|
logger = get_logger(__name__) |
|
|
|
_PYTORCH_DATALOADER_KWARGS = { |
|
"batch_size": 1, |
|
"shuffle": False, |
|
"sampler": None, |
|
"batch_sampler": None, |
|
"num_workers": 0, |
|
"collate_fn": None, |
|
"pin_memory": False, |
|
"drop_last": False, |
|
"timeout": 0, |
|
"worker_init_fn": None, |
|
"multiprocessing_context": None, |
|
"generator": None, |
|
"prefetch_factor": 2, |
|
"persistent_workers": False, |
|
} |
|
|
|
_PYTORCH_DATALOADER_ADDITIONAL_KWARGS = {} |
|
for v, additional_kwargs in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items(): |
|
if is_torch_version(">=", v): |
|
_PYTORCH_DATALOADER_KWARGS.update(additional_kwargs) |
|
class SeedableRandomSampler(RandomSampler): |
|
""" |
|
Same as a random sampler, except that in `__iter__` a seed can be used. |
|
Needed specifically in distributed cases, when the random generator for each GPU needs to start from the same seed |
|
and be fully reproducable on multiple iterations. |
|
If a custom `generator` is passed, it will rely on its initial seed as well as the current iteration it is on |
|
(stored in `self.epoch`). |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.epoch = 0 |
|
self.seed = torch.random.initial_seed() |
|
|
|
def __iter__(self): |
|
if self.generator is None: |
|
self.generator = torch.Generator() |
|
else: |
|
self.seed = self.generator.initial_seed() |
|
|
|
seed = self.epoch + self.seed |
|
self.generator.manual_seed(seed) |
|
yield from super().__iter__() |
|
self.set_epoch(self.epoch + 1) |
|
|
|
def set_epoch(self, epoch: int): |
|
"Sets the current iteration of the sampler." |
|
self.epoch = epoch |
|
class BatchSamplerShard(BatchSampler): |
|
""" |
|
Wraps a PyTorch `BatchSampler` to generate batches for one of the processes only. Instances of this class will |
|
always yield a number of batches that is a round multiple of `num_processes` and that all have the same size. |
|
Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration |
|
at the first batch that would be too small / not present on all processes or loop with indices from the beginning. |
|
Args: |
|
batch_sampler (`torch.utils.data.sampler.BatchSampler`): |
|
The batch sampler to split in several shards. |
|
num_processes (`int`, *optional*, defaults to 1): |
|
The number of processes running concurrently. |
|
process_index (`int`, *optional*, defaults to 0): |
|
The index of the current process. |
|
split_batches (`bool`, *optional*, defaults to `False`): |
|
Whether the shards should be created by splitting a batch to give a piece of it on each process, or by |
|
yielding different full batches on each process. |
|
On two processes with a sampler of `[[0, 1, 2, 3], [4, 5, 6, 7]]`, this will result in: |
|
- the sampler on process 0 to yield `[0, 1, 2, 3]` and the sampler on process 1 to yield `[4, 5, 6, 7]` if |
|
this argument is set to `False`. |
|
- the sampler on process 0 to yield `[0, 1]` then `[4, 5]` and the sampler on process 1 to yield `[2, 3]` |
|
then `[6, 7]` if this argument is set to `True`. |
|
even_batches (`bool`, *optional*, defaults to `True`): |
|
Whether or not to loop back at the beginning of the sampler when the number of samples is not a round |
|
multiple of (original batch size / number of processes). |
|
<Tip warning={true}> |
|
`BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches` |
|
equal to `False` |
|
</Tip>""" |
|
|
|
def __init__( |
|
self, |
|
batch_sampler: BatchSampler, |
|
num_processes: int = 1, |
|
process_index: int = 0, |
|
split_batches: bool = False, |
|
even_batches: bool = True, |
|
): |
|
if split_batches and batch_sampler.batch_size % num_processes != 0: |
|
raise ValueError( |
|
f"To use `BatchSamplerShard` in `split_batches` mode, the batch size ({batch_sampler.batch_size}) " |
|
f"needs to be a round multiple of the number of processes ({num_processes})." |
|
) |
|
self.batch_sampler = batch_sampler |
|
self.num_processes = num_processes |
|
self.process_index = process_index |
|
self.split_batches = split_batches |
|
self.even_batches = even_batches |
|
self.batch_size = getattr(batch_sampler, "batch_size", None) |
|
self.drop_last = getattr(batch_sampler, "drop_last", False) |
|
