
dl.batch_sampler, CustomBatchSampler
|
323 |
-
), "Custom sampler was changed after calling `prepare_data_loader`"
|
324 |
-
|
325 |
-
|
326 |
-
def mock_training(length, batch_size, generator):
|
327 |
-
set_seed(42)
|
328 |
-
generator.manual_seed(42)
|
329 |
-
train_set = RegressionDataset(length=length, seed=42)
|
330 |
-
|
331 |
-
# The SeedableRandomSampler is needed during distributed setups
|
332 |
-
# for full reproducability across processes with the `DataLoader`
|
333 |
-
sampler = SeedableRandomSampler(
|
334 |
-
generator=generator,
|
335 |
-
data_source=train_set,
|
336 |
-
num_samples=len(train_set),
|
337 |
-
)
|
338 |
-
train_dl = DataLoader(train_set, batch_size=batch_size, sampler=sampler)
|
339 |
-
model = RegressionModel()
|
340 |
-
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
|
341 |
-
for epoch in range(3):
|
342 |
-
for batch in train_dl:
|
343 |
-
model.zero_grad()
|
344 |
-
output = model(batch["x"])
|
345 |
-
loss = torch.nn.functional.mse_loss(output, batch["y"])
|
346 |
-
loss.backward()
|
347 |
-
optimizer.step()
|
348 |
-
return train_set, model
|
349 |
-
|
350 |
-
|
351 |
-
def training_check():
|
352 |
-
state = AcceleratorState()
|
353 |
-
generator = torch.Generator()
|
354 |
-
batch_size = 8
|
355 |
-
length = batch_size * 4 * state.num_processes
|
356 |
-
|
357 |
-
train_set, old_model = mock_training(length, batch_size * state.num_processes, generator)
|
358 |
-
assert are_the_same_tensors(old_model.a), "Did not obtain the same model on both processes."
|
359 |
-
assert are_the_same_tensors(old_model.b), "Did not obtain the same model on both processes."
|
360 |
-
|
361 |
-
accelerator = Accelerator()
|
362 |
-
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
|
363 |
-
model = RegressionModel()
|
364 |
-
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
|
365 |
-
|
366 |
-
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
|
367 |
-
set_seed(42)
|
368 |
-
generator.manual_seed(42)
|
369 |
-
for epoch in range(3):
|
370 |
-
for batch in train_dl:
|
371 |
-
model.zero_grad()
|
372 |
-
output = model(batch["x"])
|
373 |
-
loss = torch.nn.functional.mse_loss(output, batch["y"])
|
374 |
-
accelerator.backward(loss)
|
375 |
-
optimizer.step()
|
376 |
-
|
377 |
-
model = accelerator.unwrap_model(model).cpu()
|
378 |
-
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
|
379 |
-
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."
|
380 |
-
|
381 |
-
accelerator.print("Training yielded the same results on one CPU or distributed setup with no batch split.")
|
382 |
-
|
383 |
-
accelerator = Accelerator(split_batches=True)
|
384 |
-
train_dl = DataLoader(train_set, batch_size=batch_size * state.num_processes, shuffle=True, generator=generator)
|
385 |
-
model = RegressionModel()
|
386 |
-
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
|
387 |
-
|
388 |
-
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
|
389 |
-
set_seed(42)
|
390 |
-
generator.manual_seed(42)
|
391 |
-
for _ in range(3):
|
392 |
-
for batch in train_dl:
|
393 |
-
model.zero_grad()
|
394 |
-
output = model(batch["x"])
|
395 |
-
loss = torch.nn.functional.mse_loss(output, batch["y"])
|
396 |
-
accelerator.backward(loss)
|
397 |
-
optimizer.step()
|
398 |
-
|
399 |
-
model = accelerator.unwrap_model(model).cpu()
|
400 |
-
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
|
401 |
-
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."
|
402 |
-
|
403 |
-
accelerator.print("Training yielded the same results on one CPU or distributes setup with batch split.")
|
404 |
-
|
405 |
-
if torch.cuda.is_available() or is_npu_available():
|
406 |
-
# Mostly a test that FP16 doesn't crash as the operation inside the model is not converted to FP16
|
407 |
-
print("FP16 training check.")
|
408 |
-
AcceleratorState._reset_state()
|
409 |
-
accelerator = Accelerator(mixed_precision="fp16")
|
410 |
-
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
|
411 |
-
model = RegressionModel()
|
412 |
-
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
|
413 |
-
|
414 |
-
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
|
415 |
-
set_seed(42)
|
416 |
-
generator.manual_seed(42)
|
417 |
-
for _ in range(3):
|
418 |
-
for batch in train_dl:
|
419 |
-
model.zero_grad()
|
420 |
-
output = model(batch["x"])
|
421 |
-
loss = torch.nn.functional.mse_loss(output, batch["y"])
|
422 |
-
accelerator.backward(loss)
|
423 |
-
optimizer.step()
|
424 |
-
|
425 |
-
model = accelerator.unwrap_model(model).cpu()
|
426 |
-
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
|
427 |
-
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."
|
428 |
-
|
429 |
-
if torch.cuda.is_available():
|
430 |
-
# Mostly a test that model.forward will have autocast when running unwrap_model(model, keep_fp32_wrapper=True)
|
431 |
-
print("Keep fp32 wrapper check.")
|
432 |
-
AcceleratorState._reset_state()
|
433 |
-
accelerator = Accelerator(mixed_precision="fp16")
|
434 |
-
|
435 |
-
model = torch.nn.Linear(2, 4)
|
436 |
-
model = accelerator.prepare(model)
|
437 |
-
model_with_fp32_wrapper = accelerator.unwrap_model(model, keep_fp32_wrapper=True)
|
438 |
-
|
439 |
-
# Run forward with fp16 as input.
|
440 |
-
# When the model is with mixed precision wrapper, no error will be raised.
|
441 |
-
input_tensor = torch.Tensor([1, 2]).to(dtype=torch.float16, device=accelerator.device)
|
442 |
-
output = model_with_fp32_wrapper(input_tensor)
|
443 |
-
|
444 |
-
# BF16 support is only for CPU + TPU, and some GPU
|
445 |
-
if is_bf16_available():
|
446 |
-
# Mostly a test that BF16 doesn't crash as the operation inside the model is not converted to BF16
|
447 |
-
print("BF16 training check.")
|
448 |
-
AcceleratorState._reset_state()
|
449 |
-
accelerator = Accelerator(mixed_precision="bf16")
|
450 |
-
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
|
451 |
-
model = RegressionModel()
|
452 |
-
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
|
453 |
-
|
454 |
-
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
|
455 |
-
set_seed(42)
|
456 |
-
generator.manual_seed(42)
|
457 |
-
for _ in range(3):
|
458 |
-
for batch in train_dl:
|
459 |
-
model.zero_grad()
|
460 |
-
output = model(batch["x"])
|
461 |
-
loss = torch.nn.functional.mse_loss(output, batch["y"])
|
462 |
-
accelerator.backward(loss)
|
463 |
-
optimizer.step()
|
464 |
-
|
465 |
-
model = accelerator.unwrap_model(model).cpu()
|
466 |
-
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
|
467 |
-
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."
|
468 |
-
|
469 |
-
# IPEX support is only for CPU
|
470 |
-
if is_ipex_available():
|
471 |
-
print("ipex BF16 training check.")
|
472 |
-
AcceleratorState._reset_state()
|
473 |
-
accelerator = Accelerator(mixed_precision="bf16", cpu=True)
|
474 |
-
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
|
475 |
-
model = RegressionModel()
|
476 |
-
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
|
477 |
-
|
478 |
-
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
|
479 |
-
set_seed(42)
|
480 |
-
generator.manual_seed(42)
|
481 |
-
for _ in range(3):
|
482 |
-
for batch in train_dl:
|
483 |
-
model.zero_grad()
|
484 |
-
output = model(batch["x"])
|
485 |
-
loss = torch.nn.functional.mse_loss(output, batch["y"])
|
486 |
-
accelerator.backward(loss)
|
487 |
-
optimizer.step()
|
488 |
-
|
489 |
-
model = accelerator.unwrap_model(model).cpu()
|
490 |
-
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
|
491 |
-
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."
