|
import json |
|
import datasets |
|
import os |
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_LICENSE = """\ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
SemEval 2022 Task 8: Multilingual News Article Similarity |
|
""" |
|
|
|
_LANGUAGES_TRAIN = { |
|
"en": "en", |
|
"de": "de", |
|
"es": "es", |
|
"pl": "pl", |
|
"tr": "tr", |
|
"fr": "fr", |
|
"ar": "ar", |
|
"de-en": "de-en", |
|
} |
|
_LANGUAGES_TEST = { |
|
"en": "en", |
|
"de": "de", |
|
"es": "es", |
|
"pl": "pl", |
|
"tr": "tr", |
|
"ar": "ar", |
|
"ru": "ru", |
|
"zh": "zh", |
|
"fr": "fr", |
|
"de-en": "de-en", |
|
"es-en": "es-en", |
|
"it": "it", |
|
"pl-en": "pl-en", |
|
"zh-en": "zh-en", |
|
"es-it": "es-it", |
|
"de-fr": "de-fr", |
|
"de-pl": "de-pl", |
|
"fr-pl": "fr-pl", |
|
} |
|
_LANGUAGES = {**_LANGUAGES_TRAIN, **_LANGUAGES_TEST} |
|
|
|
_ALL_LANGUAGES = "all_languages" |
|
_HOMEPAGE_URL = "https://competitions.codalab.org/competitions/33835" |
|
_DOWNLOAD_URL = "{lang}/{split}.jsonl" |
|
_VERSION = "1.0.0" |
|
|
|
|
|
class STS22Task8Config(datasets.BuilderConfig): |
|
"""BuilderConfig for STS22Task8Config.""" |
|
|
|
def __init__(self, languages=None, **kwargs): |
|
super(STS22Task8Config, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs), |
|
self.languages = languages |
|
|
|
|
|
class STS22Task8(datasets.GeneratorBasedBuilder): |
|
|
|
"""Multilingual News Article Similarity""" |
|
|
|
BUILDER_CONFIGS = [ |
|
STS22Task8Config( |
|
name=_ALL_LANGUAGES, |
|
languages=_LANGUAGES, |
|
description="Multilingual News Article Similarity", |
|
) |
|
] + [ |
|
STS22Task8Config( |
|
name=lang, |
|
languages=[lang], |
|
description=f"{_LANGUAGES[lang]} examples from a collection of multilingual news articles", |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
BUILDER_CONFIG_CLASS = STS22Task8Config |
|
DEFAULT_CONFIG_NAME = _ALL_LANGUAGES |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"score": datasets.Value("float32"), |
|
}, |
|
), |
|
supervised_keys=None, |
|
license=_LICENSE, |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
test_urls = [ |
|
_DOWNLOAD_URL.format(split="test", lang=lang) for lang in self.config.languages if lang in _LANGUAGES_TEST |
|
] |
|
|
|
|
|
test_paths = dl_manager.download_and_extract(test_urls) |
|
|
|
return [ |
|
|
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths}), |
|
] |
|
|
|
def _generate_examples(self, file_paths): |
|
row_count = 0 |
|
for file_path in file_paths: |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
for line in f: |
|
yield row_count, json.loads(line) |
|
row_count += 1 |
|
|