Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
German
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
23e7c90
·
verified ·
1 Parent(s): f68a18f

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +164 -0
README.md CHANGED
@@ -1,4 +1,17 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: text
@@ -21,4 +34,155 @@ configs:
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
 
 
 
24
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - deu
6
+ license: unknown
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-classification
10
+ task_ids:
11
+ - sentiment-analysis
12
+ - sentiment-scoring
13
+ - sentiment-classification
14
+ - hate-speech-detection
15
  dataset_info:
16
  features:
17
  - name: text
 
34
  path: data/train-*
35
  - split: test
36
  path: data/test-*
37
+ tags:
38
+ - mteb
39
+ - text
40
  ---
41
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
42
+
43
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
44
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">GermanPoliticiansTwitterSentimentClassification</h1>
45
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
46
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
47
+ </div>
48
+
49
+ GermanPoliticiansTwitterSentiment is a dataset of German tweets categorized with their sentiment (3 classes).
50
+
51
+ | | |
52
+ |---------------|---------------------------------------------|
53
+ | Task category | t2c |
54
+ | Domains | Social, Government, Written |
55
+ | Reference | https://aclanthology.org/2022.konvens-1.9 |
56
+
57
+
58
+ ## How to evaluate on this task
59
+
60
+ You can evaluate an embedding model on this dataset using the following code:
61
+
62
+ ```python
63
+ import mteb
64
+
65
+ task = mteb.get_tasks(["GermanPoliticiansTwitterSentimentClassification"])
66
+ evaluator = mteb.MTEB(task)
67
+
68
+ model = mteb.get_model(YOUR_MODEL)
69
+ evaluator.run(model)
70
+ ```
71
+
72
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
73
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
74
+
75
+ ## Citation
76
+
77
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
78
+
79
+ ```bibtex
80
+
81
+ @inproceedings{schmidt-etal-2022-sentiment,
82
+ address = {Potsdam, Germany},
83
+ author = {Schmidt, Thomas and
84
+ Fehle, Jakob and
85
+ Weissenbacher, Maximilian and
86
+ Richter, Jonathan and
87
+ Gottschalk, Philipp and
88
+ Wolff, Christian},
89
+ booktitle = {Proceedings of the 18th Conference on Natural Language Processing (KONVENS 2022)},
90
+ editor = {Schaefer, Robin and
91
+ Bai, Xiaoyu and
92
+ Stede, Manfred and
93
+ Zesch, Torsten},
94
+ month = {12--15 } # sep,
95
+ pages = {74--87},
96
+ publisher = {KONVENS 2022 Organizers},
97
+ title = {Sentiment Analysis on {T}witter for the Major {G}erman Parties during the 2021 {G}erman Federal Election},
98
+ url = {https://aclanthology.org/2022.konvens-1.9},
99
+ year = {2022},
100
+ }
101
+
102
+
103
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
104
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
105
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
106
+ publisher = {arXiv},
107
+ journal={arXiv preprint arXiv:2502.13595},
108
+ year={2025},
109
+ url={https://arxiv.org/abs/2502.13595},
110
+ doi = {10.48550/arXiv.2502.13595},
111
+ }
112
+
113
+ @article{muennighoff2022mteb,
114
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
115
+ title = {MTEB: Massive Text Embedding Benchmark},
116
+ publisher = {arXiv},
117
+ journal={arXiv preprint arXiv:2210.07316},
118
+ year = {2022}
119
+ url = {https://arxiv.org/abs/2210.07316},
120
+ doi = {10.48550/ARXIV.2210.07316},
121
+ }
122
+ ```
123
+
124
+ # Dataset Statistics
125
+ <details>
126
+ <summary> Dataset Statistics</summary>
127
+
128
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
129
+
130
+ ```python
131
+ import mteb
132
+
133
+ task = mteb.get_task("GermanPoliticiansTwitterSentimentClassification")
134
+
135
+ desc_stats = task.metadata.descriptive_stats
136
+ ```
137
+
138
+ ```json
139
+ {
140
+ "test": {
141
+ "num_samples": 357,
142
+ "number_of_characters": 107986,
143
+ "number_texts_intersect_with_train": 0,
144
+ "min_text_length": 3,
145
+ "average_text_length": 302.4817927170868,
146
+ "max_text_length": 652,
147
+ "unique_text": 357,
148
+ "unique_labels": 3,
149
+ "labels": {
150
+ "3": {
151
+ "count": 152
152
+ },
153
+ "2": {
154
+ "count": 108
155
+ },
156
+ "1": {
157
+ "count": 97
158
+ }
159
+ }
160
+ },
161
+ "train": {
162
+ "num_samples": 1428,
163
+ "number_of_characters": 443140,
164
+ "number_texts_intersect_with_train": null,
165
+ "min_text_length": 1,
166
+ "average_text_length": 310.32212885154064,
167
+ "max_text_length": 762,
168
+ "unique_text": 1428,
169
+ "unique_labels": 3,
170
+ "labels": {
171
+ "2": {
172
+ "count": 428
173
+ },
174
+ "3": {
175
+ "count": 611
176
+ },
177
+ "1": {
178
+ "count": 389
179
+ }
180
+ }
181
+ }
182
+ }
183
+ ```
184
+
185
+ </details>
186
+
187
+ ---
188
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*