|
492 |
-
|
493 |
-
# XPU support is only for XPU
|
494 |
-
if is_xpu_available():
|
495 |
-
print("xpu BF16 training check.")
|
496 |
-
AcceleratorState._reset_state()
|
497 |
-
accelerator = Accelerator(mixed_precision="bf16", cpu=False)
|
498 |
-
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
|
499 |
-
model = RegressionModel()
|
500 |
-
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
|
501 |
-
|
502 |
-
train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer)
|
503 |
-
set_seed(42)
|
504 |
-
generator.manual_seed(42)
|
505 |
-
for _ in range(3):
|
506 |
-
for batch in train_dl:
|
507 |
-
model.zero_grad()
|
508 |
-
output = model(batch["x"])
|
509 |
-
loss = torch.nn.functional.mse_loss(output, batch["y"])
|
510 |
-
accelerator.backward(loss)
|
511 |
-
optimizer.step()
|
512 |
-
|
513 |
-
model = accelerator.unwrap_model(model).cpu()
|
514 |
-
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on XPU or distributed training."
|
515 |
-
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on XPU or distributed training."
|
516 |
-
|
517 |
-
|
518 |
-
def test_split_between_processes_list():
|
519 |
-
state = AcceleratorState()
|
520 |
-
data = list(range(0, 2 * state.num_processes))
|
521 |
-
with state.split_between_processes(data) as results:
|
522 |
-
assert (
|
523 |
-
len(results) == 2
|
524 |
-
), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}"
|
525 |
-
|
526 |
-
data = list(range(0, (3 * state.num_processes) - 1))
|
527 |
-
with state.split_between_processes(data, apply_padding=True) as results:
|
528 |
-
if state.is_last_process:
|
529 |
-
# Test that the last process gets the extra item(s)
|
530 |
-
num_samples_per_device = math.ceil(len(data) / state.num_processes)
|
531 |
-
assert (
|
532 |
-
len(results) == num_samples_per_device
|
533 |
-
), f"Last process did not get the extra item(s). Process index: {state.process_index}; Length: {len(results)}"
|
534 |
-
state.wait_for_everyone()
|
535 |
-
|
536 |
-
|
537 |
-
def test_split_between_processes_nested_dict():
|
538 |
-
state = AcceleratorState()
|
539 |
-
a = [1, 2, 3, 4, 5, 6, 7, 8]
|
540 |
-
b = ["a", "b", "c", "d", "e", "f", "g", "h"]
|
541 |
-
c = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])
|
542 |
-
if state.num_processes in (1, 2, 4):
|
543 |
-
data = {"a": a, "b": b, "c": c}
|
544 |
-
data_copy = deepcopy(data)
|
545 |
-
with state.split_between_processes(data) as results:
|
546 |
-
if state.process_index == 0:
|
547 |
-
assert results["a"] == data_copy["a"][: 8 // state.num_processes]
|
548 |
-
elif state.num_processes == 2:
|
549 |
-
assert results["a"] == data_copy["a"][4:]
|
550 |
-
elif state.process_index == 3:
|
551 |
-
# We return a list each time
|
552 |
-
assert results["a"] == data_copy["a"][-2:], f'Expected: {data_copy["a"][-2]}, Actual: {results["a"]}'
|
553 |
-
if state.process_index == 0:
|
554 |
-
assert results["b"] == data_copy["b"][: 8 // state.num_processes]
|
555 |
-
elif state.num_processes == 2:
|
556 |
-
assert results["b"] == data_copy["b"][4:]
|
557 |
-
elif state.process_index == 3:
|
558 |
-
assert results["b"] == data_copy["b"][-2:]
|
559 |
-
if state.process_index == 0:
|
560 |
-
assert torch.allclose(
|
561 |
-
results["c"], data_copy["c"][: 8 // state.num_processes]
|
562 |
-
), f"Did not obtain expected values on process 0, expected `{data['c'][:8 // state.num_processes]}`, received: {results['c']}"
|
563 |
-
elif state.num_processes == 2:
|
564 |
-
assert torch.allclose(
|
565 |
-
results["c"], data_copy["c"][4:]
|
566 |
-
), f"Did not obtain expected values on process 2, expected `{data['c'][4:]}`, received: {results['c']}"
|
567 |
-
elif state.process_index == 3:
|
568 |
-
assert torch.allclose(
|
569 |
-
results["c"], data_copy["c"][-2:]
|
570 |
-
), f"Did not obtain expected values on process 4, expected `{data['c'][-2:]}`, received: {results['c']}"
|
571 |
-
|
572 |
-
state.wait_for_everyone()
|
573 |
-
|
574 |
-
|
575 |
-
def test_split_between_processes_tensor():
|
576 |
-
state = AcceleratorState()
|
577 |
-
if state.num_processes > 1:
|
578 |
-
data = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7]]).to(state.device)
|
579 |
-
with state.split_between_processes(data) as results:
|
580 |
-
if state.process_index == 0:
|
581 |
-
assert torch.allclose(results, torch.tensor([0, 1, 2, 3]).to(state.device))
|
582 |
-
else:
|
583 |
-
assert torch.allclose(results, torch.tensor([4, 5, 6, 7]).to(state.device))
|
584 |
-
state.wait_for_everyone()
|
585 |
-
|
586 |
-
|
587 |
-
def test_trigger():
|
588 |
-
accelerator = Accelerator()
|
589 |
-
# should start with being false
|
590 |
-
assert accelerator.check_trigger() is False
|
591 |
-
|
592 |
-
# set a breakpoint on the main process
|
593 |
-
if accelerator.is_main_process:
|
594 |
-
accelerator.set_trigger()
|
595 |
-
|
596 |
-
# check it's been activated across all processes
|
597 |
-
# calls `all_reduce` and triggers a sync
|
598 |
-
assert accelerator.check_trigger() is True
|
599 |
-
|
600 |
-
# check it's been reset after the sync
|
601 |
-
assert accelerator.check_trigger() is False
|
602 |
-
|
603 |
-
|
604 |
-
def main():
|
605 |
-
accelerator = Accelerator()
|
606 |
-
state = accelerator.state
|
607 |
-
if state.local_process_index == 0:
|
608 |
-
print("**Initialization**")
|
609 |
-
init_state_check()
|
610 |
-
state.wait_for_everyone()
|
611 |
-
|
612 |
-
if state.distributed_type == DistributedType.MULTI_GPU:
|
613 |
-
num_processes_per_node = torch.cuda.device_count()
|
614 |
-
else:
|
615 |
-
num_processes_per_node = state.num_processes
|
616 |
-
|
617 |
-
# We only run this test on non-multinode
|
618 |
-
if num_processes_per_node == state.num_processes:
|
619 |
-
if state.process_index == 0:
|
620 |
-
print("\n**Test process execution**")
|
621 |
-
process_execution_check()
|
622 |
-
|
623 |
-
if state.process_index == 0:
|
624 |
-
print("\n**Test split between processes as a list**")
|
625 |
-
test_split_between_processes_list()
|
626 |
-
|
627 |
-
if state.process_index == 0:
|
628 |
-
print("\n**Test split between processes as a dict**")
|
629 |
-
test_split_between_processes_nested_dict()
|
630 |
-
|
631 |
-
if state.process_index == 0:
|
632 |
-
print("\n**Test split between processes as a tensor**")
|
633 |
-
test_split_between_processes_tensor()
|
634 |
-
|
635 |
-
if state.local_process_index == 0:
|
636 |
-
print("\n**Test random number generator synchronization**")
|
637 |
-
rng_sync_check()
|
638 |
-
|
639 |
-
if state.local_process_index == 0:
|
640 |
-
print("\n**DataLoader integration test**")
|
641 |
-
dl_preparation_check()
|
642 |
-
if state.distributed_type != DistributedType.TPU:
|
643 |
-
central_dl_preparation_check()
|
644 |
-
custom_sampler_check()
|
645 |
-
|
646 |
-
# Trainings are not exactly the same in DeepSpeed and CPU mode
|
647 |
-
if state.distributed_type == DistributedType.DEEPSPEED:
|
648 |
-
return
|
649 |
-
|
650 |
-
if state.local_process_index == 0:
|
651 |
-
print("\n**Training integration test**")
|
652 |
-
training_check()
|
653 |
-
|
654 |
-
