|
""" |
|
Loading script for the Food Vision 199 classes dataset. |
|
|
|
See the template: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py |
|
See the example for Food101: https://huggingface.co/datasets/food101/blob/main/food101.py |
|
See another example: https://huggingface.co/datasets/davanstrien/encyclopedia_britannica/blob/main/encyclopedia_britannica.py |
|
""" |
|
|
|
import datasets |
|
import os |
|
import pandas as pd |
|
|
|
from datasets.tasks import ImageClassification |
|
|
|
_HOMEPAGE = "https://www.nutrify.app" |
|
_LICENSE = "TODO" |
|
_CITATION = "TODO" |
|
_DESCRIPTION = "Images of 199 food classes from the Nutrify app." |
|
|
|
|
|
with open("class_names.txt", "r") as f: |
|
_NAMES = f.read().splitlines() |
|
|
|
class Food199(datasets.GeneratorBasedBuilder): |
|
"""Food199 Images dataset""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=_NAMES) |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
task_templates=[ImageClassification(image_column="image", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" |
|
This function returns the logic to split the dataset into different splits as well as labels. |
|
""" |
|
csv = dl_manager.download("annotations.csv") |
|
df = pd.read_csv(csv) |
|
df_train_annotations = df[df["split"] == "train"].to_dict(orient="records") |
|
df_test_annotations = df[df["split"] == "test"].to_dict(orient="records") |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotations": df_train_annotations, |
|
}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotations": df_test_annotations, |
|
})] |
|
|
|
|
|
def _generate_examples(self, annotations): |
|
""" |
|
This function takes in the kwargs from the _split_generators method and can then yield information from them. |
|
""" |
|
for id_, row in enumerate(annotations): |
|
row["image"] = row.pop("filename") |
|
row["label"] = row.pop("label") |
|
yield id_, row |
|
|