|
class LocalSGD: |
|
""" |
|
A helper class to support local SGD on top of Accelerator. It simply runs a given number of updates independently |
|
on each device, and averages model weights every K synchronization step. |
|
It should be used only in the multi-GPU (or multi-CPU) setup without extensions such as DeepSpeed. In particular, |
|
this is a simple implementation that cannot support scenarios such as model parallelism. |
|
Although we are not aware of the true origins of this simple approach, the idea of local SGD is quite old and goes |
|
back to at least: |
|
Zhang, J., De Sa, C., Mitliagkas, I., & Ré, C. (2016). [Parallel SGD: When does averaging help?. arXiv preprint |
|
arXiv:1606.07365.](https://arxiv.org/abs/1606.07365) |
|
We credit the term Local SGD to the following paper (but there might be earlier references we are not aware of). |
|
Stich, Sebastian Urban. ["Local SGD Converges Fast and Communicates Little." ICLR 2019-International Conference on |
|
Learning Representations. No. CONF. 2019.](https://arxiv.org/abs/1805.09767) |
|
""" |
|
|
|
def __enter__(self): |
|
if self.enabled: |
|
self.model_sync_obj = self.model.no_sync() |
|
self.model_sync_obj.__enter__() |
|
return self |
|
|
|
def __exit__(self, type, value, tb): |
|
if self.enabled: |
|
|
|
self._sync_and_avg_model_params() |
|
self.model_sync_obj.__exit__(type, value, tb) |
|
|
|
def __init__(self, accelerator: Accelerator, model: torch.nn.Module, local_sgd_steps: int, enabled: bool = True): |
|
""" |
|
Constructor. |
|
Args: |
|
model (`torch.nn.Module): |
|
The model whose parameters we need to average. |
|
accelerator (`Accelerator`): |
|
Accelerator object. |
|
local_sgd_steps (`int`): |
|
A number of local SGD steps (before model parameters are synchronized). |
|
enabled (`bool): |
|
Local SGD is disabled if this parameter set to `False`. |
|
""" |
|
if accelerator.distributed_type not in [ |
|
DistributedType.NO, |
|
DistributedType.MULTI_CPU, |
|
DistributedType.MULTI_GPU, |
|
]: |
|
raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)") |
|
self.enabled = enabled and accelerator.distributed_type != DistributedType.NO |
|
self.num_steps = 0 |
|
if self.enabled: |
|
self.accelerator = accelerator |
|
self.model = model |
|
self.local_sgd_steps = local_sgd_steps |
|
|
|
def step(self): |
|
""" |
|
This function makes a "step" and synchronizes model parameters if necessary. |
|
""" |
|
self.num_steps += 1 |
|
if not self.enabled: |
|
return |
|
if self.num_steps % self.local_sgd_steps == 0: |
|
self._sync_and_avg_model_params() |
|
|
|
def _sync_and_avg_model_params(self): |
|
""" |
|
Synchronize + Average model parameters across all GPUs |
|
""" |
|
self.accelerator.wait_for_everyone() |
|
with self.accelerator.autocast(): |
|
for param in self.model.parameters(): |
|
param.data = self.accelerator.reduce(param.data, reduction="mean") |
|
|