if state.local_process_index == 0:
|
655 |
-
print("\n**Breakpoint trigger test**")
|
656 |
-
test_trigger()
|
657 |
-
|
658 |
-
|
659 |
-
if __name__ == "__main__":
|
660 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/scripts/test_sync.py
DELETED
@@ -1,355 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from copy import deepcopy
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from torch.optim import AdamW
|
8 |
-
from torch.optim.lr_scheduler import LambdaLR
|
9 |
-
from torch.utils.data import DataLoader
|
10 |
-
|
11 |
-
from accelerate.accelerator import Accelerator
|
12 |
-
from accelerate.state import GradientState
|
13 |
-
from accelerate.test_utils import RegressionDataset, RegressionModel
|
14 |
-
from accelerate.utils import DistributedType, is_torch_version, set_seed
|
15 |
-
|
16 |
-
|
17 |
-
def check_model_parameters(model_a, model_b, did_step, iteration):
|
18 |
-
for param, grad_param in zip(model_a.parameters(), model_b.parameters()):
|
19 |
-
if not param.requires_grad:
|
20 |
-
continue
|
21 |
-
if not did_step:
|
22 |
-
# Grads should not be in sync
|
23 |
-
assert (
|
24 |
-
torch.allclose(param.grad, grad_param.grad) is False
|
25 |
-
), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"
|
26 |
-
else:
|
27 |
-
# Grads should be in sync
|
28 |
-
assert (
|
29 |
-
torch.allclose(param.grad, grad_param.grad) is True
|
30 |
-
), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"
|
31 |
-
|
32 |
-
|
33 |
-
def step_model(model, input, target, accelerator, do_backward=True):
|
34 |
-
model.train()
|
35 |
-
output = model(input)
|
36 |
-
loss = F.mse_loss(output, target.to(output.device))
|
37 |
-
if not do_backward:
|
38 |
-
loss /= accelerator.gradient_accumulation_steps
|
39 |
-
loss.backward()
|
40 |
-
else:
|
41 |
-
accelerator.backward(loss)
|
42 |
-
|
43 |
-
|
44 |
-
def get_training_setup(accelerator, sched=False):
|
45 |
-
"Returns everything needed to perform basic training"
|
46 |
-
set_seed(42)
|
47 |
-
model = RegressionModel()
|
48 |
-
ddp_model = deepcopy(model)
|
49 |
-
dset = RegressionDataset(length=80)
|
50 |
-
dataloader = DataLoader(dset, batch_size=16)
|
51 |
-
model.to(accelerator.device)
|
52 |
-
if sched:
|
53 |
-
opt = AdamW(params=model.parameters(), lr=1e-3)
|
54 |
-
ddp_opt = AdamW(params=ddp_model.parameters(), lr=1e-3)
|
55 |
-
sched = LambdaLR(opt, lr_lambda=lambda epoch: epoch**0.65)
|
56 |
-
ddp_sched = LambdaLR(ddp_opt, lr_lambda=lambda epoch: epoch**0.65)
|
57 |
-
# Make a copy of `model`
|
58 |
-
if sched:
|
59 |
-
ddp_model, ddp_opt, ddp_sched, dataloader = accelerator.prepare(ddp_model, ddp_opt, ddp_sched, dataloader)
|
60 |
-
else:
|
61 |
-
ddp_model, dataloader = accelerator.prepare(ddp_model, dataloader)
|
62 |
-
if sched:
|
63 |
-
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
|
64 |
-
return model, ddp_model, dataloader
|
65 |
-
|
66 |
-
|
67 |
-
def test_noop_sync(accelerator):
|
68 |
-
# Test when on a single CPU or GPU that the context manager does nothing
|
69 |
-
model, ddp_model, dataloader = get_training_setup(accelerator)
|
70 |
-
# Use a single batch
|
71 |
-
ddp_input, ddp_target = next(iter(dataloader)).values()
|
72 |
-
for iteration in range(3):
|
73 |
-
# Gather the distributed inputs and targs for the base model
|
74 |
-
input, target = accelerator.gather((ddp_input, ddp_target))
|
75 |
-
input, target = input.to(accelerator.device), target.to(accelerator.device)
|
76 |
-
# Perform our initial ground truth step in non "DDP"
|
77 |
-
step_model(model, input, target, accelerator)
|
78 |
-
# Do "gradient accumulation" (noop)
|
79 |
-
if iteration % 2 == 0:
|
80 |
-
# Accumulate grads locally
|
81 |
-
with accelerator.no_sync(ddp_model):
|
82 |
-
step_model(ddp_model, ddp_input, ddp_target, accelerator)
|
83 |
-
else:
|
84 |
-
# Sync grads
|
85 |
-
step_model(ddp_model, ddp_input, ddp_target, accelerator)
|
86 |
-
|
87 |
-
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
|
88 |
-
check_model_parameters(model, ddp_model, True, iteration)
|
89 |
-
for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
|
90 |
-
if not param.requires_grad:
|
91 |
-
continue
|
92 |
-
assert torch.allclose(
|
93 |
-
param.grad, ddp_param.grad
|
94 |
-
), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
|
95 |
-
|
96 |
-
# Shuffle ddp_input on each iteration
|
97 |
-
torch.manual_seed(1337 + iteration)
|
98 |
-
ddp_input = ddp_input[torch.randperm(len(ddp_input))]
|
99 |
-
|
100 |
-
|
101 |
-
def test_distributed_sync(accelerator):
|
102 |
-
# Test on distributed setup that context manager behaves properly
|
103 |
-
model, ddp_model, dataloader = get_training_setup(accelerator)
|
104 |
-
# Use a single batch
|
105 |
-
ddp_input, ddp_target = next(iter(dataloader)).values()
|
106 |
-
for iteration in range(3):
|
107 |
-
# Gather the distributed inputs and targs for the base model
|
108 |
-
input, target = accelerator.gather((ddp_input, ddp_target))
|
109 |
-
input, target = input.to(accelerator.device), target.to(accelerator.device)
|
110 |
-
# Perform our initial ground truth step in non "DDP"
|
111 |
-
step_model(model, input, target, accelerator)
|
112 |
-
# Do "gradient accumulation" (noop)
|
113 |
-
if iteration % 2 == 0:
|
114 |
-
# Accumulate grads locally
|
115 |
-
with accelerator.no_sync(ddp_model):
|
116 |
-
step_model(ddp_model, ddp_input, ddp_target, accelerator)
|
117 |
-
else:
|
118 |
-
# Sync grads
|
119 |
-
step_model(ddp_model, ddp_input, ddp_target, accelerator)
|
120 |
-
|
121 |
-
# DDP model and model should only be in sync when not (iteration % 2 == 0)
|
122 |
-
for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
|
123 |
-
if not param.requires_grad:
|
124 |
-
continue
|
125 |
-
if iteration % 2 == 0:
|
126 |
-
# Grads should not be in sync
|
127 |
-
assert (
|
128 |
-
torch.allclose(param.grad, ddp_param.grad) is False
|
129 |
-
), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
|
130 |
-
else:
|
131 |
-
# Grads should be in sync
|
132 |
-
assert (
|
133 |
-
torch.allclose(param.grad, ddp_param.grad) is True
|
134 |
-
), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
|
135 |
-
|
136 |
-
# Shuffle ddp_input on each iteration
|
137 |
-
torch.manual_seed(1337 + iteration)
|
138 |
-
ddp_input = ddp_input[torch.randperm(len(ddp_input))]
|
139 |
-
|
140 |
-
|
141 |
-
def test_distributed_sync_multiple_fwd(accelerator):
|
142 |
-
# Test on distributed setup that context manager behaves properly when used with multiple forwards followed by multiple backwards
|
143 |
-
model, ddp_model, dataloader = get_training_setup(accelerator)
|
144 |
-
# Do multiple forwards
|
145 |
-
losses = []
|
146 |
-
num_iterations = 3
|
147 |
-
for iteration in range(num_iterations):
|
148 |
-
ddp_input, ddp_target = next(iter(dataloader)).values()
|
149 |
-
|
150 |
-
# Gather the distributed inputs and targs for the base model
|
151 |
-
input, target = accelerator.gather((ddp_input, ddp_target))
|
152 |
-
input, target = input.to(accelerator.device), target.to(accelerator.device)
|
153 |
-
|
154 |
-
# Perform our initial ground truth step in non "DDP"
|
