mlsa-iai-msu-lab commited on
Commit
cc9e92f
·
verified ·
1 Parent(s): a5da47a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md CHANGED
@@ -105,4 +105,113 @@ configs:
105
  data_files:
106
  - split: test
107
  path: ru/test-*
 
 
 
 
 
 
 
108
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  data_files:
106
  - split: test
107
  path: ru/test-*
108
+ language:
109
+ - ru
110
+ - en
111
+ tags:
112
+ - benchmark
113
+ - mteb
114
+ - retrieval
115
  ---
116
+ # RuSciBench Dataset Collection
117
+
118
+ This repository contains the datasets for the **RuSciBench** benchmark, designed for evaluating semantic vector representations of scientific texts in Russian and English.
119
+
120
+ ## Dataset Description
121
+
122
+ **RuSciBench** is the first benchmark specifically targeting scientific documents in the Russian language, alongside their English counterparts (abstracts and titles). The data is sourced from [eLibrary.ru](https://www.elibrary.ru), the largest Russian electronic library of scientific publications, integrated with the Russian Science Citation Index (RSCI).
123
+
124
+ The dataset comprises approximately 182,000 scientific paper abstracts and titles. All papers included in the benchmark have open licenses.
125
+
126
+ ## Tasks
127
+
128
+ The benchmark includes a variety of tasks grouped into Classification, Regression, and Retrieval categories, designed for both Russian and English texts based on paper abstracts.
129
+
130
+ ### Classification Tasks
131
+
132
+ ([Dataset Link](https://huggingface.co/datasets/mlsa-iai-msu-lab/ru_sci_bench_mteb))
133
+
134
+ 1. **Topic Classification (OECD):** Classify papers based on the first two levels of the Organization for Economic Co-operation and Development (OECD) rubricator (29 classes).
135
+ * `RuSciBenchOecdRuClassification` (subset `oecd_ru`)
136
+ * `RuSciBenchOecdEnClassification` (subset `oecd_en`)
137
+ 2. **Topic Classification (GRNTI/SRSTI):** Classify papers based on the first level of the State Rubricator of Scientific and Technical Information (GRNTI/SRSTI) (29 classes).
138
+ * `RuSciBenchGrntiRuClassification` (subset `grnti_ru`)
139
+ * `RuSciBenchGrntiEnClassification` (subset `grnti_en`)
140
+ 3. **Core RISC Affiliation:** Binary classification task to determine if a paper belongs to the Core of the Russian Index of Science Citation (RISC).
141
+ * `RuSciBenchCoreRiscRuClassification` (subset `corerisc_ru`)
142
+ * `RuSciBenchCoreRiscEnClassification` (subset `corerisc_en`)
143
+ 4. **Publication Type Classification:** Classify documents into types like 'article', 'conference proceedings', 'survey', etc. (7 classes, balanced subset used).
144
+ * `RuSciBenchPubTypesRuClassification` (subset `pub_type_ru`)
145
+ * `RuSciBenchPubTypesEnClassification` (subset `pub_type_en`)
146
+
147
+ ### Regression Tasks
148
+
149
+ ([Dataset Link](https://huggingface.co/datasets/mlsa-iai-msu-lab/ru_sci_bench_mteb))
150
+
151
+ 1. **Year of Publication Prediction:** Predict the publication year of the paper.
152
+ * `RuSciBenchYearPublRuRegression` (subset `yearpubl_ru`)
153
+ * `RuSciBenchYearPublEnRegression` (subset `yearpubl_en`)
154
+ 2. **Citation Count Prediction:** Predict the number of times a paper has been cited.
155
+ * `RuSciBenchCitedCountRuRegression` (subset `cited_count_ru`)
156
+ * `RuSciBenchCitedCountEnRegression` (subset `cited_count_en`)
157
+
158
+ ### Retrieval Tasks
159
+
160
+ 1. **Direct Citation Prediction:** Given a query paper abstract, retrieve abstracts of papers it directly cites from the corpus. Uses a retrieval setup (all non-positive documents are negative). ([Dataset Link](https://huggingface.co/datasets/mlsa-iai-msu-lab/ru_sci_bench_cite_retrieval))
161
+ * `RuSciBenchCiteRuRetrieval`
162
+ * `RuSciBenchCiteEnRetrieval`
163
+ 2. **Co-Citation Prediction:** Given a query paper abstract, retrieve abstracts of papers that are co-cited with it (cited by at least 5 common papers). Uses a retrieval setup.
164
+ * `RuSciBenchCociteRuRetrieval`
165
+ * `RuSciBenchCociteEnRetrieval`
166
+ 3. **Translation Search:** Given an abstract in one language (e.g., Russian), retrieve its corresponding translation (e.g., English abstract of the same paper) from the corpus of abstracts in the target language. ([Dataset Link](https://huggingface.co/datasets/mlsa-iai-msu-lab/ru_sci_bench_translation_search))
167
+ * `RuSciBenchTranslationSearchEnRetrieval` (Query: En, Corpus: Ru)
168
+ * `RuSciBenchTranslationSearchRuRetrieval` (Query: Ru, Corpus: En)
169
+
170
+ ## Usage
171
+
172
+ These datasets are designed to be used with the MTEB library. **First, you need to install the MTEB fork containing the RuSciBench tasks:**
173
+
174
+ ```bash
175
+ pip install git+https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb
176
+ ```
177
+
178
+ Then you can evaluate sentence-transformer models easily:
179
+
180
+ ```python
181
+ from sentence_transformers import SentenceTransformer
182
+ from mteb import MTEB
183
+
184
+ # Example: Evaluate on Russian GRNTI classification
185
+ model_name = "mlsa-iai-msu-lab/sci-rus-tiny3.1" # Or any other sentence transformer
186
+ model = SentenceTransformer(model_name)
187
+
188
+ evaluation = MTEB(tasks=["RuSciBenchGrntiRuClassification"]) # Select tasks
189
+ results = evaluation.run(model, output_folder=f"results/{model_name.split('/')[-1]}")
190
+
191
+ print(results)
192
+ ```
193
+
194
+ For more details on the benchmark, tasks, and baseline model evaluations, please refer to the associated paper and code repository.
195
+
196
+ * **Code Repository:** [https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb](https://github.com/mlsa-iai-msu-lab/ru_sci_bench_mteb)
197
+ * **Paper:** https://doi.org/10.1134/S1064562424602191
198
+
199
+ ## Citation
200
+
201
+ If you use RuSciBench in your research, please cite the following paper:
202
+
203
+ ```bibtex
204
+ @article{Vatolin2024,
205
+ author = {Vatolin, A. and Gerasimenko, N. and Ianina, A. and Vorontsov, K.},
206
+ title = {RuSciBench: Open Benchmark for Russian and English Scientific Document Representations},
207
+ journal = {Doklady Mathematics},
208
+ year = {2024},
209
+ volume = {110},
210
+ number = {1},
211
+ pages = {S251--S260},
212
+ month = dec,
213
+ doi = {10.1134/S1064562424602191},
214
+ url = {https://doi.org/10.1134/S1064562424602191},
215
+ issn = {1531-8362}
216
+ }
217
+ ```