repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
httpie/cli
python
965
Incomplete responses do not cause an error
It seems that httpie does not validate the number of received bytes. Here are some explanations: https://blog.petrzemek.net/2018/04/22/on-incomplete-http-reads-and-the-requests-library-in-python/ With this demo script: ```python #!/usr/bin/env python3 # # An HTTP server that returns fewer bytes in the body of the response than # stated in the Content-Length header. # import socketserver class MyTCPHandler(socketserver.BaseRequestHandler): def handle(self): data = self.request.recv(1024) print(data.decode()) self.request.sendall( b'HTTP/1.1 200 OK\r\n' b'Content-Length: 10\r\n' b'\r\n' b'123456' ) class MyTCPSever(socketserver.TCPServer): allow_reuse_address = True with MyTCPSever(('localhost', 8080), MyTCPHandler) as server: server.serve_forever() ``` ...httpie happily returns the incomplete response without raising an error. ``` $ http GET :8080/ HTTP/1.1 200 OK Content-Length: 10 123456 $ echo $? 0 ``` On the other hand, curl raises an error: ``` $ curl http://127.0.0.1:8080/ curl: (18) transfer closed with 4 bytes remaining to read 123456$ ``` More details can be found in the blogpost. It seems that requests 3 will contain an option to force validation of incomplete responses, but it's not yet released. There are also workarounds for the current behavior.
open
2020-09-17T15:27:19Z
2022-01-14T10:23:12Z
https://github.com/httpie/cli/issues/965
[ "enhancement" ]
dbrgn
1
MagicStack/asyncpg
asyncio
696
Can connection pools be used for lots of long lived connections?
This is more of a question then an issue. For my case i have a websocket server using the python `websockets` package. Since its async i decided to use this library and my implementation of it works. At least on the surface level. i did some stress tests and immediately found out that concurrency is an issue. it raises `asyncpg.exceptions._base.InterfaceError: cannot perform operation: another operation is in progress`. not the libs fault is obvious whats going on. i am creating a connection object at the global scope of the script and using that same object throughout the entire program for everything including for all different connections. These connections are long lived and ideally i would like to be able to support hundreds to thousands of websocket connections (users). A naive approach is opening a new asyncpg connection for every websocket connection but i doubt its a smart idea to open thousands of database connections if working with thousands of websocket connections. In the documentation i found connection pooling however a concern of mine is in its example its used for short lived connections in the context of an http request. not a long lived socket. my idea was to have a pool connection object at the global scope and only acquire the pool for every database operation that happens during the life of that websocket connection. which under peak loads i would say is about once per second (for each connection). My concern with this however is the performance. Does it take time to acquire the pool or is it instant? and what happens under high loads with lots of concurrent operations where the pool is trying to be acquired but some other operation still hasn't finished its `with` block? can multiple concurrent pool acquisitions happen? and about how much? I'm going to attempt this implementation and test and respond with my findings. But if someone else can give an insight if this is a good idea and if it will scale well it would be greatly appreciated.
closed
2021-01-25T19:27:04Z
2021-01-27T18:38:31Z
https://github.com/MagicStack/asyncpg/issues/696
[]
Directory
6
browser-use/browser-use
python
117
[Node.js port] Created a node.js (typescript) re-write. Contributors are welcome!
Hey, guys! Didn't find any js wrappers for this py lib and didn't have much luck wrapping original python code inside a node module, so I created a typescript port of this lib in typescript which is nodejs-compat! If anybody interested in js version of this - please welcome. repo: https://github.com/Dankovk/browser-use-js npm: https://www.npmjs.com/package/browser-use-node
open
2024-12-24T22:34:20Z
2024-12-28T07:45:42Z
https://github.com/browser-use/browser-use/issues/117
[]
Dankovk
4
PokeAPI/pokeapi
api
576
Missing legendary Pokemon encounters.
There are no entries for any legendary encounters in the API despite other event encounters (like starters) being present, legendaries should be included.
closed
2021-02-26T22:38:55Z
2023-03-17T13:56:32Z
https://github.com/PokeAPI/pokeapi/issues/576
[]
SimplyBLGDev
10
huggingface/datasets
machine-learning
6,437
Problem in training iterable dataset
### Describe the bug I am using PyTorch DDP (Distributed Data Parallel) to train my model. Since the data is too large to load into memory at once, I am using load_dataset to read the data as an iterable dataset. I have used datasets.distributed.split_dataset_by_node to distribute the dataset. However, I have noticed that this distribution results in different processes having different amounts of data to train on. As a result, when the earliest process finishes training and starts predicting on the test set, other processes are still training, causing the overall training speed to be very slow. ### Steps to reproduce the bug ``` def train(args, model, device, train_loader, optimizer, criterion, epoch, length): model.train() idx_length = 0 for batch_idx, data in enumerate(train_loader): s_time = time.time() X = data['X'] target = data['y'].reshape(-1, 28) X, target = X.to(device), target.to(device) optimizer.zero_grad() output = model(X) loss = criterion(output, target) loss.backward() optimizer.step() idx_length += 1 if batch_idx % args.log_interval == 0: # print('Train Epoch: {} Batch_idx: {} Process: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( # epoch, batch_idx, torch.distributed.get_rank(), batch_idx * len(X), length / torch.distributed.get_world_size(), # 100. * batch_idx * len( # X) * torch.distributed.get_world_size() / length, loss.item())) print('Train Epoch: {} Batch_idx: {} Process: {} [{}/{} ({:.0f}%)]\t'.format( epoch, batch_idx, torch.distributed.get_rank(), batch_idx * len(X), length / torch.distributed.get_world_size(), 100. * batch_idx * len( X) * torch.distributed.get_world_size() / length)) if args.dry_run: break print('Process %s length: %s time: %s' % (torch.distributed.get_rank(), idx_length, datetime.datetime.now())) train_iterable_dataset = load_dataset("parquet", data_files=data_files, split="train", streaming=True) test_iterable_dataset = load_dataset("parquet", data_files=data_files, split="test", streaming=True) train_iterable_dataset = train_iterable_dataset.map(process_fn) test_iterable_dataset = test_iterable_dataset.map(process_fn) train_iterable_dataset = train_iterable_dataset.map(scale) test_iterable_dataset = test_iterable_dataset.map(scale) train_iterable_dataset = datasets.distributed.split_dataset_by_node(train_iterable_dataset, world_size=world_size, rank=local_rank).shuffle(seed=1234) test_iterable_dataset = datasets.distributed.split_dataset_by_node(test_iterable_dataset, world_size=world_size, rank=local_rank).shuffle(seed=1234) print(torch.distributed.get_rank(), train_iterable_dataset.n_shards, test_iterable_dataset.n_shards) train_kwargs = {'batch_size': args.batch_size} test_kwargs = {'batch_size': args.test_batch_size} if use_cuda: cuda_kwargs = {'num_workers': 3,#ngpus_per_node, 'pin_memory': True, 'shuffle': False} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) train_loader = torch.utils.data.DataLoader(train_iterable_dataset, **train_kwargs, # sampler=torch.utils.data.distributed.DistributedSampler( # train_iterable_dataset, # num_replicas=ngpus_per_node, # rank=0) ) test_loader = torch.utils.data.DataLoader(test_iterable_dataset, **test_kwargs, # sampler=torch.utils.data.distributed.DistributedSampler( # test_iterable_dataset, # num_replicas=ngpus_per_node, # rank=0) ) for epoch in range(1, args.epochs + 1): start_time = time.time() train_iterable_dataset.set_epoch(epoch) test_iterable_dataset.set_epoch(epoch) train(args, model, device, train_loader, optimizer, criterion, epoch, train_len) test(args, model, device, criterion2, test_loader) ``` And here’s the part of output: ``` Train Epoch: 1 Batch_idx: 5000 Process: 0 [320000/4710975.0 (7%)] Train Epoch: 1 Batch_idx: 5000 Process: 1 [320000/4710975.0 (7%)] Train Epoch: 1 Batch_idx: 5000 Process: 2 [320000/4710975.0 (7%)] Train Epoch: 1 Batch_idx: 5862 Process: 3 Data_length: 12 coststime: 0.04095172882080078 Train Epoch: 1 Batch_idx: 5862 Process: 0 Data_length: 3 coststime: 0.0751960277557373 Train Epoch: 1 Batch_idx: 5867 Process: 3 Data_length: 49 coststime: 0.0032558441162109375 Train Epoch: 1 Batch_idx: 5872 Process: 1 Data_length: 2 coststime: 0.022842884063720703 Train Epoch: 1 Batch_idx: 5876 Process: 3 Data_length: 63 coststime: 0.002694845199584961 Process 3 length: 5877 time: 2023-11-17 17:03:26.582317 Train epoch 1 costTime: 241.72063446044922s . Process 3 Start to test. 3 0 tensor(45508.8516, device='cuda:3') 3 100 tensor(45309.0469, device='cuda:3') 3 200 tensor(45675.3047, device='cuda:3') 3 300 tensor(45263.0273, device='cuda:3') Process 3 Reduce metrics. Train Epoch: 2 Batch_idx: 0 Process: 3 [0/4710975.0 (0%)] Train Epoch: 1 Batch_idx: 5882 Process: 1 Data_length: 63 coststime: 0.05185818672180176 Train Epoch: 1 Batch_idx: 5887 Process: 1 Data_length: 12 coststime: 0.006895303726196289 Process 1 length: 5888 time: 2023-11-17 17:20:48.578204 Train epoch 1 costTime: 1285.7279663085938s . Process 1 Start to test. 1 0 tensor(45265.9141, device='cuda:1') ``` ### Expected behavior I'd like to know how to fix this problem. ### Environment info ``` torch==2.0 datasets==2.14.0 ```
open
2023-11-20T03:04:02Z
2024-05-22T03:14:13Z
https://github.com/huggingface/datasets/issues/6437
[]
21Timothy
5
rgerum/pylustrator
matplotlib
70
Linestyle string shown by default - without "" even if those seems required "-" and changes not saved.