155 |
-
step_model(model, input, target, accelerator)
|
156 |
-
|
157 |
-
# Accumulate grads locally
|
158 |
-
with accelerator.no_sync(ddp_model):
|
159 |
-
ddp_output = ddp_model(ddp_input)
|
160 |
-
loss = F.mse_loss(ddp_output, ddp_target.to(ddp_output.device))
|
161 |
-
losses.append(loss)
|
162 |
-
|
163 |
-
# Do multiple backwards and sync only at the last backward
|
164 |
-
for iteration in range(num_iterations):
|
165 |
-
loss = losses[iteration]
|
166 |
-
|
167 |
-
if iteration < num_iterations - 1:
|
168 |
-
# Accumulate grads locally
|
169 |
-
accelerator.backward(loss)
|
170 |
-
|
171 |
-
# DDP model and model should only be in sync after last backward
|
172 |
-
for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
|
173 |
-
if not param.requires_grad:
|
174 |
-
continue
|
175 |
-
# Grads should not be in sync
|
176 |
-
assert (
|
177 |
-
torch.allclose(param.grad, ddp_param.grad) is False
|
178 |
-
), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
|
179 |
-
|
180 |
-
else:
|
181 |
-
# Sync grads if last backward
|
182 |
-
with accelerator.trigger_sync_in_backward(ddp_model):
|
183 |
-
accelerator.backward(loss)
|
184 |
-
|
185 |
-
# DDP model and model should only be in sync after last backward
|
186 |
-
for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
|
187 |
-
if not param.requires_grad:
|
188 |
-
continue
|
189 |
-
# Grads should be in sync
|
190 |
-
assert (
|
191 |
-
torch.allclose(param.grad, ddp_param.grad) is True
|
192 |
-
), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
|
193 |
-
|
194 |
-
|
195 |
-
def test_gradient_accumulation(split_batches=False, dispatch_batches=False):
|
196 |
-
accelerator = Accelerator(
|
197 |
-
split_batches=split_batches, dispatch_batches=dispatch_batches, gradient_accumulation_steps=2
|
198 |
-
)
|
199 |
-
# Test that context manager behaves properly
|
200 |
-
model, ddp_model, dataloader = get_training_setup(accelerator)
|
201 |
-
for iteration, batch in enumerate(dataloader):
|
202 |
-
ddp_input, ddp_target = batch.values()
|
203 |
-
# Gather the distributed inputs and targs for the base model
|
204 |
-
input, target = accelerator.gather((ddp_input, ddp_target))
|
205 |
-
input, target = input.to(accelerator.device), target.to(accelerator.device)
|
206 |
-
# Perform our initial ground truth step in non "DDP"
|
207 |
-
step_model(model, input, target, accelerator, False)
|
208 |
-
# Do "gradient accumulation" (noop)
|
209 |
-
with accelerator.accumulate(ddp_model):
|
210 |
-
step_model(ddp_model, ddp_input, ddp_target, accelerator)
|
211 |
-
|
212 |
-
# DDP model and model should only be in sync when not (iteration % 2 == 0)
|
213 |
-
for param, ddp_param in zip(model.parameters(), ddp_model.parameters()):
|
214 |
-
if not param.requires_grad:
|
215 |
-
continue
|
216 |
-
if ((iteration + 1) % 2 == 0) or (iteration == len(dataloader) - 1):
|
217 |
-
# Grads should be in sync
|
218 |
-
assert (
|
219 |
-
torch.allclose(param.grad, ddp_param.grad) is True
|
220 |
-
), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
|
221 |
-
else:
|
222 |
-
# Grads should not be in sync
|
223 |
-
assert (
|
224 |
-
torch.allclose(param.grad, ddp_param.grad) is False
|
225 |
-
), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
|
226 |
-
|
227 |
-
# Shuffle ddp_input on each iteration
|
228 |
-
torch.manual_seed(1337 + iteration)
|
229 |
-
ddp_input = ddp_input[torch.randperm(len(ddp_input))]
|
230 |
-
GradientState._reset_state()
|
231 |
-
|
232 |
-
|
233 |
-
def test_gradient_accumulation_with_opt_and_scheduler(split_batches=False, dispatch_batches=False):
|
234 |
-
accelerator = Accelerator(
|
235 |
-
split_batches=split_batches, dispatch_batches=dispatch_batches, gradient_accumulation_steps=2
|
236 |
-
)
|
237 |
-
# Test that context manager behaves properly
|
238 |
-
model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched = get_training_setup(accelerator, True)
|
239 |
-
for iteration, batch in enumerate(dataloader):
|
240 |
-
ddp_input, ddp_target = batch.values()
|
241 |
-
# Gather the distributed inputs and targs for the base model
|
242 |
-
input, target = accelerator.gather((ddp_input, ddp_target))
|
243 |
-
input, target = input.to(accelerator.device), target.to(accelerator.device)
|
244 |
-
# Perform our initial ground truth step in non "DDP"
|
245 |
-
model.train()
|
246 |
-
ddp_model.train()
|
247 |
-
step_model(model, input, target, accelerator, False)
|
248 |
-
opt.step()
|
249 |
-
|
250 |
-
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(dataloader)):
|
251 |
-
if split_batches:
|
252 |
-
sched.step()
|
253 |
-
else:
|
254 |
-
for _ in range(accelerator.num_processes):
|
255 |
-
sched.step()
|
256 |
-
opt.zero_grad()
|
257 |
-
# Perform gradient accumulation under wrapper
|
258 |
-
with accelerator.accumulate(ddp_model):
|
259 |
-
step_model(ddp_model, ddp_input, ddp_target, accelerator)
|
260 |
-
ddp_opt.step()
|
261 |
-
ddp_sched.step()
|
262 |
-
ddp_opt.zero_grad()
|
263 |
-
|
264 |
-
# Learning rates should be the same
|
265 |
-
assert (
|
266 |
-
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
|
267 |
-
), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'
|
268 |
-
did_step = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(dataloader))
|
269 |
-
if accelerator.num_processes > 1:
|
270 |
-
check_model_parameters(model, ddp_model, did_step, iteration)
|
271 |
-
# Shuffle ddp_input on each iteration
|
272 |
-
torch.manual_seed(1337 + iteration)
|
273 |
-
GradientState._reset_state()
|
274 |
-
|
275 |
-
|
276 |
-
def test_dataloader_break():
|
277 |
-
accelerator = Accelerator()
|
278 |
-
|
279 |
-
first_dset = RegressionDataset(length=80)
|
280 |
-
first_dataloader = DataLoader(first_dset, batch_size=16)
|
281 |
-
second_dset = RegressionDataset(length=96)
|
282 |
-
second_dataloader = DataLoader(second_dset, batch_size=16)
|
283 |
-
first_dataloader, second_dataloader = accelerator.prepare(first_dataloader, second_dataloader)
|
284 |
-
assert accelerator.gradient_state.active_dataloader is None
|
285 |
-
for iteration, _ in enumerate(first_dataloader):
|
286 |
-
assert id(accelerator.gradient_state.active_dataloader) == id(first_dataloader)
|
287 |
-
if iteration < len(first_dataloader) - 1:
|
288 |
-
assert not accelerator.gradient_state.end_of_dataloader
|
289 |
-
if iteration == 1:
|
290 |
-
for batch_num, _ in enumerate(second_dataloader):
|
291 |
-
assert id(accelerator.gradient_state.active_dataloader) == id(second_dataloader)
|
292 |
-
if batch_num < len(second_dataloader) - 1:
|
293 |
-
assert not accelerator.gradient_state.end_of_dataloader
|
294 |
-
else:
|
295 |
-
assert accelerator.gradient_state.end_of_dataloader
|
296 |
-
else:
|
297 |
-
assert accelerator.gradient_state.end_of_dataloader
|
298 |
-
assert accelerator.gradient_state.active_dataloader is None
|
299 |
-
|
300 |
-
|
301 |
-
def main():
|
302 |
-
accelerator = Accelerator()
|
303 |
-
state = accelerator.state
|
304 |
-
if state.local_process_index == 0:
|
305 |
-