if self.batch_size is None and self.even_batches: |
|
raise ValueError( |
|
"You need to use `even_batches=False` when the batch sampler has no batch size. If you " |
|
"are not calling this method directly, set `accelerator.even_batches=False` instead." |
|
) |
|
@property |
|
|
|
def total_length(self): |
|
return len(self.batch_sampler) |
|
|
|
def __len__(self): |
|
if self.split_batches: |
|
|
|
return len(self.batch_sampler) |
|
if len(self.batch_sampler) % self.num_processes == 0: |
|
|
|
return len(self.batch_sampler) // self.num_processes |
|
length = len(self.batch_sampler) // self.num_processes |
|
if self.drop_last: |
|
|
|
return length |
|
elif self.even_batches: |
|
|
|
return length + 1 |
|
else: |
|
|
|
return length + 1 if self.process_index < len(self.batch_sampler) % self.num_processes else length |
|
|
|
def __iter__(self): |
|
return self._iter_with_split() if self.split_batches else self._iter_with_no_split() |
|
|
|
def _iter_with_split(self): |
|
initial_data = [] |
|
batch_length = self.batch_sampler.batch_size // self.num_processes |
|
for idx, batch in enumerate(self.batch_sampler): |
|
if idx == 0: |
|
initial_data = batch |
|
if len(batch) == self.batch_size: |
|
|
|
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] |
|
|
|
if not self.drop_last and len(initial_data) > 0 and len(batch) < self.batch_size: |
|
if not self.even_batches: |
|
if len(batch) > batch_length * self.process_index: |
|
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] |
|
else: |
|
|
|
while len(initial_data) < self.batch_size: |
|
initial_data += initial_data |
|
batch = batch + initial_data |
|
yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)] |
|
|
|
def _iter_with_no_split(self): |
|
initial_data = [] |
|
batch_to_yield = [] |
|
for idx, batch in enumerate(self.batch_sampler): |
|
|
|
if not self.drop_last and idx < self.num_processes: |
|
initial_data += batch |
|
|
|
|
|
if idx % self.num_processes == self.process_index: |
|
batch_to_yield = batch |
|
if idx % self.num_processes == self.num_processes - 1 and ( |
|
self.batch_size is None or len(batch) == self.batch_size |
|
): |
|
yield batch_to_yield |
|
batch_to_yield = [] |
|
|
|
if not self.drop_last and len(initial_data) > 0: |
|
if not self.even_batches: |
|
if len(batch_to_yield) > 0: |
|
yield batch_to_yield |
|
else: |
|
|
|
if len(batch_to_yield) == self.batch_size: |
|
yield batch_to_yield |
|
|
|
while len(initial_data) < self.num_processes * self.batch_size: |
|
initial_data += initial_data |
|
|
|
if len(batch) == self.batch_size: |
|
batch = [] |
|
idx += 1 |
|
|
|
cycle_index = 0 |
|
while idx % self.num_processes != 0 or len(batch) > 0: |
|
end_index = cycle_index + self.batch_size - len(batch) |
|
batch += initial_data[cycle_index:end_index] |
|
if idx % self.num_processes == self.process_index: |
|
yield batch |
|
cycle_index = end_index |
|
batch = [] |
|
idx += 1 |
|
class IterableDatasetShard(IterableDataset): |
|
""" |
|
Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will |
|
always yield a number of samples that is a round multiple of the actual batch size (depending of the value of |
|
`split_batches`, this is either `batch_size` or `batch_size x num_processes`). Depending on the value of the |
|
`drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would |
|
be too small or loop with indices from the beginning. |
|
Args: |
|
dataset (`torch.utils.data.dataset.IterableDataset`): |
|
The batch sampler to split in several shards. |
|
batch_size (`int`, *optional*, defaults to 1): |
|
The size of the batches per shard (if `split_batches=False`) or the size of the batches (if |
|
`split_batches=True`). |
|
drop_last (`bool`, *optional*, defaults to `False`): |
|
Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the |
|
beginning. |
|
num_processes (`int`, *optional*, defaults to 1): |
|
The number of processes running concurrently. |
|
process_index (`int`, *optional*, defaults to 0): |
|
The index of the current process. |
|
split_batches (`bool`, *optional*, defaults to `False`): |
|
Whether the shards should be created by splitting a batch to give a piece of it on each process, or by |
|