When the linestyle is changed to another value, quotes should be added around the string, as in the screenshot below, otherwise an error is thrown to the console. In addition the changes performed to the linestye are not propagated in the code snippet generated by Pylustrator. ![Image](https://github.com/user-attachments/assets/03dc3978-25e2-4fc1-8e4b-088bcd5506a6) Here is a MWE: Before Pylustrator execution ```python import matplotlib.pyplot as plt import numpy as np import pylustrator x = np.linspace(1, 10) y = x**2 pylustrator.start() fig, ax = plt.subplots() ax.plot(x, y) plt.show() ``` And here is the code snippet added by Pylustrator that does not modify the linestyle. ```python #% start: automatic generated code from pylustrator plt.figure(1).ax_dict = {ax.get_label(): ax for ax in plt.figure(1).axes} import matplotlib as mpl getattr(plt.figure(1), '_pylustrator_init', lambda: ...)() #% end: automatic generated code from pylustrator ``` I am using the following packages versions: - matplotlib 3.10.0 - numpy 2.2.2 - spyder 6.0.3 - pylustrator 1.3.0
open
2025-01-22T10:40:06Z
2025-01-22T10:40:06Z
https://github.com/rgerum/pylustrator/issues/70
[]
FloGom
0
graphql-python/graphene
graphql
966
Exposing Mypy-compatible type information
I'd like to use Mypy for checking a Graphene-based app. Is anyone working on stubs, or even better - a Mypy plugin? What I imagine is writing: ``` class Me(ObjectType[User]): full_name = graphene.String() def resolve_full_name(self, info): return self.get_full_name() ``` And getting a guarantee that User.get_full_name() returns something assignable to Optional[String].
closed
2019-05-12T08:05:58Z
2023-10-16T23:52:27Z
https://github.com/graphql-python/graphene/issues/966
[ "wontfix" ]
ktosiek
8
DistrictDataLabs/yellowbrick
scikit-learn
539
TSNE size & title bug
**Describe the bug** Looks like our `TSNEVisualizer` might have a bug that causes an error on instantiation if either the `size` or `title` parameters are used. **To Reproduce** ```python from yellowbrick.text import TSNEVisualizer from sklearn.feature_extraction.text import TfidfVectorizer corpus = load_data('hobbies') tfidf = TfidfVectorizer() docs = tfidf.fit_transform(corpus.data) labels = corpus.target tsne = TSNEVisualizer(size=(1080, 720)) ``` or ``` tsne = TSNEVisualizer(title="My Special TSNE Visualizer") ``` **Dataset** This bug was triggered using the YB hobbies corpus. **Expected behavior** Users should be able to influence the size of the visualizer on instantiation using the `size` parameter and a tuple with `(width, height)` in pixels, and the title of the visualizer using the `title` parameter and a string. **Traceback** ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-59-120fbfcec07c> in <module>() ----> 1 tsne = TSNEVisualizer(size=(1080, 720)) 2 tsne.fit(labels) 3 tsne.poof() /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/yellowbrick/text/tsne.py in __init__(self, ax, decompose, decompose_by, labels, classes, colors, colormap, random_state, **kwargs) 180 181 # TSNE Parameters --> 182 self.transformer_ = self.make_transformer(decompose, decompose_by, kwargs) 183 184 def make_transformer(self, decompose='svd', decompose_by=50, tsne_kwargs={}): /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/yellowbrick/text/tsne.py in make_transformer(self, decompose, decompose_by, tsne_kwargs) 234 # Add the TSNE manifold 235 steps.append(('tsne', TSNE( --> 236 n_components=2, random_state=self.random_state, **tsne_kwargs))) 237 238 # return the pipeline TypeError: __init__() got an unexpected keyword argument 'size' ``` or for `title`: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-64-92c88e0bdd33> in <module>() ----> 1 tsne = TSNEVisualizer(title="My Special TSNE Visualizer") 2 tsne.fit(labels) 3 tsne.poof() /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/yellowbrick/text/tsne.py in __init__(self, ax, decompose, decompose_by, labels, classes, colors, colormap, random_state, **kwargs) 180 181 # TSNE Parameters --> 182 self.transformer_ = self.make_transformer(decompose, decompose_by, kwargs) 183 184 def make_transformer(self, decompose='svd', decompose_by=50, tsne_kwargs={}): /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/yellowbrick/text/tsne.py in make_transformer(self, decompose, decompose_by, tsne_kwargs) 234 # Add the TSNE manifold 235 steps.append(('tsne', TSNE( --> 236 n_components=2, random_state=self.random_state, **tsne_kwargs))) 237 238 # return the pipeline TypeError: __init__() got an unexpected keyword argument 'title' ``` **Desktop (please complete the following information):** - macOS - Python Version 3.6 - Yellowbrick Version 0.8
closed
2018-08-01T17:43:21Z
2018-11-02T08:04:26Z
https://github.com/DistrictDataLabs/yellowbrick/issues/539
[ "type: bug", "priority: high" ]
rebeccabilbro
6
nteract/papermill
jupyter
220
Why does the output of "execute_notebook" return a "nbformat" notebook instead of a `papermill.api.Notebook`?
