RAG-accelerate / src /utils /operations.py
muellerzr's picture
muellerzr HF staff
Try again?
7a76c8f
"""
A set of basic tensor ops compatible with tpu, gpu, and multigpu
"""
def is_torch_tensor(tensor):
return isinstance(tensor, torch.Tensor)
def is_torch_xpu_tensor(tensor):
return isinstance(
tensor,
torch.xpu.FloatTensor,
torch.xpu.ByteTensor,
torch.xpu.IntTensor,
torch.xpu.LongTensor,
torch.xpu.HalfTensor,
torch.xpu.DoubleTensor,
torch.xpu.BFloat16Tensor,
)
def is_tensor_information(tensor_info):
return isinstance(tensor_info, TensorInformation)
def is_namedtuple(data):
"""
Checks if `x` is a `namedtuple` or not. Can have false positives, but only if a user is trying to mimic a
`namedtuple` perfectly.
"""
data_type = type(data)
bases = data_type.__bases__
if len(bases) != 1 or bases[0] != tuple:
return False
fields = getattr(data_type, "_fields", None)
if not isinstance(fields, tuple):
return False
return all(isinstance(member, str) for member in fields)
def honor_type(obj, generator):
"""
Cast a generator to the same type as obj (list, tuple, or namedtuple)
"""
# Some objects may not be able to instantiate from a generator directly
if is_namedtuple(obj):
return type(obj)(*list(generator))
else:
return type(obj)(generator)
def recursively_apply(func, data, *args, test_type=is_torch_tensor, error_on_other_type=False, **kwargs):
"""
Recursively apply a function on a data structure that is a nested list/tuple/dictionary of a given base type.
Args:
func (`callable`):
The function to recursively apply.
data (nested list/tuple/dictionary of `main_type`):
The data on which to apply `func`
*args:
Positional arguments that will be passed to `func` when applied on the unpacked data.
main_type (`type`, *optional*, defaults to `torch.Tensor`):
The base type of the objects to which apply `func`.
error_on_other_type (`bool`, *optional*, defaults to `False`):
Whether to return an error or not if after unpacking `data`, we get on an object that is not of type
`main_type`. If `False`, the function will leave objects of types different than `main_type` unchanged.
**kwargs:
Keyword arguments that will be passed to `func` when applied on the unpacked data.
Returns:
The same data structure as `data` with `func` applied to every object of type `main_type`.
"""
if isinstance(data, (tuple, list)):
return honor_type(
data,
(
recursively_apply(
func, o, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
)
for o in data
),
)
elif isinstance(data, Mapping):
return type(data)(
{
k: recursively_apply(
func, v, *args, test_type=test_type, error_on_other_type=error_on_other_type, **kwargs
)
for k, v in data.items()
}
)
elif test_type(data):
return func(data, *args, **kwargs)
elif error_on_other_type:
raise TypeError(
f"Unsupported types ({type(data)}) passed to `{func.__name__}`. Only nested list/tuple/dicts of "
f"objects that are valid for `{test_type.__name__}` should be passed."
)
return data
def send_to_device(tensor, device, non_blocking=False, skip_keys=None):
"""
Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to send to a given device.
device (`torch.device`):
The device to send the data to.
Returns:
The same data structure as `tensor` with all tensors sent to the proper device.
"""
if isinstance(tensor, (tuple, list)):
return honor_type(
tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
)
elif isinstance(tensor, Mapping):
if isinstance(skip_keys, str):
skip_keys = [skip_keys]
elif skip_keys is None:
skip_keys = []
return type(tensor)(
{
k: t if k in skip_keys else send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys)
for k, t in tensor.items()
}
)
elif hasattr(tensor, "to"):
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
try:
return tensor.to(device, non_blocking=non_blocking)
except TypeError: # .to() doesn't accept non_blocking as kwarg
return tensor.to(device)
else:
return tensor
def get_data_structure(data):
"""
Recursively gathers the information needed to rebuild a nested list/tuple/dictionary of tensors.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`):
The data to send to analyze.
