PNG_Model_Grid_Script / png_model_grid.py
muchkanensys's picture
Upload png_model_grid.py
4ad7a34
raw
history blame
4.97 kB
from collections import namedtuple
from copy import copy
from itertools import permutations, chain
import random
import csv
from io import StringIO
from PIL import Image
import numpy as np
import os
import modules.scripts as scripts
import gradio as gr
from modules import images, sd_samplers
from modules.paths import models_path
from modules.hypernetworks import hypernetwork
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.sd_samplers
import modules.sd_models
import modules.generation_parameters_copypaste as parameters_copypaste
def edit_prompt(p,x):
img = Image.open(x)
params={}
params["Prompt"] = ""
params["Negative prompt"] = ""
params["Seed"] = ""
if img.text['parameters']:
params = parameters_copypaste.parse_generation_parameters(img.text['parameters'])
p.prompt = params["Prompt"]
p.negative_prompt = params["Negative prompt"]
p.seed = params["Seed"]
def apply_checkpoint(p, x, xs):
info = modules.sd_models.get_closet_checkpoint_match(x)
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info)
def confirm_checkpoints(p, xs):
for x in xs:
print(f'confirm_checkpoint {x}')
if modules.sd_models.get_closet_checkpoint_match(x) is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
def draw_xy_grid(p, input_dir, ms, cell):
ps = os.listdir(input_dir)
ver_texts = [[images.GridAnnotation(y)] for y in ms]
hor_texts = [[images.GridAnnotation(x)] for x in ps]
# Temporary list of all the images that are generated to be populated into the grid.
# Will be filled with empty images for any individual step that fails to process properly
image_cache = []
processed_result = None
cell_mode = "P"
cell_size = (1,1)
state.job_count = len(ms) * len(ps) * p.n_iter
for iy, y in enumerate(ms):
for ix, x in enumerate(ps):
state.job = f"{ix + iy * len(ps) + 1} out of {len(ps) * len(ms)}"
processed:Processed = cell(os.path.join(input_dir,x), y)
try:
# this dereference will throw an exception if the image was not processed
# (this happens in cases such as if the user stops the process from the UI)
processed_image = processed.images[0]
if processed_result is None:
# Use our first valid processed result as a template container to hold our full results
processed_result = copy(processed)
cell_mode = processed_image.mode
cell_size = processed_image.size
processed_result.images = [Image.new(cell_mode, cell_size)]
image_cache.append(processed_image)
except:
image_cache.append(Image.new(cell_mode, cell_size))
if not processed_result:
print("Unexpected error: draw_xy_grid failed to return even a single processed image")
return Processed()
grid = images.image_grid(image_cache, rows=len(ms))
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
processed_result.images[0] = grid
return processed_result
class SharedSettingsStackHelper(object):
def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae
def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
class Script(scripts.Script):
def title(self):
return "PNG/Model Grid"
def ui(self, is_img2img):
with gr.Row():
input_dir = gr.Textbox(label="PNG input dir", lines=1)
with gr.Row():
models = gr.Textbox(label="Checkpoint names", lines=1)
return [input_dir ,models]
def run(self, p, input_dir ,models):
p.batch_count = 1
p.batch_size = 1
ms = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(models)))]
confirm_checkpoints(p,ms)
def cell(x, y):
pc = copy(p)
edit_prompt(pc, x)
apply_checkpoint(pc, y, ms)
return process_images(pc)
with SharedSettingsStackHelper():
processed = draw_xy_grid(
p,
input_dir=input_dir,
ms=ms,
cell=cell
)
if opts.grid_save:
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p)
return processed