|
|
|
import datasets |
|
import pyarrow as pa |
|
import pyarrow.parquet as pq |
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
|
|
|
|
_URLS = { "train": "https://huggingface.co/datasets/moska/test_parquet/resolve/main/data/example.parquet" } |
|
|
|
|
|
class ParquetDatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig """ |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ParquetDatasetConfig, self).__init__(**kwargs) |
|
|
|
class ParquetDataset(datasets.ArrowBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
ParquetDatasetConfig( |
|
name="parquet", |
|
description=f"test_parquet dataset.", |
|
) |
|
|
|
] |
|
|
|
|
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description="reading parquet format.", |
|
|
|
features=datasets.Features( |
|
{ "pop_est": datasets.Value(dtype="float64"), |
|
"continent": datasets.Value(dtype="string"), |
|
"name": datasets.Value(dtype="string"), |
|
"iso_a3": datasets.Value(dtype="string"), |
|
"gdp_md_est": datasets.Value(dtype="int64"), |
|
"geometry": datasets.Value("binary"), |
|
|
|
} |
|
), |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.download.DownloadManager): |
|
files = _URLS |
|
downloaded_files = dl_manager.download(files) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']}) |
|
] |
|
|
|
|
|
def _generate_tables(self, filepath): |
|
with open(filepath, mode="rb") as f: |
|
parquet_file = pq.ParquetFile(source=filepath) |
|
for batch_idx, record_batch in enumerate(parquet_file.iter_batches()): |
|
pa_table = pa.Table.from_batches([record_batch]) |
|
yield f"{batch_idx}", pa_table |
|
|