yielding different full batches on each process. |
|
On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7]`, this will result in: |
|
- the shard on process 0 to yield `[0, 1, 2, 3]` and the shard on process 1 to yield `[4, 5, 6, 7]` if this |
|
argument is set to `False`. |
|
- the shard on process 0 to yield `[0, 1, 4, 5]` and the sampler on process 1 to yield `[2, 3, 6, 7]` if |
|
this argument is set to `True`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset: IterableDataset, |
|
batch_size: int = 1, |
|
drop_last: bool = False, |
|
num_processes: int = 1, |
|
process_index: int = 0, |
|
split_batches: bool = False, |
|
): |
|
if split_batches and batch_size > 1 and batch_size % num_processes != 0: |
|
raise ValueError( |
|
f"To use `IterableDatasetShard` in `split_batches` mode, the batch size ({batch_size}) " |
|
f"needs to be a round multiple of the number of processes ({num_processes})." |
|
) |
|
self.dataset = dataset |
|
self.batch_size = batch_size |
|
self.drop_last = drop_last |
|
self.num_processes = num_processes |
|
self.process_index = process_index |
|
self.split_batches = split_batches |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
if hasattr(self.dataset, "set_epoch"): |
|
self.dataset.set_epoch(epoch) |
|
|
|
def __len__(self): |
|
|
|
if self.drop_last: |
|
return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size |
|
else: |
|
return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size |
|
|
|
def __iter__(self): |
|
if ( |
|
not hasattr(self.dataset, "set_epoch") |
|
and hasattr(self.dataset, "generator") |
|
and isinstance(self.dataset.generator, torch.Generator) |
|
): |
|
self.dataset.generator.manual_seed(self.epoch) |
|
real_batch_size = self.batch_size if self.split_batches else (self.batch_size * self.num_processes) |
|
process_batch_size = (self.batch_size // self.num_processes) if self.split_batches else self.batch_size |
|
process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size) |
|
first_batch = None |
|
current_batch = [] |
|
for element in self.dataset: |
|
current_batch.append(element) |
|
|
|
if len(current_batch) == real_batch_size: |
|
for i in process_slice: |
|
yield current_batch[i] |
|
if first_batch is None: |
|
first_batch = current_batch.copy() |
|
current_batch = [] |
|
|
|
if not self.drop_last and len(current_batch) > 0: |
|
if first_batch is None: |
|
first_batch = current_batch.copy() |
|
while len(current_batch) < real_batch_size: |
|
current_batch += first_batch |
|
for i in process_slice: |
|
yield current_batch[i] |
|
class DataLoaderStateMixin: |
|
""" |
|
Mixin class that adds a state to a `DataLoader` to keep track of the status inside the dataloader such as at the |
|
end of the iteration, the number of items in the dataset in the last batch relative to the batch size, and other |
|
useful information that might be needed. |
|
**Available attributes:** |
|
- **end_of_dataloader** (`bool`) -- Whether at the last iteration or batch |
|
- **remainder** (`int`) -- The number of items that are remaining in the last batch, relative to the total |
|
batch size |
|
""" |
|
|
|
def __init_subclass__(cls, **kwargs): |
|
cls.end_of_dataloader = False |
|
cls.remainder = -1 |
|
|
|
def reset(self): |
|
self.end_of_dataloader = False |
|
self.remainder = -1 |
|
|
|
def begin(self): |
|
"Prepares the gradient state for the current dataloader" |
|
self.reset() |
|
with suppress(Exception): |
|
if not self._drop_last: |
|
length = getattr(self.dataset, "total_dataset_length", len(self.dataset)) |
|
self.remainder = length % self.total_batch_size |
|
self.gradient_state._add_dataloader(self) |
|
|
|
def end(self): |
|
"Cleans up the gradient state after exiting the dataloader" |
|
self.gradient_state._remove_dataloader(self) |
|
class DataLoaderShard(DataLoader, DataLoaderStateMixin): |
|
""" |
|
Subclass of a PyTorch `DataLoader` that will deal with device placement and current distributed setup. |
|
Args: |
|
dataset (`torch.utils.data.dataset.Dataset`): |
|
The dataset to use to build this datalaoder. |
|
device (`torch.device`, *optional*): |
|
If passed, the device to put all batches on. |
|
rng_types (list of `str` or [`~utils.RNGType`]): |
|
