Datasets:

Modalities:
Image
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
License:
kdoherty commited on
Commit
f199003
·
verified ·
1 Parent(s): 2446850

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +149 -3
README.md CHANGED
@@ -79,8 +79,154 @@ We gathered ground truth at multiple sites and observations within a site were g
79
 
80
  ```python
81
  #define holdout sets with ground truth clusters; 6 and 7 overlap geographically
82
- holdout_sets = [[0], [1], [2], [4], [5], [6,7], [8]]
83
 
84
  set_0 = ds.filter(lambda example: example['cluster'] in holdout_sets[0])
85
- set_0['cluster']
86
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  ```python
81
  #define holdout sets with ground truth clusters; 6 and 7 overlap geographically
82
+ holdout_sets = [[0], [1], [2], [4], [5], [6,7], [8]] #spatial clusters of ground truth define holdout sets; 6 and 7
83
 
84
  set_0 = ds.filter(lambda example: example['cluster'] in holdout_sets[0])
85
+ unq_vals = list(set(set_0['cluster']))
86
+ print(f'Unique cluster values in set 0: {unq_vals}')
87
+ ```
88
+
89
+ # Example cross-validation loop
90
+ We will use the the geographic cluster feature to cross-validate performance. First lets format set the format of the dataset to torch format and define some functions for our training loop:
91
+
92
+ ```python
93
+ import torch.nn as nn
94
+ import torch.optim as optim
95
+ from torchvision.models import resnet50
96
+ from tqdm import tqdm
97
+ import pandas as pd
98
+
99
+ ds = ds.with_format("torch")
100
+
101
+ def train_one_epoch(model, train_loader, criterion, optimizer, device):
102
+ model.train()
103
+ running_loss = 0.0
104
+ correct_predictions = 0
105
+ total_predictions = 0
106
+ for i, batch in enumerate(train_loader):
107
+ inputs = batch['pixel_values'].permute(0,3,1,2).float().to(device)
108
+ labels = batch['label'].to(device)
109
+
110
+ optimizer.zero_grad()
111
+
112
+ outputs = model(inputs)
113
+ _, predicted = torch.max(outputs.data, 1)
114
+ total_predictions += labels.size(0)
115
+ correct_predictions += (predicted == labels).sum().item()
116
+
117
+ loss = criterion(outputs, labels)
118
+ loss.backward()
119
+ optimizer.step()
120
+
121
+ running_loss += loss.item()
122
+
123
+ train_accuracy = correct_predictions / total_predictions
124
+ train_loss = running_loss / len(train_loader)
125
+
126
+ return train_loss, train_accuracy
127
+
128
+ def evaluate_one_epoch(model, test_loader, criterion, device):
129
+ model.eval()
130
+ running_loss = 0.0
131
+ correct_predictions = 0
132
+ total_predictions = 0
133
+ with torch.no_grad():
134
+ for batch in test_loader:
135
+ inputs = batch['pixel_values'].permute(0,3,1,2).float().to(device)
136
+ labels = batch['label'].to(device)
137
+
138
+ outputs = model(inputs)
139
+ _, predicted = torch.max(outputs.data, 1)
140
+ total_predictions += labels.size(0)
141
+ correct_predictions += (predicted == labels).sum().item()
142
+
143
+ loss = criterion(outputs, labels)
144
+ running_loss += loss.item()
145
+
146
+ test_accuracy = correct_predictions / total_predictions
147
+ test_loss = running_loss / len(test_loader)
148
+
149
+ return test_loss, test_accuracy
150
+
151
+ def cross_val(ds, holdout_set):
152
+ train = ds.filter(lambda example: example['cluster'] not in holdout_set)
153
+ test = ds.filter(lambda example: example['cluster'] in holdout_set)
154
+
155
+ model = resnet50(pretrained=True)
156
+ num_classes = len(ds['label'].unique())
157
+ model.fc = nn.Linear(2048, num_classes)
158
+
159
+ # Define the loss function and optimizer
160
+ criterion = nn.CrossEntropyLoss()
161
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
162
+
163
+ # Define the data loaders
164
+ train_loader = torch.utils.data.DataLoader(train, batch_size=32, shuffle=True)
165
+ test_loader = torch.utils.data.DataLoader(test, batch_size=32, shuffle=False)
166
+
167
+ # Train the model
168
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
169
+ model.to(device)
170
+
171
+ results = []
172
+
173
+ for epoch in range(5):
174
+ train_loss, train_accuracy = train_one_epoch(model, train_loader, criterion, optimizer, device)
175
+ test_loss, test_accuracy = evaluate_one_epoch(model, test_loader, criterion, device)
176
+
177
+ results.append({
178
+ 'epoch': epoch + 1,
179
+ 'train_loss': train_loss,
180
+ 'train_accuracy': train_accuracy,
181
+ 'test_loss': test_loss,
182
+ 'test_accuracy': test_accuracy,
183
+ 'holdout_set': holdout_set
184
+ })
185
+
186
+ results_df = pd.DataFrame(results)
187
+
188
+ return results_df
189
+
190
+ ```
191
+
192
+ Next we'll sequentially holdout geographic clusters and store performance:
193
+ ```python
194
+ results = []
195
+ pbar_holdout = tqdm(holdout_sets, desc="Holdout Sets")
196
+ for holdout_set in pbar_holdout:
197
+ results.append(cross_val(ds, holdout_set))
198
+ pbar_holdout.set_postfix_str(f"Completed holdout set {holdout_set}")
199
+
200
+ results_df = pd.concat(results)
201
+ ```
202
+
203
+ Finally, we plot the results of geographic cross-validation:
204
+ ```python
205
+ import numpy as np
206
+ import matplotlib.pyplot as plt
207
+
208
+ # Group the results by epoch
209
+ grouped_results = results_df.groupby('epoch')
210
+
211
+ # Compute the mean and standard deviation of the test accuracy at each epoch
212
+ mean_test_accuracy = grouped_results['test_accuracy'].mean()
213
+ std_test_accuracy = grouped_results['test_accuracy'].std()
214
+
215
+ # Compute the 68% confidence interval
216
+ lower_bound = mean_test_accuracy - std_test_accuracy
217
+ upper_bound = mean_test_accuracy + std_test_accuracy
218
+
219
+ # Plot the mean test accuracy
220
+ plt.plot(mean_test_accuracy.index, mean_test_accuracy)
221
+
222
+ # Plot the error ribbon
223
+ plt.fill_between(lower_bound.index, lower_bound, upper_bound, color='b', alpha=.1)
224
+
225
+ # Set the labels and title
226
+ plt.xlabel('Epoch')
227
+ plt.ylabel('Cross-validated Accuracy')
228
+
229
+ # Show the plot
230
+ plt.show()
231
+ ```
232
+ <img src="https://huggingface.co/datasets/mpg-ranch/leafy_spurge/resolve/main/doc_figures/cluster_cv_fig.png" width="75%" height="75%">