Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
License:
Samoed commited on
Commit
add6c3f
·
verified ·
1 Parent(s): 12d048b

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md CHANGED
@@ -1,4 +1,16 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: corpus
4
  features:
@@ -53,4 +65,132 @@ configs:
53
  data_files:
54
  - split: test
55
  path: queries/test-*
 
 
 
56
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - code
6
+ - eng
7
+ license: bsd-3-clause
8
+ multilinguality: multilingual
9
+ source_datasets:
10
+ - embedding-benchmark/WikiSQL_mteb
11
+ task_categories:
12
+ - text-retrieval
13
+ task_ids: []
14
  dataset_info:
15
  - config_name: corpus
16
  features:
 
65
  data_files:
66
  - split: test
67
  path: queries/test-*
68
+ tags:
69
+ - mteb
70
+ - text
71
  ---
72
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
73
+
74
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
75
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">WikiSQLRetrieval</h1>
76
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
77
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
78
+ </div>
79
+
80
+ A code retrieval task based on WikiSQL dataset with natural language questions and corresponding SQL queries. Each query is a natural language question (e.g., 'What is the name of the team that has scored the most goals?'), and the corpus contains SQL query implementations. The task is to retrieve the correct SQL query that answers the natural language question. Queries are natural language questions while the corpus contains SQL SELECT statements with proper syntax and logic for querying database tables.
81
+
82
+ | | |
83
+ |---------------|---------------------------------------------|
84
+ | Task category | t2t |
85
+ | Domains | Programming |
86
+ | Reference | https://huggingface.co/datasets/embedding-benchmark/WikiSQL_mteb |
87
+
88
+ Source datasets:
89
+ - [embedding-benchmark/WikiSQL_mteb](https://huggingface.co/datasets/embedding-benchmark/WikiSQL_mteb)
90
+
91
+
92
+ ## How to evaluate on this task
93
+
94
+ You can evaluate an embedding model on this dataset using the following code:
95
+
96
+ ```python
97
+ import mteb
98
+
99
+ task = mteb.get_task("WikiSQLRetrieval")
100
+ evaluator = mteb.MTEB([task])
101
+
102
+ model = mteb.get_model(YOUR_MODEL)
103
+ evaluator.run(model)
104
+ ```
105
+
106
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
107
+ To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
108
+
109
+ ## Citation
110
+
111
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
112
+
113
+ ```bibtex
114
+
115
+ @article{zhong2017seq2sql,
116
+ archiveprefix = {arXiv},
117
+ author = {Zhong, Victor and Xiong, Caiming and Socher, Richard},
118
+ eprint = {1709.00103},
119
+ primaryclass = {cs.CL},
120
+ title = {Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning},
121
+ year = {2017},
122
+ }
123
+
124
+
125
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
126
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
127
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
128
+ publisher = {arXiv},
129
+ journal={arXiv preprint arXiv:2502.13595},
130
+ year={2025},
131
+ url={https://arxiv.org/abs/2502.13595},
132
+ doi = {10.48550/arXiv.2502.13595},
133
+ }
134
+
135
+ @article{muennighoff2022mteb,
136
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
137
+ title = {MTEB: Massive Text Embedding Benchmark},
138
+ publisher = {arXiv},
139
+ journal={arXiv preprint arXiv:2210.07316},
140
+ year = {2022}
141
+ url = {https://arxiv.org/abs/2210.07316},
142
+ doi = {10.48550/ARXIV.2210.07316},
143
+ }
144
+ ```
145
+
146
+ # Dataset Statistics
147
+ <details>
148
+ <summary> Dataset Statistics</summary>
149
+
150
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
151
+
152
+ ```python
153
+ import mteb
154
+
155
+ task = mteb.get_task("WikiSQLRetrieval")
156
+
157
+ desc_stats = task.metadata.descriptive_stats
158
+ ```
159
+
160
+ ```json
161
+ {
162
+ "test": {
163
+ "num_samples": 4096,
164
+ "number_of_characters": 3416755,
165
+ "documents_text_statistics": {
166
+ "total_text_length": 127326,
167
+ "min_text_length": 24,
168
+ "average_text_length": 62.1708984375,
169
+ "max_text_length": 211,
170
+ "unique_texts": 2022
171
+ },
172
+ "documents_image_statistics": null,
173
+ "queries_text_statistics": {
174
+ "total_text_length": 3289429,
175
+ "min_text_length": 540,
176
+ "average_text_length": 1606.16650390625,
177
+ "max_text_length": 5833,
178
+ "unique_texts": 2043
179
+ },
180
+ "queries_image_statistics": null,
181
+ "relevant_docs_statistics": {
182
+ "num_relevant_docs": 2048,
183
+ "min_relevant_docs_per_query": 1,
184
+ "average_relevant_docs_per_query": 1.0,
185
+ "max_relevant_docs_per_query": 1,
186
+ "unique_relevant_docs": 2048
187
+ },
188
+ "top_ranked_statistics": null
189
+ }
190
+ }
191
+ ```
192
+
193
+ </details>
194
+
195
+ ---
196
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*