The list of random number generators to synchronize at the beginning of each iteration. Should be one or |
|
several of: |
|
- `"torch"`: the base torch random number generator |
|
- `"cuda"`: the CUDA random number generator (GPU only) |
|
- `"xla"`: the XLA random number generator (TPU only) |
|
- `"generator"`: an optional `torch.Generator` |
|
synchronized_generator (`torch.Generator`, *optional*): |
|
A random number generator to keep synchronized across processes. |
|
skip_batches (`int`, *optional*, defaults to 0): |
|
The number of batches to skip at the beginning. |
|
kwargs: |
|
All other keyword arguments to pass to the regular `DataLoader` initialization. |
|
**Available attributes:** |
|
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. |
|
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total |
|
number of processes |
|
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dataset, |
|
device=None, |
|
rng_types=None, |
|
synchronized_generator=None, |
|
skip_batches=0, |
|
_drop_last: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__(dataset, **kwargs) |
|
self.device = device |
|
self.rng_types = rng_types |
|
self.synchronized_generator = synchronized_generator |
|
self.skip_batches = skip_batches |
|
self.gradient_state = GradientState() |
|
self._drop_last = _drop_last |
|
self.iteration = 0 |
|
|
|
def __iter__(self): |
|
if self.rng_types is not None: |
|
synchronize_rng_states(self.rng_types, self.synchronized_generator) |
|
self.begin() |
|
self.set_epoch(self.iteration) |
|
dataloader_iter = super().__iter__() |
|
|
|
try: |
|
current_batch = next(dataloader_iter) |
|
except StopIteration: |
|
yield |
|
batch_index = 0 |
|
while True: |
|
try: |
|
|
|
if self.device is not None: |
|
current_batch = send_to_device(current_batch, self.device) |
|
next_batch = next(dataloader_iter) |
|
if batch_index >= self.skip_batches: |
|
yield current_batch |
|
batch_index += 1 |
|
current_batch = next_batch |
|
except StopIteration: |
|
self.end_of_dataloader = True |
|
if batch_index >= self.skip_batches: |
|
yield current_batch |
|
break |
|
self.iteration += 1 |
|
self.end() |
|
|
|
def set_epoch(self, epoch: int): |
|
|
|
if self.iteration != epoch: |
|
self.iteration = epoch |
|
if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, "set_epoch"): |
|
self.batch_sampler.sampler.set_epoch(epoch) |
|
|
|
|
|
elif hasattr(self.dataset, "set_epoch"): |
|
self.dataset.set_epoch(epoch) |
|
@property |
|
|
|
def total_batch_size(self): |
|
batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler |
|
return ( |
|
batch_sampler.batch_size |
|
if getattr(batch_sampler, "split_batches", False) |
|
else (batch_sampler.batch_size * getattr(batch_sampler, "num_processes", 1)) |
|
) |
|
@property |
|
|
|
def total_dataset_length(self): |
|
if hasattr(self.dataset, "total_length"): |
|
return self.dataset.total_length |
|
else: |
|
return len(self.dataset) |
|
if is_tpu_available(check_device=False): |
|
import torch_xla.distributed.parallel_loader as xpl |
|
class MpDeviceLoaderWrapper(xpl.MpDeviceLoader): |
|
""" |
|
Wrapper for the xpl.MpDeviceLoader class that knows the total batch size. |
|
XLA preloading threads will all call DataLoaderShard's __iter__(). Remove rng_types from DataLoaderShard to |
|
prevent it from using the XLA device in the preloading threads, and synchronize the RNG once from the main |
|
thread only. |
|
**Available attributes:** |
|
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. |
|
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total |
|
number of processes |
|
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. |
|
""" |
|
|
|
def __init__(self, dataloader: DataLoaderShard, device: torch.device): |
|
super().__init__(dataloader, device) |
|
self._rng_types = self._loader.rng_types |
|
self._loader.rng_types = None |
|
|
|
def __iter__(self): |
|
if self._rng_types is not None: |
|
synchronize_rng_states(self._rng_types, self._loader.synchronized_generator) |
|
return super().__iter__() |
|
@property |
|
|
|
def total_batch_size(self): |
|
return self._loader.total_batch_size |
|
@property |
|
|
|
def total_dataset_length(self): |
|
return self._loader.total_dataset_length |