I noticed that the output of `execute_notebook` returns a "regular" nbformat-style notebook, while `read_notebook` returns a nifty papermill notebook object. Is there a particular reason for this discrepancy? Could be nice to have papermill notebook objects as an output to `execute_notebook` in case people are executing them interactively
closed
2018-09-28T16:57:16Z
2019-02-15T00:09:13Z
https://github.com/nteract/papermill/issues/220
[ "question" ]
choldgraf
3
vaexio/vaex
data-science
2,057
[BUG-REPORT] Dataframe with virtual columns and specific column names fails export to csv
**Description** Issue when converting to csv with specific column names like "description" or "dtypes". I believe this has to do with the attributes on the DataFrame object being overridden when they coincide with a column name. **Software information** - Vaex version (`import vaex; vaex.__version__)`: {'vaex': '4.9.1', 'vaex-core': '4.9.1', 'vaex-viz': '0.5.1', 'vaex-hdf5': '0.12.1', 'vaex-server': '0.8.1', 'vaex-astro': '0.9.1', 'vaex-jupyter': '0.7.0', 'vaex-ml': '0.17.0', 'vaex-graphql': '0.2.0'} - Vaex was installed via: source - OS: Ubuntu 20.04 **Additional information** Source code to reproduce: ```python import vaex df = vaex.open("test.csv") df = df.as_arrow() df.export_csv("test2.csv") ``` test.csv: ``` description,test a,b ``` ```python Traceback (most recent call last): File "<Path>/python3.8/site-packages/vaex/scopes.py", line 113, in evaluate result = self[expression] File "<Path>/python3.8/site-packages/vaex/scopes.py", line 198, in __getitem__ raise KeyError("Unknown variables or column: %r" % (variable,)) KeyError: "Unknown variables or column: 'as_arrow(____description)'" ```
closed
2022-05-20T10:33:22Z
2022-07-26T12:05:54Z
https://github.com/vaexio/vaex/issues/2057
[]
grafail
3
plotly/dash
jupyter
2,502
[BUG] - Infinite loop - App refresh when mkdocs, ipython, gunicorn all installed
**Describe your context** I have a minimum reproducible example pushed to a repo [here](https://github.com/schlich/dash-bug) using the Dash tutorial app. I am using WSL to run a local dev container and Poetry for my package manager. - replace the result of `pip list | grep dash` below ``` dash 0.42.0 dash-core-components 0.47.0 dash-html-components 0.16.0 dash-renderer 0.23.0 dash-table 3.6.0 ``` - if frontend related, tell us your Browser, Version and OS - OS: Windows/WSL - Browser Firefox - Version 111.0.1 **Describe the bug** When running the app, the page refreshes in an infinite loop. I am not sure what is triggering the refresh. I added a `print("hello")` statement that prints infinitely to the console. Similar reported behavior in [this thread](https://community.plotly.com/t/callback-failed-the-server-did-not-respond-browser-keeps-updating/54496/20) on the forums in which i have also commented. Notably the bug occurs when I have all three of `ipython`, `mkdocs`, and `gunicorn` installed. Dropping `ipython` or `mkdocs` solves the error while dropping `gunicorn` gives me the error ModuleNotFoundError: No module named 'pkg_resources' however installing `setuptools` doesn't fix the issue either. **Screenshots** Link to screencast [here](https://drive.google.com/file/d/10i_4RAjRVdKqYEEeVVWEfE37UcpkYG24/view?usp=sharing)
closed
2023-04-08T06:31:22Z
2023-06-16T10:47:59Z
https://github.com/plotly/dash/issues/2502
[]
schlich
0
microsoft/unilm
nlp
815
Facing problem while extracting key value pair using LayoutLMV2 model
Hai, Model I am using LayoutLMV2. Trying to extract key value pair from scanned invoices but I am getting error. Just trying to check how the model is extracting the key value pair from scanned invoices and do I need to train the model on custom dataset for key value pair extraction. Below is the code which I have tried. Need help in this. Thank you. ``` feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=True) tokenizer = AutoTokenizer.from_pretrained(path_1, pad_token='<pad>') processor = LayoutLMv2Processor(feature_extractor, tokenizer) model = LayoutLMv2ForRelationExtraction.from_pretrained(path_1) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) image_file = 'image2.png' image = Image.open(image_file).convert('RGB') image.size encoded_inputs = processor(image, return_tensors="pt") encoded_inputs.keys() for k,v in encoded_inputs.items(): print(k, v.shape) for k,v in encoded_inputs.items(): encoded_inputs[k] = v.to(model.device) # forward pass outputs = model(**encoded_inputs) ``` This is the error ``` TypeError Traceback (most recent call last) c:\Users\name\Parallel Project\Trans_LayoutXLM.ipynb Cell 7 in <cell line: 5>() 2 encoded_inputs[k] = v.to(model.device) 4 # forward pass ----> 5 outputs = model(**encoded_inputs) File c:\Users\name\.conda\envs\layoutlmft\lib\site-packages\torch\nn\modules\module.py:1130, in Module._call_impl(self, *input, **kwargs) 1126 # If we don't have any hooks, we want to skip the rest of the logic in 1127 # this function, and just call forward. 1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1129 or _global_forward_hooks or _global_forward_pre_hooks): -> 1130 return forward_call(*input, **kwargs) 1131 # Do not call functions when jit is used 1132 full_backward_hooks, non_full_backward_hooks = [], [] File c:\Users\name\.conda\envs\layoutlmft\lib\site-packages\transformers\models\layoutlmv2\modeling_layoutlmv2.py:1598, in LayoutLMv2ForRelationExtraction.forward(self, input_ids, bbox, labels, image, attention_mask, token_type_ids, position_ids, head_mask, entities, relations) 1596 sequence_output, image_output = outputs[0][:, :seq_length], outputs[0][:, seq_length:] 1597 sequence_output = self.dropout(sequence_output) -> 1598 loss, pred_relations = self.extractor(sequence_output, entities, relations) 1600 return RegionExtractionOutput( 1601 loss=loss, 1602 entities=entities, (...) 1605 hidden_states=outputs[0], 1606 ) File c:\Users\name\.conda\envs\layoutlmft\lib\site-packages\torch\nn\modules\module.py:1130, in Module._call_impl(self, *input, **kwargs) 1126 # If we don't have any hooks, we want to skip the rest of the logic in 1127 # this function, and just call forward. 1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1129 or _global_forward_hooks or _global_forward_pre_hooks): -> 1130 return forward_call(*input, **kwargs) 1131 # Do not call functions when jit is used 1132 full_backward_hooks, non_full_backward_hooks = [], [] ... -> 1421 batch_size = len(relations) 1422 new_relations = [] 1423 for b in range(batch_size): TypeError: object of type 'NoneType' has no len() ```
open
2022-08-04T15:29:37Z
2022-08-04T15:29:37Z
https://github.com/microsoft/unilm/issues/815
[]
Laxmi530
0
explosion/spaCy
machine-learning
13,449
SpaCy is not building today
<!-- NOTE: For questions or install related issues, please open a Discussion instead. --> ## How to reproduce the behaviour <!-- Include a code example or the steps that led to the problem. Please try to be as specific as possible. --> I am building the devcontainer for https://github.com/lovellbrian/cpu and spaCy is not building. may be due to cpdef instead of cdef usage. ## Your Environment <!-- Include details of your environment. You can also type `python -m spacy info --markdown` and copy-paste the result here.--> * Operating System: Ubuntu 22.04 * Python Version Used: 3.10 * spaCy Version Used: spacy-3.0.6.tar.gz * Environment Information: * Downloading spacy-3.0.6.tar.gz (7.1 MB) 1055.3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.1/7.1 MB 6.2 MB/s eta 0:00:00 1056.4 Installing build dependencies: started 1074.9 Installing build dependencies: finished with status 'done' 1074.9 Getting requirements to build wheel: started 1079.7 Getting requirements to build wheel: finished with status 'error' 1079.8 error: subprocess-exited-with-error 1079.8 1079.8 × Getting requirements to build wheel did not run successfully. 1079.8 │ exit code: 1 1079.8 ╰─> [164 lines of output] 1079.8 1079.8 Error compiling Cython file: 1079.8 ------------------------------------------------------------ 1079.8 ... 1079.8 int length 1079.8 1079.8 1079.8 cdef class Vocab: 1079.8 cdef Pool mem 1079.8 cpdef readonly StringStore strings 1079.8 ^ 1079.8 ------------------------------------------------------------ 1079.8 1079.8 spacy/vocab.pxd:28:10: Variables cannot be declared with 'cpdef'. Use 'cdef' instead. 1079.8 1079.8 Error compiling Cython file: 1079.8 ------------------------------------------------------------
closed
2024-04-20T04:59:31Z
2024-07-06T00:02:30Z
https://github.com/explosion/spaCy/issues/13449
[ "install" ]
lovellbrian
18
graphql-python/gql
graphql
353
Modify a query
Hi! How to modify a query on exception? Take this code like example: ``` async with Client(transport=transport) as s: query = gql(""" query example{ first {example1} second {example2} } """) try: result = await s.execute(query) except TransportQueryError: # remove 'second {example2}' in query result = await s.execute(query) ``` My query is very long and I don't want to rewrite the same query with less lines by recreating a query=gql() variable when the error occurs. I don't know if it's the best way to bypass the error, but I would like to remove 'second {example2}' when TransportQueryError is rise to retry the request and get the result without error. Thanks
closed
2022-08-18T17:36:24Z
2022-08-18T20:06:31Z
https://github.com/graphql-python/gql/issues/353
[ "type: question or discussion" ]
Hadevmin
2
microsoft/nni
data-science
4,937
KeyError: "Fixed context with None not found. Existing values are: OrderedDict
