Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
be3f861
·
verified ·
1 Parent(s): 47255fb

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +155 -0
README.md CHANGED
@@ -1,4 +1,28 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: amh
4
  features:
@@ -257,4 +281,135 @@ configs:
257
  data_files:
258
  - split: test
259
  path: yor/test-*
 
 
 
260
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - amh
6
+ - eng
7
+ - fra
8
+ - hau
9
+ - ibo
10
+ - lin
11
+ - lug
12
+ - orm
13
+ - pcm
14
+ - run
15
+ - sna
16
+ - som
17
+ - swa
18
+ - tir
19
+ - xho
20
+ - yor
21
+ license: afl-3.0
22
+ multilinguality: multilingual
23
+ task_categories:
24
+ - text-classification
25
+ task_ids: []
26
  dataset_info:
27
  - config_name: amh
28
  features:
 
281
  data_files:
282
  - split: test
283
  path: yor/test-*
284
+ tags:
285
+ - mteb
286
+ - text
287
  ---
288
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
289
+
290
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
291
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MasakhaNEWSClusteringP2P</h1>
292
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
293
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
294
+ </div>
295
+
296
+ Clustering of news article headlines and texts from MasakhaNEWS dataset. Clustering of 10 sets on the news article label.
297
+
298
+ | | |
299
+ |---------------|---------------------------------------------|
300
+ | Task category | t2c |
301
+ | Domains | News, Written, Non-fiction |
302
+ | Reference | https://huggingface.co/datasets/masakhane/masakhanews |
303
+
304
+
305
+ ## How to evaluate on this task
306
+
307
+ You can evaluate an embedding model on this dataset using the following code:
308
+
309
+ ```python
310
+ import mteb
311
+
312
+ task = mteb.get_tasks(["MasakhaNEWSClusteringP2P"])
313
+ evaluator = mteb.MTEB(task)
314
+
315
+ model = mteb.get_model(YOUR_MODEL)
316
+ evaluator.run(model)
317
+ ```
318
+
319
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
320
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
321
+
322
+ ## Citation
323
+
324
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
325
+
326
+ ```bibtex
327
+
328
+ @article{adelani2023masakhanews,
329
+ author = {David Ifeoluwa Adelani and Marek Masiak and Israel Abebe Azime and Jesujoba Oluwadara Alabi and Atnafu Lambebo Tonja and Christine Mwase and Odunayo Ogundepo and Bonaventure F. P. Dossou and Akintunde Oladipo and Doreen Nixdorf and Chris Chinenye Emezue and Sana Sabah al-azzawi and Blessing K. Sibanda and Davis David and Lolwethu Ndolela and Jonathan Mukiibi and Tunde Oluwaseyi Ajayi and Tatiana Moteu Ngoli and Brian Odhiambo and Abraham Toluwase Owodunni and Nnaemeka C. Obiefuna and Shamsuddeen Hassan Muhammad and Saheed Salahudeen Abdullahi and Mesay Gemeda Yigezu and Tajuddeen Gwadabe and Idris Abdulmumin and Mahlet Taye Bame and Oluwabusayo Olufunke Awoyomi and Iyanuoluwa Shode and Tolulope Anu Adelani and Habiba Abdulganiy Kailani and Abdul-Hakeem Omotayo and Adetola Adeeko and Afolabi Abeeb and Anuoluwapo Aremu and Olanrewaju Samuel and Clemencia Siro and Wangari Kimotho and Onyekachi Raphael Ogbu and Chinedu E. Mbonu and Chiamaka I. Chukwuneke and Samuel Fanijo and Jessica Ojo and Oyinkansola F. Awosan and Tadesse Kebede Guge and Sakayo Toadoum Sari and Pamela Nyatsine and Freedmore Sidume and Oreen Yousuf and Mardiyyah Oduwole and Ussen Kimanuka and Kanda Patrick Tshinu and Thina Diko and Siyanda Nxakama and Abdulmejid Tuni Johar and Sinodos Gebre and Muhidin Mohamed and Shafie Abdi Mohamed and Fuad Mire Hassan and Moges Ahmed Mehamed and Evrard Ngabire and and Pontus Stenetorp},
330
+ journal = {ArXiv},
331
+ title = {MasakhaNEWS: News Topic Classification for African languages},
332
+ volume = {},
333
+ year = {2023},
334
+ }
335
+
336
+
337
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
338
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
339
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
340
+ publisher = {arXiv},
341
+ journal={arXiv preprint arXiv:2502.13595},
342
+ year={2025},
343
+ url={https://arxiv.org/abs/2502.13595},
344
+ doi = {10.48550/arXiv.2502.13595},
345
+ }
346
+
347
+ @article{muennighoff2022mteb,
348
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
349
+ title = {MTEB: Massive Text Embedding Benchmark},
350
+ publisher = {arXiv},
351
+ journal={arXiv preprint arXiv:2210.07316},
352
+ year = {2022}
353
+ url = {https://arxiv.org/abs/2210.07316},
354
+ doi = {10.48550/ARXIV.2210.07316},
355
+ }
356
+ ```
357
+
358
+ # Dataset Statistics
359
+ <details>
360
+ <summary> Dataset Statistics</summary>
361
+
362
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
363
+
364
+ ```python
365
+ import mteb
366
+
367
+ task = mteb.get_task("MasakhaNEWSClusteringP2P")
368
+
369
+ desc_stats = task.metadata.descriptive_stats
370
+ ```
371
+
372
+ ```json
373
+ {
374
+ "test": {
375
+ "num_samples": 80,
376
+ "number_of_characters": 6242,
377
+ "min_text_length": 35,
378
+ "average_text_length": 78.025,
379
+ "max_text_length": 190,
380
+ "unique_texts": 6236,
381
+ "min_labels_per_text": 286,
382
+ "average_labels_per_text": 78.025,
383
+ "max_labels_per_text": 1589,
384
+ "unique_labels": 7,
385
+ "labels": {
386
+ "0": {
387
+ "count": 785
388
+ },
389
+ "2": {
390
+ "count": 1258
391
+ },
392
+ "3": {
393
+ "count": 1589
394
+ },
395
+ "5": {
396
+ "count": 1265
397
+ },
398
+ "1": {
399
+ "count": 762
400
+ },
401
+ "6": {
402
+ "count": 297
403
+ },
404
+ "4": {
405
+ "count": 286
406
+ }
407
+ }
408
+ }
409
+ }
410
+ ```
411
+
412
+ </details>
413
+
414
+ ---
415
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*