|
@property |
|
|
|
def batch_sampler(self): |
|
return self._loader.batch_sampler |
|
class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin): |
|
""" |
|
Subclass of a PyTorch `DataLoader` that will iterate and preprocess on process 0 only, then dispatch on each |
|
process their part of the batch. |
|
Args: |
|
split_batches (`bool`, *optional*, defaults to `False`): |
|
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or |
|
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of |
|
`num_processes` batches at each iteration). Another way to see this is that the observed batch size will be |
|
the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial |
|
`dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch |
|
size of the `dataloader` is a round multiple of `batch_size`. |
|
skip_batches (`int`, *optional*, defaults to 0): |
|
The number of batches to skip at the beginning of an iteration. |
|
**Available attributes:** |
|
- **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes. |
|
Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total |
|
number of processes |
|
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes. |
|
""" |
|
|
|
def __init__( |
|
self, dataset, split_batches: bool = False, skip_batches=0, _drop_last: bool = False, slice_fn=None, **kwargs |
|
): |
|
shuffle = False |
|
if is_torch_version(">=", "1.11.0"): |
|
from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe |
|
|
|
if isinstance(dataset, ShufflerIterDataPipe): |
|
shuffle = dataset._shuffle_enabled |
|
super().__init__(dataset, **kwargs) |
|
self.split_batches = split_batches |
|
if shuffle: |
|
torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle) |
|
self.gradient_state = GradientState() |
|
self.state = AcceleratorState() |
|
self._drop_last = _drop_last |
|
self.skip_batches = skip_batches |
|
self.slice_fn = slice_tensors if slice_fn is None else slice_fn |
|
self.iteration = 0 |
|
|
|
def _fetch_batches(self, iterator): |
|
batches, batch = None, None |
|
|
|
if self.state.process_index == 0: |
|
try: |
|
if self.split_batches: |
|
|
|
batch = next(iterator) |
|
else: |
|
|
|
|
|
batches = [] |
|
for _ in range(self.state.num_processes): |
|
batches.append(next(iterator)) |
|
batch = concatenate(batches, dim=0) |
|
|
|
|
|
|
|
batch_info = [get_data_structure(batch), False] |
|
except StopIteration: |
|
batch_info = [None, True] |
|
else: |
|
batch_info = [None, self._stop_iteration] |
|
|
|
broadcast_object_list(batch_info) |
|
self._stop_iteration = batch_info[1] |
|
if self._stop_iteration: |
|
|
|
if not self.split_batches and not self._drop_last: |
|
if self.state.process_index == 0 and len(batches) > 0: |
|
batch = concatenate(batches, dim=0) |
|
batch_info = [get_data_structure(batch), False] |
|
else: |
|
batch_info = [None, True] |
|
broadcast_object_list(batch_info) |
|
return batch, batch_info |
|
|
|
def __iter__(self): |
|
self.begin() |
|
self.set_epoch(self.iteration) |
|
main_iterator = None |
|
if is_torch_version(">=", "2.0.1"): |
|
|
|
|
|
|
|
main_iterator = super().__iter__() |
|
elif self.state.process_index == 0: |
|
main_iterator = super().__iter__() |
|
stop_iteration = False |
|
self._stop_iteration = False |
|
first_batch = None |
|
next_batch, next_batch_info = self._fetch_batches(main_iterator) |
|
batch_index = 0 |
|
while not stop_iteration: |
|
batch, batch_info = next_batch, next_batch_info |
|
if self.state.process_index != 0: |
|
|
|
batch = initialize_tensors(batch_info[0]) |
|
batch = send_to_device(batch, self.state.device) |
|
|
|
batch = broadcast(batch, from_process=0) |
|
if not self._drop_last and first_batch is None: |
|
|
|
first_batch = self.slice_fn( |
|
batch, |
|
slice(0, self.state.num_processes), |
|
process_index=self.state.process_index, |
|
num_processes=self.state.num_processes, |
|
) |
|
if batch is None: |
|
raise ValueError( |
|
f"Batch does not contain any data (`{batch}`). At the end of all iterable data available before expected stop iteration." |
|
) |
|
observed_batch_size = find_batch_size(batch) |
|
batch_size = observed_batch_size // self.state.num_processes |
|
stop_iteration = self._stop_iteration |
|