**Describe the issue**: I am using hell_nas.py as a tutorial code to rewrite my model structure, and when I run it, the trial log error gives me this error, how can I fix it? Thank you very much! **Environment**: - NNI version: 2.7 - Training service (local|remote|pai|aml|etc): local - Client OS: ubunut 20.04 - Server OS (for remote mode only): ubunut 20.04 - Python version: 3.8 - PyTorch/TensorFlow version: Pytorch 1.11+cu113 - Is conda/virtualenv/venv used?: NO - Is running in Docker?: Yes ![image](https://user-images.githubusercontent.com/47914438/173725225-99086d1d-5bb6-465a-9050-9eeea05addbe.png) ``` @model_wrapper class ModelSpace(nn.Module): def __init__(self): # super(BiLSTM, self).__init__() super().__init__() self.sofa_network_lstm1 = nn.LSTM(input_size=13, hidden_size=13, bidirectional=True, batch_first=True) neural_lstm1 = nn.ValueChoice([64, 128, 256]) self.sofa_network_lstm2 = nn.LSTM(input_size=26, hidden_size= neural_lstm1, bidirectional=True, batch_first=True) self.sofa_network_dropout1 = nn.Dropout(nn.ValueChoice([0.25, 0.5, 0.75])) self.sofa_network_lstm3 = nn.LSTM(input_size = neural_lstm1*2, hidden_size=13, bidirectional=True, batch_first=True) # self.sofa_network_fc = nn.Linear(26, 40) self.sofa_network_bn = nn.BatchNorm1d(1) self.sofa_network_dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(neural_lstm1, 50) self.fc2 = nn.Linear(50, 1) self.activate = nn.GELU() self.softmax = nn.Softmax(dim=1) ################# self.sofa_network_lstm1 = nn.LSTM(input_size=13, hidden_size=13, bidirectional=True, batch_first=True) neural_lstm1 = nn.ValueChoice([64, 128, 256]) self.sofa_network_lstm2 = nn.LSTM(input_size=26, hidden_size=neural_lstm1, bidirectional=True, batch_first=True) self.sofa_network_dropout1 = nn.Dropout(nn.ValueChoice([0.25, 0.5, 0.75])) self.sofa_network_lstm4 = nn.LSTM(input_size=neural_lstm1*2, hidden_size=13, bidirectional=True, batch_first=True) self.sofa_network_bn = nn.BatchNorm1d(1) self.sofa_network_dropout2 = nn.Dropout(nn.ValueChoice([0.25, 0.5, 0.75])) self.fc1 = nn.Linear(200, 50) self.fc2 = nn.Linear(50, 1) self.activate = nn.GELU() self.softmax = nn.Softmax(dim=1) def forward(self, x): # print(sofa, flush=True) # print('0{}'.format(x.shape), flush=True) x = torch.squeeze(x, dim = 0) # print('1{}'.format(x.shape), flush=True) x,_ = self.sofa_network_lstm1(x) # print('2{}'.format(x.shape), flush=True) x,_ = self.sofa_network_lstm2(x) # print('3{}'.format(x.shape), flush=True) x,_ = self.sofa_network_lstm3(x) # print('{}'.format(x.shape), flush=True) #x = x.contiguous().view(-1, 25600) output = self.fc1(x) output = self.fc2(output) output = self.activate(output) output = self.softmax(output) return output model_space = ModelSpace() model_space ``` strategy ``` import nni.retiarii.strategy as strategy search_strategy = strategy.Random(dedup=True) # dedup=False if deduplication is not wanted ``` ``` import nni from torchvision import transforms # from torchvision.datasets import MNIST from torch.utils.data import DataLoader def train_epoch(model, device, train_loader, optimizer, epoch): loss_fn = torch.nn.CrossEntropyLoss() model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = loss_fn(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test_epoch(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('\nTest set: Accuracy: {}/{} ({:.0f}%)\n'.format( correct, len(test_loader.dataset), accuracy)) return accuracy def evaluate_model(model_cls): # "model_cls" is a class, need to instantiate model = model_cls() device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) # transf = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # train_loader = DataLoader(MNIST('data/mnist', download=True, transform=transf), batch_size=64, shuffle=True) # test_loader = DataLoader(MNIST('data/mnist', download=True, train=False, transform=transf), batch_size=64) train_dir = './preprocess/train_custom_age.csv' x_train = pd.read_csv(train_dir) input_batch, target_batch = get_data(x_train) dataset = Data.TensorDataset(input_batch, target_batch) train_loader = Data.DataLoader(dataset, 16, True) test_dir = './preprocess/test_custom_age.csv' x_test = pd.read_csv(test_dir) test_input_batch, target_batch = get_data(x_test) test_dataset = Data.TensorDataset(test_input_batch, target_batch) test_loader = Data.DataLoader(test_dataset, 16, True) for epoch in range(3): # train the model for one epoch train_epoch(model, device, train_loader, optimizer, epoch) # test the model for one epoch accuracy = test_epoch(model, device, test_loader) # call report intermediate result. Result can be float or dict nni.report_intermediate_result(accuracy) # report final test result nni.report_final_result(accuracy) ``` ``` from nni.retiarii.evaluator import FunctionalEvaluator evaluator = FunctionalEvaluator(evaluate_model) from nni.retiarii.experiment.pytorch import RetiariiExperiment, RetiariiExeConfig exp = RetiariiExperiment(model_space, evaluator, [], search_strategy) exp_config = RetiariiExeConfig('local') exp_config.experiment_name = 'mnist_search' exp_config.max_trial_number = 4 # spawn 4 trials at most exp_config.trial_concurrency = 1 # will run two trials concurrently exp_config.trial_gpu_number = 1 exp_config.training_service.use_active_gpu = True exp.run(exp_config, 21223) ``` **How to reproduce it?**:
closed
2022-06-15T02:48:38Z
2022-06-15T09:24:12Z
https://github.com/microsoft/nni/issues/4937
[]
CYH4157
2
chiphuyen/stanford-tensorflow-tutorials
tensorflow
4
lack of definition of CONTENT_WEIGHT, STYLE_WEIGHT(in style_transfer_sols.py), prev_layer_name (in vgg_model_sols.py)
HI, Tks for the post, very helpful. As title, I found several variable undefined, for prev_layer_name, I think, it should be prev_name.name, however ':' is not accepted as scope name. So I changed ':' to '_', and it works For CONTENT_WEIGHT and STYLE_WEIGHT, how to define it ? (of course, omitted the weight could let the program keep running) Tks Larry
closed
2017-03-01T06:27:02Z
2017-03-01T22:58:01Z
https://github.com/chiphuyen/stanford-tensorflow-tutorials/issues/4
[]
tcglarry
1
opengeos/leafmap
jupyter
509
leafmap Docker container fails to start
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information - leafmap version: latest? - Python version: Looks like 3.11 from the traceback - Operating System: Docker ### Description Run the leafmap Docker image provided in the docs at https://leafmap.org/installation/#use-docker ### What I Did ``` ➜ ~/jupyter docker run -it -p 8899:8888 giswqs/leafmap:latest Entered start.sh with args: jupyter lab Executing the command: jupyter lab Traceback (most recent call last): File "/opt/conda/bin/jupyter-lab", line 6, in <module> from jupyterlab.labapp import main File "/opt/conda/lib/python3.11/site-packages/jupyterlab/__init__.py", line 7, in <module> from .handlers.announcements import ( # noqa File "/opt/conda/lib/python3.11/site-packages/jupyterlab/handlers/announcements.py", line 14, in <module> from jupyter_server.base.handlers import APIHandler File "/opt/conda/lib/python3.11/site-packages/jupyter_server/base/handlers.py", line 23, in <module> from jupyter_events import EventLogger File "/opt/conda/lib/python3.11/site-packages/jupyter_events/__init__.py", line 3, in <module> from .logger import EVENTS_METADATA_VERSION, EventLogger File "/opt/conda/lib/python3.11/site-packages/jupyter_events/logger.py", line 18, in <module> from .schema import SchemaType File "/opt/conda/lib/python3.11/site-packages/jupyter_events/schema.py", line 18, in <module> from .validators import draft7_format_checker, validate_schema File "/opt/conda/lib/python3.11/site-packages/jupyter_events/validators.py", line 41, in <module> JUPYTER_EVENTS_SCHEMA_VALIDATOR = Draft7Validator( # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: create.<locals>.Validator.__init__() got an unexpected keyword argument 'registry' ```
closed
2023-08-18T14:26:12Z
2023-08-19T01:00:55Z
https://github.com/opengeos/leafmap/issues/509
[ "bug" ]
CloudNiner
2
healthchecks/healthchecks
django
640
Origin checking failed error
Receiving this error in the logs: ``` Forbidden (Origin checking failed - https://example.com does not match any trusted origins.) ``` Running under docker-compose, using traefik as a reverse proxy and keycloak/gatekeeper as SSO. Existing postgres instance not shown below. Using the REMOTE_USER_HEADER functionality to login, which works. To get around the error, I had to add this line: ``` CSRF_TRUSTED_ORIGINS = os.getenv("CSRF_TRUSTED_ORIGINS", "*").split(",") ``` in this file: ./hc/settings.py And then I added the following env variable to the docker compose below: CSRF_TRUSTED_ORIGINS Was there a better way to get around that error? ``` healthchecks: container_name: healthchecks build: context: $DOCKERDIR/appdata/healthchecks dockerfile: $DOCKERDIR/appdata/healthchecks/docker/Dockerfile command: bash -c 'while !</dev/tcp/postgres/5432; do sleep 1; done; uwsgi /opt/healthchecks/docker/uwsgi.ini' image: healthchecks:local restart: always networks: - t2_proxy environment: - DEFAULT_FROM_EMAIL=$FROM_EMAIL - EMAIL_HOST=$MAILJET_SMTP_SERVER - EMAIL_HOST_USER=$MAILJET_USERNAME - EMAIL_HOST_PASSWORD=$MAILJET_PASSWORD - SECRET_KEY=$HEALTHCHECKS_SECRET_KEY - REMOTE_USER_HEADER=HTTP_X_AUTH_EMAIL - REMOTE_USER_HEADER_TYPE=EMAIL - DB=postgres - DB_HOST=$POSTGRES_IP - DB_NAME=healthchecks - DB_PORT=5432 - DB_USER=$HEALTHCHECKS_DB_USERNAME - DB_PASSWORD=$HEALTHCHECKS_DB_PASSWORD - ALLOWED_HOSTS=healthchecks,localhost,healthchecks.$DOMAINNAME,$DOMAINNAME - CSRF_TRUSTED_ORIGINS=https://healthchecks.$DOMAINNAME - SITE_ROOT=https://healthchecks.$DOMAINNAME gatekeeper_healthchecks: image: quay.io/gogatekeeper/gatekeeper:1.3.8 restart: always container_name: gatekeeper_healthchecks command: --resources $GATEKEEPER_INTERNAL networks: - t2_proxy security_opt: - no-new-privileges:true entrypoint: - /opt/gatekeeper/gatekeeper environment: - PROXY_DISCOVERY_URL=$DISCOVERY_URL - PROXY_CLIENT_ID=$HEALTHCHECKS_CLIENT_ID - PROXY_CLIENT_SECRET=$HEALTHCHECKS_CLIENT_SECRET - PROXY_ENCRYPTION_KEY=$HEALTHCHECKS_ENCRYPTION_KEY - PROXY_LISTEN=:3000 - PROXY_ENABLE_REFRESH_TOKEN=true - PROXY_UPSTREAM_URL=http://healthchecks:8000 labels: - "traefik.enable=true" ## HTTP Routers - "traefik.http.routers.healthchecks-gate.entrypoints=https" - "traefik.http.routers.healthchecks-gate.rule=Host(`healthchecks.$DOMAINNAME`)" - "traefik.http.routers.healthchecks-gate.tls=true" - "traefik.http.routers.healthchecks-gate.tls.certresolver=dns-cloudflare" ## HTTP Services - "traefik.http.routers.healthchecks-gate.service=healthchecks-gatesvc" - "traefik.http.services.healthchecks-gatesvc.loadbalancer.server.port=3000" ## Flame - flame.type=application - flame.name=Healthchecks - flame.url=https://healthchecks.$DOMAINNAME - flame.icon=space-station ``` Also, I added this to the uwsgi.ini to fix issues with SSO redirects: ``` buffer-size = 32768 ```
closed
2022-04-21T13:11:39Z
2024-03-03T01:16:12Z
https://github.com/healthchecks/healthchecks/issues/640
[]
nathanielread
4
coqui-ai/TTS
deep-learning
3,119
[Feature request] Support voice clone on more languages, like zh-CN
<!-- Welcome to the 🐸TTS project! We are excited to see your interest, and appreciate your support! ---> **🚀 Feature Description** Hi I try to clone a voice in zh-CN. But the exceptions show: ``` Language zh-CN is not in the available languages: dict_keys(['en', 'fr-fr', 'pt-br']). ``` How can I enable it then? Any directions will be appreciated if I can help contribute.