Returns:
The same data structure as `data` with [`~utils.TensorInformation`] instead of tensors.
"""
def _get_data_structure(tensor):
return TensorInformation(shape=tensor.shape, dtype=tensor.dtype)
return recursively_apply(_get_data_structure, data)
def get_shape(data):
"""
Recursively gathers the shape of a nested list/tuple/dictionary of tensors as a list.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`):
The data to send to analyze.
Returns:
The same data structure as `data` with lists of tensor shapes instead of tensors.
"""
def _get_shape(tensor):
return list(tensor.shape)
return recursively_apply(_get_shape, data)
def initialize_tensors(data_structure):
"""
Recursively initializes tensors from a nested list/tuple/dictionary of [`~utils.TensorInformation`].
Returns:
The same data structure as `data` with tensors instead of [`~utils.TensorInformation`].
"""
def _initialize_tensor(tensor_info):
return torch.empty(*tensor_info.shape, dtype=tensor_info.dtype)
return recursively_apply(_initialize_tensor, data_structure, test_type=is_tensor_information)
def find_batch_size(data):
"""
Recursively finds the batch size in a nested list/tuple/dictionary of lists of tensors.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to find the batch size.
Returns:
`int`: The batch size.
"""
if isinstance(data, (tuple, list, Mapping)) and (len(data) == 0):
raise ValueError(f"Cannot find the batch size from empty {type(data)}.")
if isinstance(data, (tuple, list)):
return find_batch_size(data[0])
elif isinstance(data, Mapping):
for k in data.keys():
return find_batch_size(data[k])
elif not isinstance(data, torch.Tensor):
raise TypeError(f"Can only find the batch size of tensors but got {type(data)}.")
return data.shape[0]
def listify(data):
"""
Recursively finds tensors in a nested list/tuple/dictionary and converts them to a list of numbers.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`): The data from which to convert to regular numbers.
Returns:
The same data structure as `data` with lists of numbers instead of `torch.Tensor`.
"""
def _convert_to_list(tensor):
tensor = tensor.detach().cpu()
if tensor.dtype == torch.bfloat16:
# As of Numpy 1.21.4, NumPy does not support bfloat16 (see
# https://github.com/numpy/numpy/blob/a47ecdea856986cd60eabbd53265c2ca5916ad5d/doc/source/user/basics.types.rst ).
# Until Numpy adds bfloat16, we must convert float32.
tensor = tensor.to(torch.float32)
return tensor.tolist()
return recursively_apply(_convert_to_list, data)
def _tpu_gather(tensor):
def _tpu_gather_one(tensor):
if tensor.ndim == 0:
tensor = tensor.clone()[None]
# Can only gather contiguous tensors
if not tensor.is_contiguous():
tensor = tensor.contiguous()
return xm.all_gather(tensor)
res = recursively_apply(_tpu_gather_one, tensor, error_on_other_type=True)
xm.mark_step()
return res
def _gpu_gather(tensor):
state = PartialState()
if is_torch_version(">=", "1.13"):
gather_op = torch.distributed.all_gather_into_tensor
else:
gather_op = torch.distributed._all_gather_base
def _gpu_gather_one(tensor):
if tensor.ndim == 0:
tensor = tensor.clone()[None]
# Can only gather contiguous tensors
if not tensor.is_contiguous():
tensor = tensor.contiguous()
if state.backend is not None and state.backend != "gloo":
# We use `empty` as `all_gather_into_tensor` slightly
# differs from `all_gather` for better efficiency,
# and we rely on the number of items in the tensor
# rather than its direct shape
output_tensors = torch.empty(
state.num_processes * tensor.numel(),
dtype=tensor.dtype,
device=state.device,
)
gather_op(output_tensors, tensor)
return output_tensors.view(-1, *tensor.size()[1:])
else:
# a backend of `None` is always CPU
# also gloo does not support `all_gather_into_tensor`,
# which will result in a larger memory overhead for the op
output_tensors = [torch.empty_like(tensor) for _ in range(state.num_processes)]
torch.distributed.all_gather(output_tensors, tensor)
return torch.cat(output_tensors, dim=0)
return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)
class DistributedOperationException(Exception):
"""
An exception class for distributed operations. Raised if the operation cannot be performed due to the shape of the
tensors.