if not stop_iteration: |
|
|
|
|
|
next_batch, next_batch_info = self._fetch_batches(main_iterator) |
|
|
|
if self._stop_iteration and next_batch_info[0] is None: |
|
stop_iteration = True |
|
if not self._drop_last and stop_iteration and observed_batch_size % self.state.num_processes != 0: |
|
|
|
batch = concatenate([batch, first_batch], dim=0) |
|
|
|
batch_size += 1 |
|
data_slice = slice(self.state.process_index * batch_size, (self.state.process_index + 1) * batch_size) |
|
batch = self.slice_fn( |
|
batch, |
|
data_slice, |
|
process_index=self.state.process_index, |
|
num_processes=self.state.num_processes, |
|
) |
|
if stop_iteration: |
|
self.end_of_dataloader = True |
|
self.remainder = observed_batch_size |
|
if batch_index >= self.skip_batches: |
|
yield batch |
|
batch_index += 1 |
|
self.iteration += 1 |
|
self.end() |
|
|
|
def set_epoch(self, epoch: int): |
|
|
|
if self.iteration != epoch: |
|
self.iteration = epoch |
|
if hasattr(self.batch_sampler.sampler, "set_epoch"): |
|
self.batch_sampler.sampler.set_epoch(epoch) |
|
elif hasattr(self.dataset, "set_epoch"): |
|
self.dataset.set_epoch(epoch) |
|
|
|
def __len__(self): |
|
whole_length = super().__len__() |
|
if self.split_batches: |
|
return whole_length |
|
elif self._drop_last: |
|
return whole_length // self.state.num_processes |
|
else: |
|
return math.ceil(whole_length / self.state.num_processes) |
|
@property |
|
|
|
def total_batch_size(self): |
|
return ( |
|
self.dataset.batch_size if self.split_batches else (self.dataset.batch_size * self.dataset.num_processes) |
|
) |
|
@property |
|
|
|
def total_dataset_length(self): |
|
return len(self.dataset) |
|
def prepare_data_loader( |
|
dataloader: DataLoader, |
|
device: Optional[torch.device] = None, |
|
num_processes: Optional[int] = None, |
|
process_index: Optional[int] = None, |
|
split_batches: bool = False, |
|
put_on_device: bool = False, |
|
rng_types: Optional[List[Union[str, RNGType]]] = None, |
|
dispatch_batches: Optional[bool] = None, |
|
even_batches: bool = True, |
|
slice_fn_for_dispatch: Optional[Callable] = None, |
|
) -> DataLoader: |
|
""" |
|
Wraps a PyTorch `DataLoader` to generate batches for one of the processes only. |
|
Depending on the value of the `drop_last` attribute of the `dataloader` passed, it will either stop the iteration |
|
at the first batch that would be too small / not present on all processes or loop with indices from the beginning. |
|
Args: |
|
dataloader (`torch.utils.data.dataloader.DataLoader`): |
|
The data loader to split across several devices. |
|
device (`torch.device`): |
|
The target device for the returned `DataLoader`. |
|
num_processes (`int`, *optional*): |
|
The number of processes running concurrently. Will default to the value given by |
|
[`~state.AcceleratorState`]. |
|
process_index (`int`, *optional*): |
|
The index of the current process. Will default to the value given by [`~state.AcceleratorState`]. |
|
split_batches (`bool`, *optional*, defaults to `False`): |
|
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or |
|
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of |
|
`num_processes` batches at each iteration). |
|
Another way to see this is that the observed batch size will be the same as the initial `dataloader` if |
|
this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes` |
|
otherwise. |
|
Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of |
|
`batch_size`. |
|
put_on_device (`bool`, *optional*, defaults to `False`): |
|
Whether or not to put the batches on `device` (only works if the batches are nested list, tuples or |
|
dictionaries of tensors). |
|
rng_types (list of `str` or [`~utils.RNGType`]): |
|
The list of random number generators to synchronize at the beginning of each iteration. Should be one or |
|
several of: |
|
- `"torch"`: the base torch random number generator |
|
- `"cuda"`: the CUDA random number generator (GPU only) |
|
- `"xla"`: the XLA random number generator (TPU only) |
|
- `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your |
|
dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type. |
|
dispatch_batches (`bool`, *optional*): |
|