print("**Test `accumulate` gradient accumulation with dataloader break**")
|
306 |
-
test_dataloader_break()
|
307 |
-
if state.distributed_type == DistributedType.NO:
|
308 |
-
if state.local_process_index == 0:
|
309 |
-
print("**Test NOOP `no_sync` context manager**")
|
310 |
-
test_noop_sync(accelerator)
|
311 |
-
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_CPU):
|
312 |
-
if state.local_process_index == 0:
|
313 |
-
print("**Test Distributed `no_sync` context manager**")
|
314 |
-
test_distributed_sync(accelerator)
|
315 |
-
if state.local_process_index == 0:
|
316 |
-
print("**Test Distributed `no_sync` context manager with multiple forwards**")
|
317 |
-
test_distributed_sync_multiple_fwd(accelerator)
|
318 |
-
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU):
|
319 |
-
for split_batch in [True, False]:
|
320 |
-
for dispatch_batches in [True, False]:
|
321 |
-
if state.local_process_index == 0:
|
322 |
-
print(
|
323 |
-
"**Test `accumulate` gradient accumulation, ",
|
324 |
-
f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**",
|
325 |
-
)
|
326 |
-
test_gradient_accumulation(split_batch, dispatch_batches)
|
327 |
-
|
328 |
-
# Currently will break on torch 2.0 +, need to investigate why
|
329 |
-
if is_torch_version("<", "2.0") or state.distributed_type == DistributedType.NO:
|
330 |
-
if state.local_process_index == 0:
|
331 |
-
print(
|
332 |
-
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ",
|
333 |
-
"`split_batches=False`, `dispatch_batches=False`**",
|
334 |
-
)
|
335 |
-
test_gradient_accumulation_with_opt_and_scheduler()
|
336 |
-
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU):
|
337 |
-
for split_batch in [True, False]:
|
338 |
-
for dispatch_batches in [True, False]:
|
339 |
-
if not split_batch and not dispatch_batches:
|
340 |
-
continue
|
341 |
-
if state.local_process_index == 0:
|
342 |
-
print(
|
343 |
-
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ",
|
344 |
-
f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**",
|
345 |
-
)
|
346 |
-
test_gradient_accumulation_with_opt_and_scheduler(split_batch, dispatch_batches)
|
347 |
-
|
348 |
-
|
349 |
-
def _mp_fn(index):
|
350 |
-
# For xla_spawn (TPUs)
|
351 |
-
main()
|
352 |
-
|
353 |
-
|
354 |
-
if __name__ == "__main__":
|
355 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/testing.py
DELETED
@@ -1,501 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import asyncio
|
4 |
-
import os
|
5 |
-
import shutil
|
6 |
-
import subprocess
|
7 |
-
import sys
|
8 |
-
import tempfile
|
9 |
-
import unittest
|
10 |
-
from contextlib import contextmanager
|
11 |
-
from functools import partial
|
12 |
-
from pathlib import Path
|
13 |
-
from typing import List, Union
|
14 |
-
from unittest import mock
|
15 |
-
|
16 |
-
import torch
|
17 |
-
|
18 |
-
from ..state import AcceleratorState, PartialState
|
19 |
-
from ..utils import (
|
20 |
-
gather,
|
21 |
-
is_bnb_available,
|
22 |
-
is_clearml_available,
|
23 |
-
is_comet_ml_available,
|
24 |
-
is_cuda_available,
|
25 |
-
is_datasets_available,
|
26 |
-
is_deepspeed_available,
|
27 |
-
is_dvclive_available,
|
28 |
-
is_mps_available,
|
29 |
-
is_npu_available,
|
30 |
-
is_pandas_available,
|
31 |
-
is_tensorboard_available,
|
32 |
-
is_timm_available,
|
33 |
-
is_torch_version,
|
34 |
-
is_tpu_available,
|
35 |
-
is_transformers_available,
|
36 |
-
is_wandb_available,
|
37 |
-
is_xpu_available,
|
38 |
-
str_to_bool,
|
39 |
-
)
|
40 |
-
|
41 |
-
|
42 |
-
def get_backend():
|
43 |
-
if is_cuda_available():
|
44 |
-
return "cuda", torch.cuda.device_count()
|
45 |
-
elif is_mps_available():
|
46 |
-
return "mps", 1
|
47 |
-
elif is_npu_available():
|
48 |
-
return "npu", torch.npu.device_count()
|
49 |
-
elif is_xpu_available():
|
50 |
-
return "xpu", torch.xpu.device_count()
|
51 |
-
else:
|
52 |
-
return "cpu", 1
|
53 |
-
|
54 |
-
|
55 |
-
torch_device, device_count = get_backend()
|
56 |
-
|
57 |
-
|
58 |
-
def parse_flag_from_env(key, default=False):
|
59 |
-
try:
|
60 |
-
value = os.environ[key]
|
61 |
-
except KeyError:
|
62 |
-
# KEY isn't set, default to `default`.
|
63 |
-
_value = default
|
64 |
-
else:
|
65 |
-
# KEY is set, convert it to True or False.
|
66 |
-
try:
|
67 |
-
_value = str_to_bool(value)
|
68 |
-
except ValueError:
|
69 |
-
# More values are supported, but let's keep the message simple.
|
70 |
-
raise ValueError(f"If set, {key} must be yes or no.")
|
71 |
-
return _value
|
72 |
-
|
73 |
-
|
74 |
-
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
|
75 |
-
|
76 |
-
|
77 |
-
def skip(test_case):
|
78 |
-
"Decorator that skips a test unconditionally"
|
79 |
-
return unittest.skip("Test was skipped")(test_case)
|
80 |
-
|
81 |
-
|
82 |
-
def slow(test_case):
|
83 |
-
"""
|
84 |
-
Decorator marking a test as slow. Slow tests are skipped by default. Set the RUN_SLOW environment variable to a
|
85 |
-
truthy value to run them.
|
86 |
-
"""
|
87 |
-
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
|
88 |
-
|
89 |
-
|
90 |
-
def require_cpu(test_case):
|
91 |
-
"""
|
92 |
-
Decorator marking a test that must be only ran on the CPU. These tests are skipped when a GPU is available.
|
93 |
-
"""
|
94 |
-
return unittest.skipUnless(torch_device == "cpu", "test requires only a CPU")(test_case)
|
95 |
-
|
96 |
-
|
97 |
-
def require_non_cpu(test_case):
|
98 |
-
"""
|
99 |
-
Decorator marking a test that requires a hardware accelerator backend. These tests are skipped when there are no
|
100 |
-
hardware accelerator available.
|
101 |
-
"""
|
102 |
-
return unittest.skipUnless(torch_device != "cpu", "test requires a GPU")(test_case)
|
103 |
-
|
104 |
-
|
105 |
-
def require_cuda(test_case):
|
106 |
-
"""
|
107 |
-
Decorator marking a test that requires CUDA. These tests are skipped when there are no GPU available.
|
108 |
-
"""
|
109 |
-
return unittest.skipUnless(is_cuda_available(), "test requires a GPU")(test_case)
|
110 |
-
|
111 |
-
|
112 |
-
def require_xpu(test_case):
|
113 |
-
"""
|
114 |
-
Decorator marking a test that requires XPU. These tests are skipped when there are no XPU available.
|
115 |
-
"""
|
116 |
-
return unittest.skipUnless(is_xpu_available(), "test requires a XPU")(test_case)
|
117 |
-
|
118 |
-
|
119 |
-
def require_mps(test_case):
|
120 |
-
"""
|
121 |
-
Decorator marking a test that requires MPS backend. These tests are skipped when torch doesn't support `mps`
|
122 |
-
backend.
|
123 |
-
"""
|
124 |
-
return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`")(test_case)
|
125 |
-
|
126 |
-
|
127 |
-
def require_huggingface_suite(test_case):
|
128 |
-
"""
|
129 |
-
Decorator marking a test that requires transformers and datasets. These tests are skipped when they are not.
|
130 |
-
"""
|
131 |
-
return unittest.skipUnless(
|
132 |
-
is_transformers_available() and is_datasets_available(), "test requires the Hugging Face suite"
|
133 |
-
)(test_case)
|
134 |
-
|
135 |
-
|
136 |
-
def require_transformers(test_case):
|
137 |
-
"""
|
138 |
-
Decorator marking a test that requires transformers. These tests are skipped when they are not.