closed
2023-10-30T01:19:18Z
2023-10-30T09:09:33Z
https://github.com/coqui-ai/TTS/issues/3119
[ "feature request" ]
nobody4t
1
xlwings/xlwings
automation
1,924
xlwings `Range.value` dropping formula error cells
#### OS (e.g. Windows 10 or macOS Sierra) - macOS Monterey #### Versions of xlwings, Excel and Python (e.g. 0.11.8, Office 365, Python 3.7) - xlwings 0.24.9 - Office 365 (Excel v.16.61.1 22052000) - Python 3.9 #### Describe your issue (incl. Traceback!) (Read description in the next section for more explanation of how I got to this specific traceback, which is only one of the cases I ran into) ```python Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/e3-work/opt/anaconda3/envs/new-modeling-toolkit/lib/python3.9/site-packages/xlwings/main.py", line 1993, in value return conversion.read(self, None, self._options) File "/Users/e3-work/opt/anaconda3/envs/new-modeling-toolkit/lib/python3.9/site-packages/xlwings/conversion/__init__.py", line 32, in read pipeline(ctx) File "/Users/e3-work/opt/anaconda3/envs/new-modeling-toolkit/lib/python3.9/site-packages/xlwings/conversion/framework.py", line 66, in __call__ stage(*args, **kwargs) File "/Users/e3-work/opt/anaconda3/envs/new-modeling-toolkit/lib/python3.9/site-packages/xlwings/conversion/standard.py", line 136, in __call__ elif len(c.value[0]) == 1: IndexError: list index out of range ``` #### Include a minimal code sample to reproduce the issue (and attach a sample workbook if required!) In my case, xlwings silently drops cells from a range if there is a formula error. How I found this error was that I had two ranges that I expected to have the exact same dimensions. - Doing `Range.shape` showed they had the same dimensions; however, one range had a row with all formula errors (`#REF!`, though it seems to work with other formula errors too, such as my example below). - Doing `Range.value` on the two ranges, I would get nest lists/dataframes of different sizes (one `m x n` and the other `m-1 x n`), because it seemed like xlwings was silently dropping the row with formula errors. I haven't tested all the combinations, but I've attached a small example workbook ([book1.xlsx](https://github.com/xlwings/xlwings/files/8783696/book1.xlsx)) to accompany the code below. In my small example, I also uncovered that if I try to do `Range.value` for a range larger than 1 cell with all formula errors, I get an error (see traceback above) ```python import xlwings as xw xw.Book("Book1.xlsx").set_mock_caller() wb = xw.Book.caller() wb.sheets["Sheet1"].range("A1").value # >>> Returns nothing (presumably it's a None) wb.sheets["Sheet1"].range("A1:B2").value # >>> Returns error (traceback above), but would expect something like [[None, None], [None, None]] wb.sheets["Sheet1"].range("A1:B3").value # >>> Returns [2.0, 2.0], but would expect something like [[None, None], [None, None], [2.0, 2.0]] ```
open
2022-05-27T03:20:05Z
2022-05-29T15:26:33Z
https://github.com/xlwings/xlwings/issues/1924
[ "bug", "dependency" ]
goroderickgo
2
httpie/cli
python
1,253
--chunked with --raw raises an internal error
```console $ http --chunked pie.dev/post --raw '{"a": 1}' http: error: AttributeError: 'bytes' object has no attribute 'encode' ```
closed
2021-12-27T09:59:48Z
2021-12-29T09:41:45Z
https://github.com/httpie/cli/issues/1253
[ "bug" ]
isidentical
0
marimo-team/marimo
data-visualization
3,666
Exporting notebook as ipynb throws exception
### Describe the bug I have latest marimo running on Apple Macbook with 1.4 GHz Quad-Core Intel Core i5 with 16GB 2133 MHz RAM. Running the command `marino export ipynb <notebook>` throws exception. ### Environment <details> ``` marimo export ipynb req_design_test.py Traceback (most recent call last): File "/usr/local/bin/marimo", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/site-packages/click/core.py", line 1157, in __call__ return self.main(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/click/core.py", line 1078, in main rv = self.invoke(ctx) ^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/click/core.py", line 1688, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/click/core.py", line 1688, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/click/core.py", line 1434, in invoke return ctx.invoke(self.callback, **ctx.params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/click/core.py", line 783, in invoke return __callback(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/marimo/_cli/export/commands.py", line 379, in ipynb return watch_and_export(MarimoPath(name), output, watch, export_callback) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/marimo/_cli/export/commands.py", line 66, in watch_and_export result = export_callback(marimo_path) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/marimo/_cli/export/commands.py", line 377, in export_callback return export_as_ipynb(file_path, sort_mode=sort) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/marimo/_server/export/__init__.py", line 78, in export_as_ipynb result = Exporter().export_as_ipynb(file_manager, sort_mode=sort_mode) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/marimo/_server/export/exporter.py", line 179, in export_as_ipynb graph = file_manager.app.graph ^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/marimo/_ast/app.py", line 450, in graph self._app._maybe_initialize() File "/usr/local/lib/python3.11/site-packages/marimo/_ast/app.py", line 271, in _maybe_initialize raise MultipleDefinitionError( marimo._ast.errors.MultipleDefinitionError: This app can't be run because it has multiple definitions of the name datetime ``` </details> ### Code to reproduce _No response_
closed
2025-02-03T05:18:28Z
2025-02-05T00:50:40Z
https://github.com/marimo-team/marimo/issues/3666
[ "bug" ]
himalayahall
4
alteryx/featuretools
data-science
1,884
Improve Primitive Documentation to include Search, etc.
