|
from collections import namedtuple |
|
from copy import copy |
|
from itertools import permutations, chain |
|
import random |
|
import csv |
|
from io import StringIO |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
|
|
import modules.scripts as scripts |
|
import gradio as gr |
|
from modules import images, sd_samplers |
|
from modules.paths import models_path |
|
from modules.hypernetworks import hypernetwork |
|
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img |
|
from modules.shared import opts, cmd_opts, state |
|
import modules.shared as shared |
|
import modules.sd_samplers |
|
import modules.sd_models |
|
import modules.generation_parameters_copypaste as parameters_copypaste |
|
|
|
|
|
def edit_prompt(p,x): |
|
img = Image.open(x) |
|
params={} |
|
params["Prompt"] = "" |
|
params["Negative prompt"] = "" |
|
params["Seed"] = "" |
|
if img.text['parameters']: |
|
params = parameters_copypaste.parse_generation_parameters(img.text['parameters']) |
|
|
|
|
|
|
|
p.prompt = params["Prompt"] |
|
p.negative_prompt = params["Negative prompt"] |
|
p.seed = params["Seed"] |
|
|
|
|
|
def apply_checkpoint(p, x, xs): |
|
info = modules.sd_models.get_closet_checkpoint_match(x) |
|
if info is None: |
|
raise RuntimeError(f"Unknown checkpoint: {x}") |
|
modules.sd_models.reload_model_weights(shared.sd_model, info) |
|
|
|
def confirm_checkpoints(p, xs): |
|
for x in xs: |
|
print(f'confirm_checkpoint {x}') |
|
if modules.sd_models.get_closet_checkpoint_match(x) is None: |
|
raise RuntimeError(f"Unknown checkpoint: {x}") |
|
|
|
|
|
|
|
def draw_xy_grid(p, input_dir, ms, cell): |
|
ps = os.listdir(input_dir) |
|
|
|
ver_texts = [[images.GridAnnotation(y)] for y in ms] |
|
hor_texts = [[images.GridAnnotation(x)] for x in ps] |
|
|
|
|
|
|
|
image_cache = [] |
|
|
|
processed_result = None |
|
cell_mode = "P" |
|
cell_size = (1,1) |
|
|
|
state.job_count = len(ms) * len(ps) * p.n_iter |
|
|
|
for iy, y in enumerate(ms): |
|
for ix, x in enumerate(ps): |
|
state.job = f"{ix + iy * len(ps) + 1} out of {len(ps) * len(ms)}" |
|
processed:Processed = cell(os.path.join(input_dir,x), y) |
|
try: |
|
|
|
|
|
processed_image = processed.images[0] |
|
|
|
if processed_result is None: |
|
|
|
processed_result = copy(processed) |
|
cell_mode = processed_image.mode |
|
cell_size = processed_image.size |
|
processed_result.images = [Image.new(cell_mode, cell_size)] |
|
|
|
image_cache.append(processed_image) |
|
|
|
except: |
|
image_cache.append(Image.new(cell_mode, cell_size)) |
|
|
|
if not processed_result: |
|
print("Unexpected error: draw_xy_grid failed to return even a single processed image") |
|
return Processed() |
|
|
|
grid = images.image_grid(image_cache, rows=len(ms)) |
|
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts) |
|
|
|
processed_result.images[0] = grid |
|
|
|
return processed_result |
|
|
|
|
|
|
|
class SharedSettingsStackHelper(object): |
|
def __enter__(self): |
|
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers |
|
self.vae = opts.sd_vae |
|
|
|
def __exit__(self, exc_type, exc_value, tb): |
|
opts.data["sd_vae"] = self.vae |
|
modules.sd_models.reload_model_weights() |
|
modules.sd_vae.reload_vae_weights() |
|
|
|
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers |
|
|
|
|
|
class Script(scripts.Script): |
|
def title(self): |
|
return "PNG/Model Grid" |
|
|
|
def ui(self, is_img2img): |
|
|
|
with gr.Row(): |
|
input_dir = gr.Textbox(label="PNG input dir", lines=1) |
|
with gr.Row(): |
|
models = gr.Textbox(label="Checkpoint names", lines=1) |
|
|
|
return [input_dir ,models] |
|
|
|
def run(self, p, input_dir ,models): |
|
|
|
p.batch_count = 1 |
|
p.batch_size = 1 |
|
|
|
ms = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(models)))] |
|
|
|
confirm_checkpoints(p,ms) |
|
|
|
def cell(x, y): |
|
pc = copy(p) |
|
edit_prompt(pc, x) |
|
apply_checkpoint(pc, y, ms) |
|
return process_images(pc) |
|
|
|
with SharedSettingsStackHelper(): |
|
processed = draw_xy_grid( |
|
p, |
|
input_dir=input_dir, |
|
ms=ms, |
|
cell=cell |
|
) |
|
|
|
if opts.grid_save: |
|
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p) |
|
|
|
return processed |