|
139 |
-
"""
|
140 |
-
return unittest.skipUnless(is_transformers_available(), "test requires the transformers library")(test_case)
|
141 |
-
|
142 |
-
|
143 |
-
def require_timm(test_case):
|
144 |
-
"""
|
145 |
-
Decorator marking a test that requires transformers. These tests are skipped when they are not.
|
146 |
-
"""
|
147 |
-
return unittest.skipUnless(is_timm_available(), "test requires the timm library")(test_case)
|
148 |
-
|
149 |
-
|
150 |
-
def require_bnb(test_case):
|
151 |
-
"""
|
152 |
-
Decorator marking a test that requires bitsandbytes. These tests are skipped when they are not.
|
153 |
-
"""
|
154 |
-
return unittest.skipUnless(is_bnb_available(), "test requires the bitsandbytes library")(test_case)
|
155 |
-
|
156 |
-
|
157 |
-
def require_tpu(test_case):
|
158 |
-
"""
|
159 |
-
Decorator marking a test that requires TPUs. These tests are skipped when there are no TPUs available.
|
160 |
-
"""
|
161 |
-
return unittest.skipUnless(is_tpu_available(), "test requires TPU")(test_case)
|
162 |
-
|
163 |
-
|
164 |
-
def require_single_device(test_case):
|
165 |
-
"""
|
166 |
-
Decorator marking a test that requires a single device. These tests are skipped when there is no hardware
|
167 |
-
accelerator available or number of devices is more than one.
|
168 |
-
"""
|
169 |
-
return unittest.skipUnless(torch_device != "cpu" and device_count == 1, "test requires a hardware accelerator")(
|
170 |
-
test_case
|
171 |
-
)
|
172 |
-
|
173 |
-
|
174 |
-
def require_single_gpu(test_case):
|
175 |
-
"""
|
176 |
-
Decorator marking a test that requires CUDA on a single GPU. These tests are skipped when there are no GPU
|
177 |
-
available or number of GPUs is more than one.
|
178 |
-
"""
|
179 |
-
return unittest.skipUnless(torch.cuda.device_count() == 1, "test requires a GPU")(test_case)
|
180 |
-
|
181 |
-
|
182 |
-
def require_single_xpu(test_case):
|
183 |
-
"""
|
184 |
-
Decorator marking a test that requires CUDA on a single XPU. These tests are skipped when there are no XPU
|
185 |
-
available or number of xPUs is more than one.
|
186 |
-
"""
|
187 |
-
return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU")(test_case)
|
188 |
-
|
189 |
-
|
190 |
-
def require_multi_device(test_case):
|
191 |
-
"""
|
192 |
-
Decorator marking a test that requires a multi-device setup. These tests are skipped on a machine without multiple
|
193 |
-
devices.
|
194 |
-
"""
|
195 |
-
return unittest.skipUnless(device_count > 1, "test requires multiple hardware accelerators")(test_case)
|
196 |
-
|
197 |
-
|
198 |
-
def require_multi_gpu(test_case):
|
199 |
-
"""
|
200 |
-
Decorator marking a test that requires a multi-GPU setup. These tests are skipped on a machine without multiple
|
201 |
-
GPUs.
|
202 |
-
"""
|
203 |
-
return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)
|
204 |
-
|
205 |
-
|
206 |
-
def require_multi_xpu(test_case):
|
207 |
-
"""
|
208 |
-
Decorator marking a test that requires a multi-XPU setup. These tests are skipped on a machine without multiple
|
209 |
-
XPUs.
|
210 |
-
"""
|
211 |
-
return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs")(test_case)
|
212 |
-
|
213 |
-
|
214 |
-
def require_deepspeed(test_case):
|
215 |
-
"""
|
216 |
-
Decorator marking a test that requires DeepSpeed installed. These tests are skipped when DeepSpeed isn't installed
|
217 |
-
"""
|
218 |
-
return unittest.skipUnless(is_deepspeed_available(), "test requires DeepSpeed")(test_case)
|
219 |
-
|
220 |
-
|
221 |
-
def require_fsdp(test_case):
|
222 |
-
"""
|
223 |
-
Decorator marking a test that requires FSDP installed. These tests are skipped when FSDP isn't installed
|
224 |
-
"""
|
225 |
-
return unittest.skipUnless(is_torch_version(">=", "1.12.0"), "test requires torch version >= 1.12.0")(test_case)
|
226 |
-
|
227 |
-
|
228 |
-
def require_torch_min_version(test_case=None, version=None):
|
229 |
-
"""
|
230 |
-
Decorator marking that a test requires a particular torch version to be tested. These tests are skipped when an
|
231 |
-
installed torch version is less than the required one.
|
232 |
-
"""
|
233 |
-
if test_case is None:
|
234 |
-
return partial(require_torch_min_version, version=version)
|
235 |
-
return unittest.skipUnless(is_torch_version(">=", version), f"test requires torch version >= {version}")(test_case)
|
236 |
-
|
237 |
-
|
238 |
-
def require_tensorboard(test_case):
|
239 |
-
"""
|
240 |
-
Decorator marking a test that requires tensorboard installed. These tests are skipped when tensorboard isn't
|
241 |
-
installed
|
242 |
-
"""
|
243 |
-
return unittest.skipUnless(is_tensorboard_available(), "test requires Tensorboard")(test_case)
|
244 |
-
|
245 |
-
|
246 |
-
def require_wandb(test_case):
|
247 |
-
"""
|
248 |
-
Decorator marking a test that requires wandb installed. These tests are skipped when wandb isn't installed
|
249 |
-
"""
|
250 |
-
return unittest.skipUnless(is_wandb_available(), "test requires wandb")(test_case)
|
251 |
-
|
252 |
-
|
253 |
-
def require_comet_ml(test_case):
|
254 |
-
"""
|
255 |
-
Decorator marking a test that requires comet_ml installed. These tests are skipped when comet_ml isn't installed
|
256 |
-
"""
|
257 |
-
return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml")(test_case)
|
258 |
-
|
259 |
-
|
260 |
-
def require_clearml(test_case):
|
261 |
-
"""
|
262 |
-
Decorator marking a test that requires clearml installed. These tests are skipped when clearml isn't installed
|
263 |
-
"""
|
264 |
-
return unittest.skipUnless(is_clearml_available(), "test requires clearml")(test_case)
|
265 |
-
|
266 |
-
|
267 |
-
def require_dvclive(test_case):
|
268 |
-
"""
|
269 |
-
Decorator marking a test that requires dvclive installed. These tests are skipped when dvclive isn't installed
|
270 |
-
"""
|
271 |
-
return unittest.skipUnless(is_dvclive_available(), "test requires dvclive")(test_case)
|
272 |
-
|
273 |
-
|
274 |
-
def require_pandas(test_case):
|
275 |
-
"""
|
276 |
-
Decorator marking a test that requires pandas installed. These tests are skipped when pandas isn't installed
|
277 |
-
"""
|
278 |
-
return unittest.skipUnless(is_pandas_available(), "test requires pandas")(test_case)
|
279 |
-
|
280 |
-
|
281 |
-
_atleast_one_tracker_available = (
|
282 |
-
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
|
283 |
-
)
|
284 |
-
|
285 |
-
|
286 |
-
def require_trackers(test_case):
|
287 |
-
"""
|
288 |
-
Decorator marking that a test requires at least one tracking library installed. These tests are skipped when none
|
289 |
-
are installed
|
290 |
-
"""
|
291 |
-
return unittest.skipUnless(
|
292 |
-
_atleast_one_tracker_available,
|
293 |
-
"test requires at least one tracker to be available and for `comet_ml` to not be installed",
|
294 |
-
)(test_case)
|
295 |
-
|
296 |
-
|
297 |
-
class TempDirTestCase(unittest.TestCase):
|
298 |
-
"""
|
299 |
-
A TestCase class that keeps a single `tempfile.TemporaryDirectory` open for the duration of the class, wipes its
|
300 |
-
data at the start of a test, and then destroyes it at the end of the TestCase.