If set to `True`, the datalaoder prepared is only iterated through on the main process and then the batches |
|
are split and broadcast to each process. Will default to `True` when the underlying dataset is an |
|
`IterableDataset`, `False` otherwise. |
|
even_batches (`bool`, *optional*, defaults to `True`): |
|
If set to `True`, in cases where the total batch size across all processes does not exactly divide the |
|
dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among |
|
all workers. |
|
slice_fn_for_dispatch (`Callable`, *optional*`): |
|
If passed, this function will be used to slice tensors across `num_processes`. Will default to |
|
[`~utils.slice_tensors`]. This argument is used only when `dispatch_batches` is set to `True` and will be |
|
ignored otherwise. |
|
Returns: |
|
`torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches |
|
<Tip warning={true}> |
|
`BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches` |
|
equal to `False` |
|
</Tip> |
|
""" |
|
if dispatch_batches is None: |
|
if not put_on_device: |
|
dispatch_batches = False |
|
else: |
|
dispatch_batches = isinstance(dataloader.dataset, IterableDataset) |
|
if dispatch_batches and not put_on_device: |
|
raise ValueError("Using `dispatch_batches=True` requires `put_on_device=True`.") |
|
|
|
state = AcceleratorState() |
|
if num_processes is None: |
|
num_processes = state.num_processes |
|
if process_index is None: |
|
process_index = state.process_index |
|
|
|
if split_batches and dataloader.batch_size > 1 and dataloader.batch_size % num_processes != 0: |
|
raise ValueError( |
|
f"To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) " |
|
f"needs to be a round multiple of the number of processes ({num_processes})." |
|
) |
|
new_dataset = dataloader.dataset |
|
|
|
new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None |
|
sampler_is_batch_sampler = False |
|
synchronized_generator = None |
|
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler) |
|
if sampler_is_batch_sampler: |
|
sampler = getattr(dataloader.sampler, "sampler", None) |
|
else: |
|
sampler = getattr(dataloader.batch_sampler, "sampler", None) |
|
if isinstance(sampler, RandomSampler): |
|
|
|
|
|
|
|
|
|
sampler = SeedableRandomSampler( |
|
data_source=sampler.data_source, |
|
replacement=sampler.replacement, |
|
num_samples=sampler._num_samples, |
|
generator=getattr(sampler, "generator", torch.Generator()), |
|
) |
|
|
|
if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and not dispatch_batches: |
|
if isinstance(new_dataset, IterableDataset): |
|
if getattr(dataloader.dataset, "generator", None) is not None: |
|
synchronized_generator = dataloader.dataset.generator |
|
new_dataset = IterableDatasetShard( |
|
new_dataset, |
|
batch_size=dataloader.batch_size, |
|
drop_last=dataloader.drop_last, |
|
num_processes=num_processes, |
|
process_index=process_index, |
|
split_batches=split_batches, |
|
) |
|
else: |
|
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler |
|
new_batch_sampler = BatchSamplerShard( |
|
batch_sampler, |
|
num_processes=num_processes, |
|
process_index=process_index, |
|
split_batches=split_batches, |
|
even_batches=even_batches, |
|
) |
|
|
|
ignore_kwargs = [ |
|
"batch_size", |
|
"shuffle", |
|
"sampler", |
|
"batch_sampler", |
|
"drop_last", |
|
] |
|
if rng_types is not None and synchronized_generator is None and "generator" in rng_types: |
|
rng_types.remove("generator") |
|
kwargs = { |
|
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) |
|
for k in _PYTORCH_DATALOADER_KWARGS |
|
if k not in ignore_kwargs |
|
} |
|
|
|
if new_batch_sampler is None: |
|
kwargs["drop_last"] = dataloader.drop_last |
|
kwargs["batch_size"] = ( |
|
dataloader.batch_size // num_processes if split_batches and not dispatch_batches else dataloader.batch_size |
|
) |
|
if isinstance(sampler, SeedableRandomSampler): |
|
if sampler_is_batch_sampler: |
|
dataloader.sampler.sampler = sampler |
|
else: |
|
dataloader.batch_sampler.sampler = sampler |
|
if dispatch_batches: |
|
kwargs.pop("generator") |
|
dataloader = DataLoaderDispatcher( |
|
new_dataset, |
|
split_batches=split_batches, |
|
batch_sampler=new_batch_sampler, |
|
_drop_last=dataloader.drop_last, |
