|
""" |
|
Loading script for the Food Vision 199 classes dataset. |
|
|
|
See the template: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py |
|
See the example for Food101: https://huggingface.co/datasets/food101/blob/main/food101.py |
|
See another example: https://huggingface.co/datasets/davanstrien/encyclopedia_britannica/blob/main/encyclopedia_britannica.py |
|
""" |
|
|
|
import datasets |
|
import os |
|
import requests |
|
|
|
import pandas as pd |
|
|
|
from datasets.tasks import ImageClassification |
|
|
|
|
|
datasets.logging.set_verbosity(10) |
|
print(f"Verbosity level: {datasets.logging.get_verbosity()}") |
|
|
|
_HOMEPAGE = "https://www.nutrify.app" |
|
_LICENSE = "TODO" |
|
_CITATION = "TODO" |
|
_DESCRIPTION = "Images of 199 food classes from the Nutrify app." |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_NAMES = ['almond_butter', |
|
'almonds', |
|
'apple', |
|
'apricot', |
|
'asparagus', |
|
'avocado', |
|
'bacon', |
|
'bacon_and_egg_burger', |
|
'bagel', |
|
'baklava', |
|
'banana', |
|
'banana_bread', |
|
'barbecue_sauce', |
|
'beans', |
|
'beef', |
|
'beef_curry', |
|
'beef_mince', |
|
'beef_stir_fry', |
|
'beer', |
|
'beetroot', |
|
'biltong', |
|
'blackberries', |
|
'blueberries', |
|
'bok_choy', |
|
'bread', |
|
'broccoli', |
|
'broccolini', |
|
'brownie', |
|
'brussel_sprouts', |
|
'burrito', |
|
'butter', |
|
'cabbage', |
|
'calamari', |
|
'candy', |
|
'capsicum', |
|
'carrot', |
|
'cashews', |
|
'cauliflower', |
|
'celery', |
|
'cheese', |
|
'cheeseburger', |
|
'cherries', |
|
'chicken_breast', |
|
'chicken_thighs', |
|
'chicken_wings', |
|
'chilli', |
|
'chimichurri', |
|
'chocolate', |
|
'chocolate_cake', |
|
'coconut', |
|
'coffee', |
|
'coleslaw', |
|
'cookies', |
|
'coriander', |
|
'corn', |
|
'corn_chips', |
|
'cream', |
|
'croissant', |
|
'crumbed_chicken', |
|
'cucumber', |
|
'cupcake', |
|
'daikon_radish', |
|
'dates', |
|
'donuts', |
|
'dragonfruit', |
|
'eggplant', |
|
'eggs', |
|
'enoki_mushroom', |
|
'fennel', |
|
'figs', |
|
'french_toast', |
|
'fried_rice', |
|
'fries', |
|
'fruit_juice', |
|
'garlic', |
|
'garlic_bread', |
|
'ginger', |
|
'goji_berries', |
|
'granola', |
|
'grapefruit', |
|
'grapes', |
|
'green_beans', |
|
'green_onion', |
|
'guacamole', |
|
'guava', |
|
'gyoza', |
|
'ham', |
|
'honey', |
|
'hot_chocolate', |
|
'ice_coffee', |
|
'ice_cream', |
|
'iceberg_lettuce', |
|
'jerusalem_artichoke', |
|
'kale', |
|
'karaage_chicken', |
|
'kimchi', |
|
'kiwi_fruit', |
|
'lamb_chops', |
|
'leek', |
|
'lemon', |
|
'lentils', |
|
'lettuce', |
|
'lime', |
|
'mandarin', |
|
'mango', |
|
'maple_syrup', |
|
'mashed_potato', |
|
'mayonnaise', |
|
'milk', |
|
'miso_soup', |
|
'mushrooms', |
|
'nectarines', |
|
'noodles', |
|
'nuts', |
|
'olive_oil', |
|
'olives', |
|
'omelette', |
|
'onion', |
|
'orange', |
|
'orange_juice', |
|
'oysters', |
|
'pain_au_chocolat', |
|
'pancakes', |
|
'papaya', |
|
'parsley', |
|
'parsnips', |
|
'passionfruit', |
|
'pasta', |
|
'pawpaw', |
|
'peach', |
|
'pear', |
|
'peas', |
|
'pickles', |
|
'pineapple', |
|
'pizza', |
|
'plum', |
|
'pomegranate', |
|
'popcorn', |
|
'pork_belly', |
|
'pork_chop', |
|
'pork_loins', |
|
'porridge', |
|
'potato_bake', |
|
'potato_chips', |
|
'potato_scallop', |
|
'potatoes', |
|
'prawns', |
|
'pumpkin', |
|
'radish', |
|
'ramen', |
|
'raspberries', |
|
'red_onion', |
|
'red_wine', |
|
'rhubarb', |
|
'rice', |
|
'roast_beef', |
|
'roast_pork', |
|
'roast_potatoes', |
|
'rockmelon', |
|
'rosemary', |
|
'salad', |
|
'salami', |
|
'salmon', |
|
'salsa', |
|
'salt', |
|
'sandwich', |
|
'sardines', |
|
'sausage_roll', |
|
'sausages', |
|
'scrambled_eggs', |
|
'seaweed', |
|
'shallots', |
|
'snow_peas', |
|
'soda', |
|
'soy_sauce', |
|
'spaghetti_bolognese', |
|
'spinach', |
|
'sports_drink', |
|
'squash', |
|
'starfruit', |
|
'steak', |
|
'strawberries', |
|
'sushi', |
|
'sweet_potato', |
|
'tacos', |
|
'tamarillo', |
|
'taro', |
|
'tea', |
|
'toast', |
|
'tofu', |
|
'tomato', |
|
'tomato_chutney', |
|
'tomato_sauce', |
|
'turnip', |
|
'watermelon', |
|
'white_onion', |
|
'white_wine', |
|
'yoghurt', |
|
'zucchini'] |
|
|
|
|
|
class Food199(datasets.GeneratorBasedBuilder): |
|
"""Food199 Images dataset""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=_NAMES) |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" |
|
This function returns the logic to split the dataset into different splits as well as labels. |
|
""" |
|
annotations_csv = dl_manager.download("annotations_with_links.csv") |
|
print(annotations_csv) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotations": annotations_csv, |
|
"split": "train" |
|
} |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
def _generate_examples(self, annotations, split): |
|
""" |
|
This function takes in the kwargs from the _split_generators method and can then yield information from them. |
|
""" |
|
annotations_df = pd.read_csv(annotations, low_memory=False) |
|
|
|
if split == "train": |
|
annotations = annotations_df[["image", "label"]][annotations_df["split"] == "train"].to_dict(orient="records") |
|
elif split == "test": |
|
annotations = annotations_df[["image", "label"]][annotations_df["split"] == "test"].to_dict(orient="records") |
|
|
|
for id_, row in enumerate(annotations): |
|
|
|
row["image"] = str(row.pop("image")) |
|
row["label"] = row.pop("label") |
|
|
|
yield id_, row |
|
|