Primitives should include some basic search and the ability to view primitives by category, for example Aggregation Primitives vs Transform Primitives. A stretch goal would be to embed a Python repl that allows the user to experiment with primitives, like [Lodash docs](https://lodash.com/docs/4.17.15) for example.
open
2022-02-07T19:54:33Z
2023-06-26T18:52:33Z
https://github.com/alteryx/featuretools/issues/1884
[ "documentation" ]
dvreed77
1
plotly/dash
jupyter
3,118
alert users that depend on `plotly-latest` that the website is using latest v1 not the latest
> @archmoj we really need to mark plotly-latest with a console warning. > > @BPowell76 plotly-latest is the end of the v1.x line. Starting in v2.0 we stopped updating this so that the major update and following updates don't accidentally break existing projects. Please update your project to use a specific version from the CDN. _Originally posted by @alexcjohnson in [#1794](https://github.com/plotly/dash/issues/1794#issuecomment-2573429370)_
closed
2025-01-06T16:18:33Z
2025-02-21T13:18:09Z
https://github.com/plotly/dash/issues/3118
[ "feature", "P2", "task" ]
archmoj
10
CorentinJ/Real-Time-Voice-Cloning
deep-learning
349
unable to install webrtcvad
C:\Users\UJJWAL RASTOGI\Documents\GitHub\Real-Time-Voice-Cloning>pip3 install webrtcvad Collecting webrtcvad Using cached webrtcvad-2.0.10.tar.gz (66 kB) Using legacy setup.py install for webrtcvad, since package 'wheel' is not installed. Installing collected packages: webrtcvad Running setup.py install for webrtcvad ... error ERROR: Command errored out with exit status 1: command: 'c:\users\ujjwal rastogi\appdata\local\programs\python\python38\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\UJJWAL RASTOGI\\AppData\\Local\\Temp\\pip-install-3lkfcsuw\\webrtcvad\\setup.py'"'"'; __file__='"'"'C:\\Users\\UJJWAL RASTOGI\\AppData\\Local\\Temp\\pip-install-3lkfcsuw\\webrtcvad\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record 'C:\Users\UJJWAL RASTOGI\AppData\Local\Temp\pip-record-ciqa_agr\install-record.txt' --single-version-externally-managed --compile --install-headers 'c:\users\ujjwal rastogi\appdata\local\programs\python\python38\Include\webrtcvad' cwd: C:\Users\UJJWAL RASTOGI\AppData\Local\Temp\pip-install-3lkfcsuw\webrtcvad\ Complete output (9 lines): running install running build running build_py creating build creating build\lib.win-amd64-3.8 copying webrtcvad.py -> build\lib.win-amd64-3.8 running build_ext building '_webrtcvad' extension error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": https://visualstudio.microsoft.com/downloads/ ---------------------------------------- ERROR: Command errored out with exit status 1: 'c:\users\ujjwal rastogi\appdata\local\programs\python\python38\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\UJJWAL RASTOGI\\AppData\\Local\\Temp\\pip-install-3lkfcsuw\\webrtcvad\\setup.py'"'"'; __file__='"'"'C:\\Users\\UJJWAL RASTOGI\\AppData\\Local\\Temp\\pip-install-3lkfcsuw\\webrtcvad\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record 'C:\Users\UJJWAL RASTOGI\AppData\Local\Temp\pip-record-ciqa_agr\install-record.txt' --single-version-externally-managed --compile --install-headers 'c:\users\ujjwal rastogi\appdata\local\programs\python\python38\Include\webrtcvad' Check the logs for full command output.
closed
2020-05-25T03:49:47Z
2020-07-04T14:52:47Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/349
[]
UJJWAL-1711
3
ray-project/ray
data-science
51,223
[Data] `Dataset.train_test_split` reads dataset twice
### What happened + What you expected to happen I'm following the [Fine-tuning a Torch object detection model](https://docs.ray.io/en/latest/train/examples/pytorch/torch_detection.html) example, and noticed when I call `train_test_split` the dataset is read twice. I think it's because we call `Dataset.count()` in the method's implementation, and for non-trivial pipelines this causes the pipeline to execute. https://github.com/ray-project/ray/blob/d8835dfa4a0e7c0ea50ea01cc5617635ce2965f5/python/ray/data/dataset.py#L2131 ### Versions / Dependencies 902b55a3ae432b3964b042d8e57e9211046e165a ### Reproduction script See descripition. ### Issue Severity Low: It annoys or frustrates me.
open
2025-03-10T21:02:11Z
2025-03-10T21:02:11Z
https://github.com/ray-project/ray/issues/51223
[ "P2", "performance", "data" ]
bveeramani
0
pydata/bottleneck
numpy
385
Failed to compile on Apple M1 [BUG]
I am trying to compile on Apple M1 with ``pip install .`` and get following bug report. Any help would be appreciated ``` DEPRECATION: Configuring installation scheme with distutils config files is deprecated and will no longer work in the near future. If you are using a Homebrew or Linuxbrew Python, please see discussion at https://github.com/Homebrew/homebrew-core/issues/76621 Processing /Users/.../bottleneck DEPRECATION: A future pip version will change local packages to be built in-place without first copying to a temporary directory. We recommend you use --use-feature=in-tree-build to test your packages with this new behavior before it becomes the default. pip 21.3 will remove support for this functionality. You can find discussion regarding this at https://github.com/pypa/pip/issues/7555. Installing build dependencies ... done Getting requirements to build wheel ... done Preparing wheel metadata ... done Requirement already satisfied: numpy in /opt/homebrew/lib/python3.9/site-packages (from Bottleneck==1.4.0.dev0+117.gf2bc792) (1.20.3) Building wheels for collected packages: Bottleneck Building wheel for Bottleneck (PEP 517) ... error ERROR: Command errored out with exit status 1: command: /opt/homebrew/opt/python@3.9/bin/python3.9 /opt/homebrew/lib/python3.9/site-packages/pip/_vendor/pep517/in_process/_in_process.py build_wheel /var/folders/jh/255j6mls5nd57kvdpm0hv2qw0000gn/T/tmp0zyrguhb cwd: /private/var/folders/jh/255j6mls5nd57kvdpm0hv2qw0000gn/T/pip-req-build-x4fx9n_c Complete output (210 lines): running bdist_wheel running build running build_py creating build creating build/lib.macosx-11-arm64-3.9 creating build/lib.macosx-11-arm64-3.9/bottleneck copying bottleneck/_version.py -> build/lib.macosx-11-arm64-3.9/bottleneck copying bottleneck/__init__.py -> build/lib.macosx-11-arm64-3.9/bottleneck copying bottleneck/_pytesttester.py -> build/lib.macosx-11-arm64-3.9/bottleneck creating build/lib.macosx-11-arm64-3.9/bottleneck/benchmark copying bottleneck/benchmark/bench_detailed.py -> build/lib.macosx-11-arm64-3.9/bottleneck/benchmark copying bottleneck/benchmark/autotimeit.py -> build/lib.macosx-11-arm64-3.9/bottleneck/benchmark copying bottleneck/benchmark/__init__.py -> build/lib.macosx-11-arm64-3.9/bottleneck/benchmark copying bottleneck/benchmark/bench.py -> build/lib.macosx-11-arm64-3.9/bottleneck/benchmark creating build/lib.macosx-11-arm64-3.9/bottleneck/slow copying bottleneck/slow/reduce.py -> build/lib.macosx-11-arm64-3.9/bottleneck/slow copying bottleneck/slow/__init__.py -> build/lib.macosx-11-arm64-3.9/bottleneck/slow copying bottleneck/slow/nonreduce.py -> build/lib.macosx-11-arm64-3.9/bottleneck/slow copying bottleneck/slow/move.py -> build/lib.macosx-11-arm64-3.9/bottleneck/slow copying bottleneck/slow/nonreduce_axis.py -> build/lib.macosx-11-arm64-3.9/bottleneck/slow creating build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/nonreduce_axis_test.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/scalar_input_test.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/reduce_test.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/util.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/move_test.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/__init__.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/input_modification_test.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/common.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/nonreduce_test.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/list_input_test.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/memory_test.