|
301 |
-
|
302 |
-
Useful for when a class or API requires a single constant folder throughout it's use, such as Weights and Biases
|
303 |
-
|
304 |
-
The temporary directory location will be stored in `self.tmpdir`
|
305 |
-
"""
|
306 |
-
|
307 |
-
clear_on_setup = True
|
308 |
-
|
309 |
-
@classmethod
|
310 |
-
def setUpClass(cls):
|
311 |
-
"Creates a `tempfile.TemporaryDirectory` and stores it in `cls.tmpdir`"
|
312 |
-
cls.tmpdir = tempfile.mkdtemp()
|
313 |
-
|
314 |
-
@classmethod
|
315 |
-
def tearDownClass(cls):
|
316 |
-
"Remove `cls.tmpdir` after test suite has finished"
|
317 |
-
if os.path.exists(cls.tmpdir):
|
318 |
-
shutil.rmtree(cls.tmpdir)
|
319 |
-
|
320 |
-
def setUp(self):
|
321 |
-
"Destroy all contents in `self.tmpdir`, but not `self.tmpdir`"
|
322 |
-
if self.clear_on_setup:
|
323 |
-
for path in Path(self.tmpdir).glob("**/*"):
|
324 |
-
if path.is_file():
|
325 |
-
path.unlink()
|
326 |
-
elif path.is_dir():
|
327 |
-
shutil.rmtree(path)
|
328 |
-
|
329 |
-
|
330 |
-
class AccelerateTestCase(unittest.TestCase):
|
331 |
-
"""
|
332 |
-
A TestCase class that will reset the accelerator state at the end of every test. Every test that checks or utilizes
|
333 |
-
the `AcceleratorState` class should inherit from this to avoid silent failures due to state being shared between
|
334 |
-
tests.
|
335 |
-
"""
|
336 |
-
|
337 |
-
def tearDown(self):
|
338 |
-
super().tearDown()
|
339 |
-
# Reset the state of the AcceleratorState singleton.
|
340 |
-
AcceleratorState._reset_state()
|
341 |
-
PartialState._reset_state()
|
342 |
-
|
343 |
-
|
344 |
-
class MockingTestCase(unittest.TestCase):
|
345 |
-
"""
|
346 |
-
A TestCase class designed to dynamically add various mockers that should be used in every test, mimicking the
|
347 |
-
behavior of a class-wide mock when defining one normally will not do.
|
348 |
-
|
349 |
-
Useful when a mock requires specific information available only initialized after `TestCase.setUpClass`, such as
|
350 |
-
setting an environment variable with that information.
|
351 |
-
|
352 |
-
The `add_mocks` function should be ran at the end of a `TestCase`'s `setUp` function, after a call to
|
353 |
-
`super().setUp()` such as:
|
354 |
-
```python
|
355 |
-
def setUp(self):
|
356 |
-
super().setUp()
|
357 |
-
mocks = mock.patch.dict(os.environ, {"SOME_ENV_VAR", "SOME_VALUE"})
|
358 |
-
self.add_mocks(mocks)
|
359 |
-
```
|
360 |
-
"""
|
361 |
-
|
362 |
-
def add_mocks(self, mocks: Union[mock.Mock, List[mock.Mock]]):
|
363 |
-
"""
|
364 |
-
Add custom mocks for tests that should be repeated on each test. Should be called during
|
365 |
-
`MockingTestCase.setUp`, after `super().setUp()`.
|
366 |
-
|
367 |
-
Args:
|
368 |
-
mocks (`mock.Mock` or list of `mock.Mock`):
|
369 |
-
Mocks that should be added to the `TestCase` after `TestCase.setUpClass` has been run
|
370 |
-
"""
|
371 |
-
self.mocks = mocks if isinstance(mocks, (tuple, list)) else [mocks]
|
372 |
-
for m in self.mocks:
|
373 |
-
m.start()
|
374 |
-
self.addCleanup(m.stop)
|
375 |
-
|
376 |
-
|
377 |
-
def are_the_same_tensors(tensor):
|
378 |
-
state = AcceleratorState()
|
379 |
-
tensor = tensor[None].clone().to(state.device)
|
380 |
-
tensors = gather(tensor).cpu()
|
381 |
-
tensor = tensor[0].cpu()
|
382 |
-
for i in range(tensors.shape[0]):
|
383 |
-
if not torch.equal(tensors[i], tensor):
|
384 |
-
return False
|
385 |
-
return True
|
386 |
-
|
387 |
-
|
388 |
-
class _RunOutput:
|
389 |
-
def __init__(self, returncode, stdout, stderr):
|
390 |
-
self.returncode = returncode
|
391 |
-
self.stdout = stdout
|
392 |
-
self.stderr = stderr
|
393 |
-
|
394 |
-
|
395 |
-
async def _read_stream(stream, callback):
|
396 |
-
while True:
|
397 |
-
line = await stream.readline()
|
398 |
-
if line:
|
399 |
-
callback(line)
|
400 |
-
else:
|
401 |
-
break
|
402 |
-
|
403 |
-
|
404 |
-
async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> _RunOutput:
|
405 |
-
if echo:
|
406 |
-
print("\nRunning: ", " ".join(cmd))
|
407 |
-
|
408 |
-
p = await asyncio.create_subprocess_exec(
|
409 |
-
cmd[0],
|
410 |
-
*cmd[1:],
|
411 |
-
stdin=stdin,
|
412 |
-
stdout=asyncio.subprocess.PIPE,
|
413 |
-
stderr=asyncio.subprocess.PIPE,
|
414 |
-
env=env,
|
415 |
-
)
|
416 |
-
|
417 |
-
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
|
418 |
-
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
|
419 |
-
#
|
420 |
-
# If it starts hanging, will need to switch to the following code. The problem is that no data
|
421 |
-
# will be seen until it's done and if it hangs for example there will be no debug info.
|
422 |
-
# out, err = await p.communicate()
|
423 |
-
# return _RunOutput(p.returncode, out, err)
|
424 |
-
|
425 |
-
out = []
|
426 |
-
err = []
|
427 |
-
|
428 |
-
def tee(line, sink, pipe, label=""):
|
429 |
-
line = line.decode("utf-8").rstrip()
|
430 |
-
sink.append(line)
|
431 |
-
if not quiet:
|
432 |
-
print(label, line, file=pipe)
|
433 |
-
|
434 |
-
# XXX: the timeout doesn't seem to make any difference here
|
435 |
-
await asyncio.wait(
|
436 |
-
[
|
437 |
-
asyncio.create_task(_read_stream(p.stdout, lambda l: tee(l, out, sys.stdout, label="stdout:"))),
|
438 |
-
asyncio.create_task(_read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:"))),
|
439 |
-
],
|
440 |
-
timeout=timeout,
|
441 |
-
)
|
442 |
-
return _RunOutput(await p.wait(), out, err)
|
443 |
-
|
444 |
-
|
445 |
-
def execute_subprocess_async(cmd, env=None, stdin=None, timeout=180, quiet=False, echo=True) -> _RunOutput:
|
446 |
-
loop = asyncio.get_event_loop()
|
447 |
-
result = loop.run_until_complete(
|
448 |
-
_stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo)
|
449 |
-
)
|
450 |
-
|
451 |
-
cmd_str = " ".join(cmd)
|
452 |
-
if result.returncode > 0:
|
453 |
-
stderr = "\n".join(result.stderr)
|
454 |
-
raise RuntimeError(
|
455 |
-
f"'{cmd_str}' failed with returncode {result.returncode}\n\n"
|
456 |
-
f"The combined stderr from workers follows:\n{stderr}"
|
457 |
-
)
|
458 |
-
|
459 |
-
return result
|
460 |
-
|
461 |
-
|
462 |
-
class SubprocessCallException(Exception):
|
463 |
-
pass
|
464 |
-
|
465 |
-
|
466 |
-
def run_command(command: List[str], return_stdout=False, env=None):
|
467 |
-
"""
|
468 |
-
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
|
469 |
-
if an error occured while running `command`
|
470 |
-
"""
|
471 |
-
if env is None:
|
472 |
-
env = os.environ.copy()
|
473 |
-
try:
|
474 |
-
output = subprocess.check_output(command, stderr=subprocess.STDOUT, env=env)
|
475 |
-
if return_stdout:
|
476 |
-
if hasattr(output, "decode"):
|
477 |
-
output = output.decode("utf-8")
|
478 |
-
return output
|
479 |
-
except subprocess.CalledProcessError as e:
|
480 |
-
raise SubprocessCallException(
|
481 |
-
f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}"
|
482 |
-
) from e
|
483 |
-
|
484 |
-
|
485 |
-
@contextmanager
|
486 |
-
def assert_exception(exception_class: Exception, msg: str = None) -> bool:
|
487 |
-
"""
|
488 |
-
Context manager to assert that the right `Exception` class was raised.