"""
pass
def verify_operation(function):
"""
Verifies that `tensor` is the same shape across all processes. Only ran if `PartialState().debug` is `True`.
"""
@wraps(function)
def wrapper(*args, **kwargs):
if PartialState().distributed_type == DistributedType.NO or not PartialState().debug:
return function(*args, **kwargs)
operation = f"{function.__module__}.{function.__name__}"
if "tensor" in kwargs:
tensor = kwargs["tensor"]
else:
tensor = args[0]
if PartialState().device.type != find_device(tensor).type:
raise DistributedOperationException(
f"One or more of the tensors passed to {operation} were not on the {tensor.device.type} while the `Accelerator` is configured for {PartialState().device.type}. "
f"Please move it to the {PartialState().device.type} before calling {operation}."
)
shapes = get_shape(tensor)
output = gather_object([shapes])
if output[0] is not None:
are_same = output.count(output[0]) == len(output)
if not are_same:
process_shape_str = "\n - ".join([f"Process {i}: {shape}" for i, shape in enumerate(output)])
raise DistributedOperationException(
f"Cannot apply desired operation due to shape mismatches. "
"All shapes across devices must be valid."
f"\n\nOperation: `{operation}`\nInput shapes:\n - {process_shape_str}"
)
return function(*args, **kwargs)
return wrapper
def chained_operation(function):
"""
Checks that `verify_operation` failed and if so reports a more helpful error chaining the existing
`DistributedOperationException`.
"""
@wraps(function)
def wrapper(*args, **kwargs):
try:
return function(*args, **kwargs)
except DistributedOperationException as e:
operation = f"{function.__module__}.{function.__name__}"
raise DistributedOperationException(
f"Error found while calling `{operation}`. Please see the earlier error for more details."
) from e
return wrapper
@verify_operation
def gather(tensor):
"""
Recursively gather tensor in a nested list/tuple/dictionary of tensors from all devices.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to gather.
Returns:
The same data structure as `tensor` with all tensors sent to the proper device.
"""
if PartialState().distributed_type == DistributedType.TPU:
return _tpu_gather(tensor)
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
return _gpu_gather(tensor)
else:
return tensor
def _gpu_gather_object(object: Any):
output_objects = [None for _ in range(PartialState().num_processes)]
torch.distributed.all_gather_object(output_objects, object)
# all_gather_object returns a list of lists, so we need to flatten it
return [x for y in output_objects for x in y]
def gather_object(object: Any):
"""
Recursively gather object in a nested list/tuple/dictionary of objects from all devices.
Args:
object (nested list/tuple/dictionary of picklable object):
The data to gather.
Returns:
The same data structure as `object` with all the objects sent to every device.
"""
if PartialState().distributed_type == DistributedType.TPU:
raise NotImplementedError("gather objects in TPU is not supported")
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
return _gpu_gather_object(object)
else:
return object
def _gpu_broadcast(data, src=0):
def _gpu_broadcast_one(tensor, src=0):
torch.distributed.broadcast(tensor, src=src)
return tensor
return recursively_apply(_gpu_broadcast_one, data, error_on_other_type=True, src=src)
def _tpu_broadcast(tensor, src=0, name="broadcast tensor"):
if isinstance(tensor, (list, tuple)):
return honor_type(tensor, (_tpu_broadcast(t, name=f"{name}_{i}") for i, t in enumerate(tensor)))
elif isinstance(tensor, Mapping):
return type(tensor)({k: _tpu_broadcast(v, name=f"{name}_{k}") for k, v in tensor.items()})
return xm.mesh_reduce(name, tensor, lambda x: x[src])
@verify_operation
def broadcast(tensor, from_process: int = 0):
"""
Recursively broadcast tensor in a nested list/tuple/dictionary of tensors to all devices.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to gather.
from_process (`int`, *optional*, defaults to 0):
The process from which to send the data
Returns:
The same data structure as `tensor` with all tensors broadcasted to the proper device.