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests copying bottleneck/tests/test_template.py -> build/lib.macosx-11-arm64-3.9/bottleneck/tests creating build/lib.macosx-11-arm64-3.9/bottleneck/src copying bottleneck/src/bn_config.py -> build/lib.macosx-11-arm64-3.9/bottleneck/src copying bottleneck/src/__init__.py -> build/lib.macosx-11-arm64-3.9/bottleneck/src copying bottleneck/src/bn_template.py -> build/lib.macosx-11-arm64-3.9/bottleneck/src creating build/lib.macosx-11-arm64-3.9/bottleneck/tests/data creating build/lib.macosx-11-arm64-3.9/bottleneck/tests/data/template_test copying bottleneck/tests/data/template_test/truth.c -> build/lib.macosx-11-arm64-3.9/bottleneck/tests/data/template_test copying bottleneck/tests/data/template_test/test_template.c -> build/lib.macosx-11-arm64-3.9/bottleneck/tests/data/template_test UPDATING build/lib.macosx-11-arm64-3.9/bottleneck/_version.py set build/lib.macosx-11-arm64-3.9/bottleneck/_version.py to '1.4.0.dev0+117.gf2bc792' running build_ext running config clang -E -I/opt/homebrew/Cellar/python@3.9/3.9.7/Frameworks/Python.framework/Versions/3.9/include/python3.9 -I/opt/homebrew/Cellar/python@3.9/3.9.7/Frameworks/Python.framework/Versions/3.9/include/python3.9 -o _configtest.i _configtest.c removing: _configtest.c _configtest.i compiling '_configtest.c': #pragma clang diagnostic error "-Wattributes" int __attribute__((optimize("O3"))) have_attribute_optimize_opt_3(void*); int main(void) { return 0; } clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX11.sdk -falign-functions=8 -falign-functions=8 -c _configtest.c -o _configtest.o _configtest.c:4:20: error: unknown attribute 'optimize' ignored [-Werror,-Wunknown-attributes] int __attribute__((optimize("O3"))) have_attribute_optimize_opt_3(void*); ^ 1 error generated. failure. removing: _configtest.c _configtest.o clang -E -I/opt/homebrew/Cellar/python@3.9/3.9.7/Frameworks/Python.framework/Versions/3.9/include/python3.9 -I/opt/homebrew/Cellar/python@3.9/3.9.7/Frameworks/Python.framework/Versions/3.9/include/python3.9 -o _configtest.i _configtest.c removing: _configtest.c _configtest.i compiling '_configtest.c': #include <math.h> int check(void) { return __builtin_isnan(0.); } int main(void) { return check(); } clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX11.sdk -falign-functions=8 -falign-functions=8 -c _configtest.c -o _configtest.o clang _configtest.o -o _configtest success! removing: _configtest.c _configtest.o _configtest compiling '_configtest.c': #include <math.h> int check(void) { return isnan(0.); } int main(void) { return check(); } clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX11.sdk -falign-functions=8 -falign-functions=8 -c _configtest.c -o _configtest.o clang _configtest.o -o _configtest success! removing: _configtest.c _configtest.o _configtest compiling '_configtest.c': #include <math.h> int check(void) { return _isnan(0.); } int main(void) { return check(); } clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX11.sdk -falign-functions=8 -falign-functions=8 -c _configtest.c -o _configtest.o _configtest.c:5:12: error: implicit declaration of function '_isnan' is invalid in C99 [-Werror,-Wimplicit-function-declaration] return _isnan(0.); ^ 1 error generated. failure. removing: _configtest.c _configtest.o compiling '_configtest.c': #ifndef __cplusplus static inline int static_func (void) { return 0; } inline int nostatic_func (void) { return 0; } #endif int main(void) { int r1 = static_func(); int r2 = nostatic_func(); return r1 + r2; } clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX11.sdk -falign-functions=8 -falign-functions=8 -c _configtest.c -o _configtest.o success! removing: _configtest.c _configtest.o building 'bottleneck.reduce' extension creating build/temp.macosx-11-arm64-3.9 creating build/temp.macosx-11-arm64-3.9/bottleneck creating build/temp.macosx-11-arm64-3.9/bottleneck/src clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX11.sdk -falign-functions=8 -falign-functions=8 -I/opt/homebrew/Cellar/python@3.9/3.9.7/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/numpy/core/include -I/opt/homebrew/include -I/opt/homebrew/opt/openssl@1.1/include -I/opt/homebrew/opt/sqlite/include -I/opt/homebrew/Cellar/python@3.9/3.9.7/Frameworks/Python.framework/Versions/3.9/include/python3.9 -Ibottleneck/src -Ibottleneck/include -c bottleneck/src/reduce.c -o build/temp.macosx-11-arm64-3.9/bottleneck/src/reduce.o -O2 In file included from bottleneck/src/reduce_template.c:9: In file included from /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/x86intrin.h:15: In file included from /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/immintrin.h:15: /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:50:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_vec_init_v2si(__i, 0); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:129:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_packsswb((__v4hi)__m1, (__v4hi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:159:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_packssdw((__v2si)__m1, (__v2si)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:189:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_packuswb((__v4hi)__m1, (__v4hi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:216:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_punpckhbw((__v8qi)__m1, (__v8qi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:239:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_punpckhwd((__v4hi)__m1, (__v4hi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:260:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_punpckhdq((__v2si)__m1, (__v2si)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:287:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_punpcklbw((__v8qi)__m1, (__v8qi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:310:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_punpcklwd((__v4hi)__m1, (__v4hi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:331:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_punpckldq((__v2si)__m1, (__v2si)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:352:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_paddb((__v8qi)__m1, (__v8qi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:373:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_paddw((__v4hi)__m1, (__v4hi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:394:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_paddd((__v2si)__m1, (__v2si)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:416:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_paddsb((__v8qi)__m1, (__v8qi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:439:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_paddsw((__v4hi)__m1, (__v4hi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:461:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_paddusb((__v8qi)__m1, (__v8qi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:483:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_paddusw((__v4hi)__m1, (__v4hi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:504:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_psubb((__v8qi)__m1, (__v8qi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /Library/Developer/CommandLineTools/usr/lib/clang/12.0.5/include/mmintrin.h:525:12: error: invalid conversion between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size return (__m64)__builtin_ia32_psubw((__v4hi)__m1, (__v4hi)__m2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fatal error: too many errors emitted, stopping now [-ferror-limit=] 20 errors generated. error: command '/usr/bin/clang' failed with exit code 1 ---------------------------------------- ERROR: Failed building wheel for Bottleneck Failed to build Bottleneck ERROR: Could not build wheels for Bottleneck which use PEP 517 and cannot be installed directly ```
open
2021-09-23T10:10:08Z
2022-09-09T07:27:42Z
https://github.com/pydata/bottleneck/issues/385
[ "bug" ]
NikZak
12
mkhorasani/Streamlit-Authenticator
streamlit
119
Fix the sample code in user registration.
### Old ```python try: if authenticator.register_user(preauthorization=False): st.success('User registered successfully') except Exception as e: st.error(e) ``` ### Update ```python try: email, username, name = authenticator.register_user( location='main', preauthorization=False, domains=None, # ['gmail.com', 'yahoo.com'] fields={'Form name': 'Register User'} ) if None not in (email, username, name): st.success('User registered successfully') except Exception as e: st.error(e) ``` Also fix the return value of `register_user()` in the authenticate module.
closed
2024-01-25T22:15:56Z
2024-01-26T09:00:30Z
https://github.com/mkhorasani/Streamlit-Authenticator/issues/119
[]
fsmosca
3
tableau/server-client-python
rest-api
739
Add docs for Webhooks
Add docs for code changes from #523
closed
2020-11-19T00:48:46Z
2022-09-08T18:15:50Z
https://github.com/tableau/server-client-python/issues/739
[ "docs" ]
bcantoni
0
django-cms/django-cms
django
7,515
Improve French translations by using only one token for action buttons
## Description ![image](https://user-images.githubusercontent.com/79070834/228305444-a21be45c-4fa4-4519-84df-16c896587508.png) There are three issues with translations in French. 1. "Nouveau Page" is two tokens "New" and "Page". But it's "une page" so it should be "Nouvelle Page". It also can happen anytime an object name is feminine. (quite a lot in the french language) https://github.com/django-cms/django-cms/blob/9e33167701b65ce4fb7675d61e452e62792556e3/cms/locale/fr/LC_MESSAGES/django.po#L1057-L1062 2. We could improve "Ajouter page maintenant." with "Ajouter *une* page maintenant." 3. We should improve « il n’y a pas encore page » with « il n’y a pas encore *de* page ». https://github.com/django-cms/django-cms/blob/9e33167701b65ce4fb7675d61e452e62792556e3/cms/locale/fr/LC_MESSAGES/django.po#L1102-L1109 ## Steps to reproduce With Django-CMS configured in French, Go to Administration > Django CMS > Pages Note: Adding only one token for new objects will probably also fix those kind of issues in other languages than french if they also distinguish genres. # More examples ![image](https://user-images.githubusercontent.com/79070834/228308762-cfe03536-0682-447b-a39e-79a22ccacdba.png) "Ajouter *une* page type", « il n’y a pas encore *de* page type » and "Nouvelle Page Type". Note 2: This issue probably affects plugins too. Note 3: This will facilitate the production of accurate translations since the context will be given.