|
489 |
-
|
490 |
-
If `msg` is provided, will check that the message is contained in the raised exception.
|
491 |
-
"""
|
492 |
-
was_ran = False
|
493 |
-
try:
|
494 |
-
yield
|
495 |
-
was_ran = True
|
496 |
-
except Exception as e:
|
497 |
-
assert isinstance(e, exception_class), f"Expected exception of type {exception_class} but got {type(e)}"
|
498 |
-
if msg is not None:
|
499 |
-
assert msg in str(e), f"Expected message '{msg}' to be in exception but got '{str(e)}'"
|
500 |
-
if was_ran:
|
501 |
-
raise AssertionError(f"Expected exception of type {exception_class} but ran without issue.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/test_utils/training.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from torch.utils.data import DataLoader
|
6 |
-
|
7 |
-
from accelerate.utils.dataclasses import DistributedType
|
8 |
-
|
9 |
-
|
10 |
-
class RegressionDataset:
|
11 |
-
def __init__(self, a=2, b=3, length=64, seed=None):
|
12 |
-
rng = np.random.default_rng(seed)
|
13 |
-
self.length = length
|
14 |
-
self.x = rng.normal(size=(length,)).astype(np.float32)
|
15 |
-
self.y = a * self.x + b + rng.normal(scale=0.1, size=(length,)).astype(np.float32)
|
16 |
-
|
17 |
-
def __len__(self):
|
18 |
-
return self.length
|
19 |
-
|
20 |
-
def __getitem__(self, i):
|
21 |
-
return {"x": self.x[i], "y": self.y[i]}
|
22 |
-
|
23 |
-
|
24 |
-
class RegressionModel4XPU(torch.nn.Module):
|
25 |
-
def __init__(self, a=0, b=0, double_output=False):
|
26 |
-
super().__init__()
|
27 |
-
self.a = torch.nn.Parameter(torch.tensor([2, 3]).float())
|
28 |
-
self.b = torch.nn.Parameter(torch.tensor([2, 3]).float())
|
29 |
-
self.first_batch = True
|
30 |
-
|
31 |
-
def forward(self, x=None):
|
32 |
-
if self.first_batch:
|
33 |
-
print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}")
|
34 |
-
self.first_batch = False
|
35 |
-
return x * self.a[0] + self.b[0]
|
36 |
-
|
37 |
-
|
38 |
-
class RegressionModel(torch.nn.Module):
|
39 |
-
def __init__(self, a=0, b=0, double_output=False):
|
40 |
-
super().__init__()
|
41 |
-
self.a = torch.nn.Parameter(torch.tensor(a).float())
|
42 |
-
self.b = torch.nn.Parameter(torch.tensor(b).float())
|
43 |
-
self.first_batch = True
|
44 |
-
|
45 |
-
def forward(self, x=None):
|
46 |
-
if self.first_batch:
|
47 |
-
print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}")
|
48 |
-
self.first_batch = False
|
49 |
-
return x * self.a + self.b
|
50 |
-
|
51 |
-
|
52 |
-
def mocked_dataloaders(accelerator, batch_size: int = 16):
|
53 |
-
from datasets import load_dataset
|
54 |
-
from transformers import AutoTokenizer
|
55 |
-
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
57 |
-
data_files = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"}
|
58 |
-
datasets = load_dataset("csv", data_files=data_files)
|
59 |
-
label_list = datasets["train"].unique("label")
|
60 |
-
|
61 |
-
label_to_id = {v: i for i, v in enumerate(label_list)}
|
62 |
-
|
63 |
-
def tokenize_function(examples):
|
64 |
-
# max_length=None => use the model max length (it's actually the default)
|
65 |
-
outputs = tokenizer(
|
66 |
-
examples["sentence1"], examples["sentence2"], truncation=True, max_length=None, padding="max_length"
|
67 |
-
)
|
68 |
-
if "label" in examples:
|
69 |
-
outputs["labels"] = [label_to_id[l] for l in examples["label"]]
|
70 |
-
return outputs
|
71 |
-
|
72 |
-
# Apply the method we just defined to all the examples in all the splits of the dataset
|
73 |
-
tokenized_datasets = datasets.map(
|
74 |
-
tokenize_function,
|
75 |
-
batched=True,
|
76 |
-
remove_columns=["sentence1", "sentence2", "label"],
|
77 |
-
)
|
78 |
-
|
79 |
-
def collate_fn(examples):
|
80 |
-
# On TPU it's best to pad everything to the same length or training will be very slow.
|
81 |
-
if accelerator.distributed_type == DistributedType.TPU:
|
82 |
-
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
|
83 |
-
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
|
84 |
-
|
85 |
-
# Instantiate dataloaders.
|
86 |
-
train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=2)
|
87 |
-
eval_dataloader = DataLoader(tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=1)
|
88 |
-
|
89 |
-
return train_dataloader, eval_dataloader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/tracking.py
CHANGED
@@ -3,29 +3,6 @@
|
|
3 |
# Expectation:
|
4 |
# Provide a project dir name, then each type of logger gets stored in project/{`logging_dir`}
|
5 |
|
6 |
-
import json
|
7 |
-
import os
|
8 |
-
import time
|
9 |
-
from functools import wraps
|
10 |
-
from typing import Any, Dict, List, Optional, Union
|
11 |
-
|
12 |
-
import yaml
|
13 |
-
|
14 |
-
from .logging import get_logger
|
15 |
-
from .state import PartialState
|
16 |
-
from .utils import (
|
17 |
-
LoggerType,
|
18 |
-
is_aim_available,
|
19 |
-
is_clearml_available,
|
20 |
-
is_comet_ml_available,
|
21 |
-
is_dvclive_available,
|
22 |
-
is_mlflow_available,
|
23 |
-
is_tensorboard_available,
|
24 |
-
is_wandb_available,
|
25 |
-
listify,
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
_available_trackers = []
|
30 |
|
31 |
if is_tensorboard_available():
|
|
|
3 |
# Expectation:
|
4 |
# Provide a project dir name, then each type of logger gets stored in project/{`logging_dir`}
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
_available_trackers = []
|
7 |
|
8 |
if is_tensorboard_available():
|
src/utils/bnb.py
CHANGED
@@ -1,31 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import logging
|
5 |
-
import os
|
6 |
-
from copy import deepcopy
|
7 |
-
from typing import Dict, List, Optional, Union
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
|
12 |
-
from accelerate.utils.imports import (
|
13 |
-
is_4bit_bnb_available,
|
14 |
-
is_8bit_bnb_available,
|
15 |
-
)
|
16 |
-
|
17 |
-
from ..big_modeling import dispatch_model, init_empty_weights
|
18 |
-
from .dataclasses import BnbQuantizationConfig
|
19 |
-
from .modeling import (
|
20 |
-
find_tied_parameters,
|
21 |
-
get_balanced_memory,
|
22 |
-
infer_auto_device_map,
|
23 |
-
load_checkpoint_in_model,
|
24 |
-
offload_weight,
|
25 |
-
set_module_tensor_to_device,
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
logger = logging.getLogger(__name__)
|
30 |
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
logger = logging.getLogger(__name__)
|
2 |
|
3 |
|
src/utils/constants.py
CHANGED
@@ -1,8 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import operator as op
|
4 |
-
|
5 |
-
|
6 |
SCALER_NAME = "scaler.pt"
|
7 |
MODEL_NAME = "pytorch_model"
|
8 |
SAFE_MODEL_NAME = "model"
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
SCALER_NAME = "scaler.pt"
|
2 |
MODEL_NAME = "pytorch_model"
|
3 |
SAFE_MODEL_NAME = "model"
|