"""
if PartialState().distributed_type == DistributedType.TPU:
return _tpu_broadcast(tensor, src=from_process, name="accelerate.utils.broadcast")
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
return _gpu_broadcast(tensor, src=from_process)
else:
return tensor
def broadcast_object_list(object_list, from_process: int = 0):
"""
Broadcast a list of picklable objects form one process to the others.
Args:
object_list (list of picklable objects):
The list of objects to broadcast. This list will be modified inplace.
from_process (`int`, *optional*, defaults to 0):
The process from which to send the data.
Returns:
The same list containing the objects from process 0.
"""
if PartialState().distributed_type == DistributedType.TPU:
for i, obj in enumerate(object_list):
object_list[i] = xm.mesh_reduce("accelerate.utils.broadcast_object_list", obj, lambda x: x[from_process])
elif PartialState().distributed_type in TORCH_DISTRIBUTED_OPERATION_TYPES:
torch.distributed.broadcast_object_list(object_list, src=from_process)
return object_list
def slice_tensors(data, tensor_slice, process_index=None, num_processes=None):
"""
Recursively takes a slice in a nested list/tuple/dictionary of tensors.
Args:
data (nested list/tuple/dictionary of `torch.Tensor`):
The data to slice.
tensor_slice (`slice`):
The slice to take.
Returns:
The same data structure as `data` with all the tensors slices.
"""
def _slice_tensor(tensor, tensor_slice):
return tensor[tensor_slice]
return recursively_apply(_slice_tensor, data, tensor_slice)
def concatenate(data, dim=0):
"""
Recursively concatenate the tensors in a nested list/tuple/dictionary of lists of tensors with the same shape.
Args:
data (nested list/tuple/dictionary of lists of tensors `torch.Tensor`):
The data to concatenate.
dim (`int`, *optional*, defaults to 0):
The dimension on which to concatenate.
Returns:
The same data structure as `data` with all the tensors concatenated.
"""
if isinstance(data[0], (tuple, list)):
return honor_type(data[0], (concatenate([d[i] for d in data], dim=dim) for i in range(len(data[0]))))
elif isinstance(data[0], Mapping):
return type(data[0])({k: concatenate([d[k] for d in data], dim=dim) for k in data[0].keys()})
elif not isinstance(data[0], torch.Tensor):
raise TypeError(f"Can only concatenate tensors but got {type(data[0])}")
return torch.cat(data, dim=dim)
class CannotPadNestedTensorWarning(UserWarning):
pass
@chained_operation
def pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
"""
Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they
can safely be gathered.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to gather.
dim (`int`, *optional*, defaults to 0):
The dimension on which to pad.
pad_index (`int`, *optional*, defaults to 0):
The value with which to pad.
pad_first (`bool`, *optional*, defaults to `False`):
Whether to pad at the beginning or the end.