|
slice_fn=slice_fn_for_dispatch, |
|
**kwargs, |
|
) |
|
elif sampler_is_batch_sampler: |
|
dataloader = DataLoaderShard( |
|
new_dataset, |
|
device=device if put_on_device and state.distributed_type != DistributedType.TPU else None, |
|
sampler=new_batch_sampler, |
|
batch_size=dataloader.batch_size, |
|
rng_types=rng_types, |
|
_drop_last=dataloader.drop_last, |
|
synchronized_generator=synchronized_generator, |
|
**kwargs, |
|
) |
|
else: |
|
dataloader = DataLoaderShard( |
|
new_dataset, |
|
device=device if put_on_device and state.distributed_type != DistributedType.TPU else None, |
|
batch_sampler=new_batch_sampler, |
|
rng_types=rng_types, |
|
synchronized_generator=synchronized_generator, |
|
_drop_last=dataloader.drop_last, |
|
**kwargs, |
|
) |
|
if state.distributed_type == DistributedType.TPU: |
|
return MpDeviceLoaderWrapper(dataloader, device) |
|
return dataloader |
|
class SkipBatchSampler(BatchSampler): |
|
""" |
|
A `torch.utils.data.BatchSampler` that skips the first `n` batches of another `torch.utils.data.BatchSampler`. |
|
""" |
|
|
|
def __init__(self, batch_sampler, skip_batches=0): |
|
self.batch_sampler = batch_sampler |
|
self.skip_batches = skip_batches |
|
|
|
def __iter__(self): |
|
for index, samples in enumerate(self.batch_sampler): |
|
if index >= self.skip_batches: |
|
yield samples |
|
@property |
|
|
|
def total_length(self): |
|
return len(self.batch_sampler) |
|
|
|
def __len__(self): |
|
return len(self.batch_sampler) - self.skip_batches |
|
class SkipDataLoader(DataLoader): |
|
""" |
|
Subclass of a PyTorch `DataLoader` that will skip the first batches. |
|
Args: |
|
dataset (`torch.utils.data.dataset.Dataset`): |
|
The dataset to use to build this datalaoder. |
|
skip_batches (`int`, *optional*, defaults to 0): |
|
The number of batches to skip at the beginning. |
|
kwargs: |
|
All other keyword arguments to pass to the regular `DataLoader` initialization. |
|
""" |
|
|
|
def __init__(self, dataset, skip_batches=0, **kwargs): |
|
super().__init__(dataset, **kwargs) |
|
self.skip_batches = skip_batches |
|
|
|
def __iter__(self): |
|
for index, batch in enumerate(super().__iter__()): |
|
if index >= self.skip_batches: |
|
yield batch |
|
def skip_first_batches(dataloader, num_batches=0): |
|
""" |
|
Creates a `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`. |
|
""" |
|
dataset = dataloader.dataset |
|
sampler_is_batch_sampler = False |
|
if isinstance(dataset, IterableDataset): |
|
new_batch_sampler = None |
|
else: |
|
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler) |
|
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler |
|
new_batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=num_batches) |
|
|
|
ignore_kwargs = [ |
|
"batch_size", |
|
"shuffle", |
|
"sampler", |
|
"batch_sampler", |
|
"drop_last", |
|
] |
|
kwargs = { |
|
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) |
|
for k in _PYTORCH_DATALOADER_KWARGS |
|
if k not in ignore_kwargs |
|
} |
|
|
|
if new_batch_sampler is None: |
|
kwargs["drop_last"] = dataloader.drop_last |
|
kwargs["batch_size"] = dataloader.batch_size |
|
if isinstance(dataloader, DataLoaderDispatcher): |
|
if new_batch_sampler is None: |
|
|
|
kwargs["skip_batches"] = num_batches |
|
dataloader = DataLoaderDispatcher( |
|
dataset, |
|
split_batches=dataloader.split_batches, |
|
batch_sampler=new_batch_sampler, |
|
_drop_last=dataloader._drop_last, |
|
**kwargs, |
|
) |
|
elif isinstance(dataloader, DataLoaderShard): |
|
if new_batch_sampler is None: |
|
|
|
kwargs["skip_batches"] = num_batches |
|
elif sampler_is_batch_sampler: |
|
kwargs["sampler"] = new_batch_sampler |
|
kwargs["batch_size"] = dataloader.batch_size |
|
else: |
|
kwargs["batch_sampler"] = new_batch_sampler |
|
dataloader = DataLoaderShard( |
|
dataset, |
|
device=dataloader.device, |
|
rng_types=dataloader.rng_types, |
|
synchronized_generator=dataloader.synchronized_generator, |
|
**kwargs, |
|
) |
|
else: |
|
if new_batch_sampler is None: |
|
|
|
dataloader = SkipDataLoader(dataset, skip_batches=num_batches, **kwargs) |
|
else: |
|
dataloader = DataLoader(dataset, batch_sampler=new_batch_sampler, **kwargs) |
|
return dataloader |
|
|