"""
def _pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
if getattr(tensor, "is_nested", False):
warnings.warn(
"Cannot pad nested tensors without more information. Leaving unprocessed.",
CannotPadNestedTensorWarning,
)
return tensor
if dim >= len(tensor.shape):
return tensor
# Gather all sizes
size = torch.tensor(tensor.shape, device=tensor.device)[None]
sizes = gather(size).cpu()
# Then pad to the maximum size
max_size = max(s[dim] for s in sizes)
if max_size == tensor.shape[dim]:
return tensor
old_size = tensor.shape
new_size = list(old_size)
new_size[dim] = max_size
new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
if pad_first:
indices = tuple(
slice(max_size - old_size[dim], max_size) if i == dim else slice(None) for i in range(len(new_size))
)
else:
indices = tuple(slice(0, old_size[dim]) if i == dim else slice(None) for i in range(len(new_size)))
new_tensor[indices] = tensor
return new_tensor
return recursively_apply(
_pad_across_processes, tensor, error_on_other_type=True, dim=dim, pad_index=pad_index, pad_first=pad_first
)
@verify_operation
def reduce(tensor, reduction="mean", scale=1.0):
"""
Recursively reduce the tensors in a nested list/tuple/dictionary of lists of tensors across all processes by the
mean of a given operation.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to reduce.
reduction (`str`, *optional*, defaults to `"mean"`):
A reduction method. Can be of "mean", "sum", or "none"
scale (`float`, *optional*):
A default scaling value to be applied after the reduce, only valied on XLA.
Returns:
The same data structure as `data` with all the tensors reduced.
"""
def _reduce_across_processes(tensor, reduction="mean", scale=1.0):
state = PartialState()
cloned_tensor = tensor.clone()
if state.distributed_type == DistributedType.NO:
return cloned_tensor
if state.distributed_type == DistributedType.TPU:
xm.all_reduce("sum", cloned_tensor, scale)
elif state.distributed_type.value in TORCH_DISTRIBUTED_OPERATION_TYPES:
torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
if reduction == "mean":
cloned_tensor /= state.num_processes
return cloned_tensor
return recursively_apply(
_reduce_across_processes, tensor, error_on_other_type=True, reduction=reduction, scale=scale
)
def convert_to_fp32(tensor):
"""
Recursively converts the elements nested list/tuple/dictionary of tensors in FP16/BF16 precision to FP32.
Args:
tensor (nested list/tuple/dictionary of `torch.Tensor`):
The data to convert from FP16/BF16 to FP32.
Returns:
The same data structure as `tensor` with all tensors that were in FP16/BF16 precision converted to FP32.
"""
def _convert_to_fp32(tensor):
return tensor.float()
def _is_fp16_bf16_tensor(tensor):
return hasattr(tensor, "dtype") and tensor.dtype in (torch.float16, torch.bfloat16)
return recursively_apply(_convert_to_fp32, tensor, test_type=_is_fp16_bf16_tensor)
class ConvertOutputsToFp32:
"""
Decorator to apply to a function outputing tensors (like a model forward pass) that ensures the outputs in FP16
precision will be convert back to FP32.
Args:
model_forward (`Callable`):
The function which outputs we want to treat.
Returns:
The same function as `model_forward` but with converted outputs.
"""
def __init__(self, model_forward):
self.model_forward = model_forward
update_wrapper(self, model_forward)
def __call__(self, *args, **kwargs):
return convert_to_fp32(self.model_forward(*args, **kwargs))
def __getstate__(self):
raise pickle.PicklingError(
"Cannot pickle a prepared model with automatic mixed precision, please unwrap the model with `Accelerator.unwrap_model(model)` before pickling it."
)
def convert_outputs_to_fp32(model_forward):
model_forward = ConvertOutputsToFp32(model_forward)
def forward(*args, **kwargs):
return model_forward(*args, **kwargs)
# To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
forward.__wrapped__ = model_forward
return forward
def find_device(data):
"""
Finds the device on which a nested dict/list/tuple of tensors lies (assuming they are all on the same device).
Args:
(nested list/tuple/dictionary of `torch.Tensor`): The data we want to know the device of.
"""
if isinstance(data, Mapping):
for obj in data.values():
device = find_device(obj)
if device is not None:
return device
elif isinstance(data, (tuple, list)):
for obj in data:
device = find_device(obj)
if device is not None:
return device
elif isinstance(data, torch.Tensor):
return data.device