closed
2023-03-28T16:29:43Z
2023-04-25T17:57:13Z
https://github.com/django-cms/django-cms/issues/7515
[]
wasertech
6
roboflow/supervision
deep-learning
1,325
comment utilser les resultas de ce model hors connectiom
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Question j'ai projet sur le quel je travail qui consiste a calculer les dimensions reelles en mm d'un oeuf a partir de son image et je voulais savoir comment integrer ce model a mon projet et comment utiliser ses resultats pour avoir les dimensions en pixels de l'oeuf sur l'image ### Additional _No response_
closed
2024-07-04T03:04:03Z
2024-07-05T11:41:13Z
https://github.com/roboflow/supervision/issues/1325
[ "question" ]
Tkbg237
0
miguelgrinberg/Flask-Migrate
flask
181
missing kwarg engine_name in migrations created with flask db init, after switching to multiple databases
I had a database which already had migrations. I added a second database, re-running `flask db init --multidb` as you suggested at https://github.com/miguelgrinberg/Flask-Migrate/issues/179. Worked fine. But, when I want to upgrade or downgrade one of the old migrations (*old* means, they where created by `flask db migrate` when I had only one database), I get the error ``` Traceback (most recent call last): File "/[...]/bin/flask", line 11, in <module> sys.exit(main()) File "/[...]/lib/python3.6/site-packages/flask/cli.py", line 507, in main cli.main(args=args, prog_name=name) File "/[...]/lib/python3.6/site-packages/flask/cli.py", line 374, in main return AppGroup.main(self, *args, **kwargs) File "/[...]/lib/python3.6/site-packages/click/core.py", line 697, in main rv = self.invoke(ctx) File "/[...]/lib/python3.6/site-packages/click/core.py", line 1066, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) File "/[...]/lib/python3.6/site-packages/click/core.py", line 1066, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) File "/[...]/lib/python3.6/site-packages/click/core.py", line 895, in invoke return ctx.invoke(self.callback, **ctx.params) File "/[...]/lib/python3.6/site-packages/click/core.py", line 535, in invoke return callback(*args, **kwargs) File "/[...]/lib/python3.6/site-packages/click/decorators.py", line 17, in new_func return f(get_current_context(), *args, **kwargs) File "/[...]/lib/python3.6/site-packages/flask/cli.py", line 251, in decorator return __ctx.invoke(f, *args, **kwargs) File "/[...]/lib/python3.6/site-packages/click/core.py", line 535, in invoke return callback(*args, **kwargs) File "/[...]/lib/python3.6/site-packages/flask_migrate/cli.py", line 132, in upgrade _upgrade(directory, revision, sql, tag, x_arg) File "/[...]/lib/python3.6/site-packages/flask_migrate/__init__.py", line 244, in upgrade command.upgrade(config, revision, sql=sql, tag=tag) File "/[...]/lib/python3.6/site-packages/alembic/command.py", line 174, in upgrade script.run_env() File "/[...]/lib/python3.6/site-packages/alembic/script/base.py", line 416, in run_env util.load_python_file(self.dir, 'env.py') File "/[...]/lib/python3.6/site-packages/alembic/util/pyfiles.py", line 93, in load_python_file module = load_module_py(module_id, path) File "/[...]/lib/python3.6/site-packages/alembic/util/compat.py", line 68, in load_module_py module_id, path).load_module(module_id) File "<frozen importlib._bootstrap_external>", line 399, in _check_name_wrapper File "<frozen importlib._bootstrap_external>", line 823, in load_module File "<frozen importlib._bootstrap_external>", line 682, in load_module File "<frozen importlib._bootstrap>", line 251, in _load_module_shim File "<frozen importlib._bootstrap>", line 675, in _load File "<frozen importlib._bootstrap>", line 655, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 678, in exec_module File "<frozen importlib._bootstrap>", line 205, in _call_with_frames_removed File "migrations/env.py", line 158, in <module> run_migrations_online() File "migrations/env.py", line 138, in run_migrations_online context.run_migrations(engine_name=name) File "<string>", line 8, in run_migrations File "/[...]/lib/python3.6/site-packages/alembic/runtime/environment.py", line 807, in run_migrations self.get_context().run_migrations(**kw) File "/[...]/lib/python3.6/site-packages/alembic/runtime/migration.py", line 321, in run_migrations step.migration_fn(**kw) TypeError: upgrade() got an unexpected keyword argument 'engine_name' ``` This is, because flask-Migrate is passing the `engine_name` as a parameter now, which it (understandably) didn't do before `flask db init --multidb`. I can fix this by refactoring each instance of `def upgrade()` to `def upgrade(**kwargs)` or `def upgrade(engine_name)` and analogously for ocurrences of `def downgrade()` in the existing migration files. But to me, it feels paradigmatically wrong to change *anything* in a migration. Maybe I am wrong with this, but is there a possibility for `flask-Migrate` to prevent me from refactoring the migrations?
closed
2018-01-15T15:51:34Z
2022-03-25T15:06:02Z
https://github.com/miguelgrinberg/Flask-Migrate/issues/181
[ "question" ]
jonathan-scholbach
4
ageitgey/face_recognition
python
1,274
face_recognition pipeline for multiple sources
* face_recognition version: - * Python version:3.7 * Operating System: ubuntu 18.04 ### Description Hi, I am have implemented a face recognition pipeline with face_recognition library on jetson nano which fetched 7-10 fps from a single 1080p source, which is decent for a single source. but, to increase the number of sources I am planning to use this library with deepstream to process multiple streams. please do let me know if you've implemented something similar.
open
2021-02-02T08:21:37Z
2021-04-08T13:27:36Z
https://github.com/ageitgey/face_recognition/issues/1274
[]
shubham-shahh
6
quantumlib/Cirq
api
6,182
Implement consistancy checks for unitary protocol in the presence of ancillas
**Is your feature request related to a use case or problem? Please describe.** #6101 was created to update `cirq.unitary` and `cirq.apply_unitaries` protocols to support the case when gates allocate their own ancillas. This was achieved in #6112, however the fix assumes the decomposition is correct. a consistency check is need to check that. This is the fourth task on https://github.com/quantumlib/Cirq/issues/6101#issuecomment-1568686661. The consistency check should check that the result is 1. Indeed a unitary 2. CleanQubits are restored to the $\ket{0}$ state. 3. Borrowable Qubits are restored to their original state. **Describe the solution you'd like** for the correctness checks we need a `cirq.testing.assert_consistent_unitary` that does the checks listed above. **What is the urgency from your perspective for this issue? Is it blocking important work?** for the first task P1 - I need this no later than the next release (end of quarter) for the second and third tasks P3 - I'm not really blocked by it, it is an idea I'd like to discuss / suggestion based on principle
closed
2023-07-05T15:54:25Z
2023-07-14T13:35:14Z
https://github.com/quantumlib/Cirq/issues/6182
[ "good first issue", "kind/feature-request", "triage/accepted" ]
NoureldinYosri
7
mwaskom/seaborn
data-science
3,681
`lineplot(..., dashes)` argument does not support string descriptors
When using `lineplot` with `style` set to a categorial, the `dashes` argument cannot be specified using the conventional matplotlib strings like `dashed` or `-`, but must take a list of dash tuples like `(1, 0)`, otherwise it fails with a nasty error. MWE: ```python import pandas as pd import seaborn as sns d = pd.DataFrame([ {"a": 1, "b:": 2.0, "c": "A"}, {"a": 2, "b:": 1.0, "c": "A"}, {"a": 3, "b:": 3.0, "c": "B"}, {"a": 4, "b:": 4.0, "c": "B"}, ]) sns.lineplot(data=d, x="a", y="b:", style="c", dashes=["-", "-"]) ``` Gives: ``` TypeError: unsupported operand type(s) for +: 'int' and 'str' ``` The intended behaviour can be obtained using `dashes=[(1, 0), (1, 0)]` This is because `Line2D.set_dashes` is used instead of `Line2D.set_linestyle`. Perhaps an additional argument `styles=` could be added which would use the `set_linestyle` method instead?
closed
2024-04-22T08:10:13Z
2024-04-24T10:56:02Z
https://github.com/mwaskom/seaborn/issues/3681
[]
JeppeKlitgaard
3
jmcnamara/XlsxWriter
pandas
1,082
question: How to add format to already writed cells?
### Question I'm trying to generate excel from a pandas styler object which contains font color. If I simply use `my_styler.to_excel(writer, sheet_name='Sheet1')` the color exist. If I follow the document and set format to **dataframe**, percent exist. ``` # Add a percent number format. percent_format = workbook.add_format({"num_format": "0%"}) # Apply the number format to Grade column. worksheet.set_column(2, 2, None, percent_format) ``` But when I tried to set number format to workbook generated by `my_styler.to_excel(writer, sheet_name='Sheet1')` , it does not work. test code: ```python import pandas as pd import numpy as np from io import BytesIO weather_df = pd.DataFrame(np.random.rand(10,2)*5, index=pd.date_range(start="2021-01-01", periods=10), columns=["Tokyo", "Beijing"]) def make_pretty(styler): styler.set_caption("Weather Conditions") styler.format_index(lambda v: v.strftime("%A")) styler.background_gradient(axis=None, vmin=1, vmax=5, cmap="YlGnBu") return styler my_styler = weather_df.loc["2021-01-04":"2021-01-08"].style.pipe(make_pretty) my_styler writer = pd.ExcelWriter("test.xlsx", engine='xlsxwriter') my_styler.to_excel(writer, sheet_name='Sheet1') percent_format = writer.book.add_format({'num_format': '0.00%'}) # this line not work # Now apply the number format to the column writer.sheets['Sheet1'].set_column(0, 0, 30) writer.sheets['Sheet1'].set_column(1, 2, 15, percent_format) writer.close() ```
closed
2024-07-15T05:52:19Z
2024-07-30T22:42:30Z
https://github.com/jmcnamara/XlsxWriter/issues/1082
[ "question" ]
PaleNeutron
3
sinaptik-ai/pandas-ai
pandas
962
Adding to LLMs Mistral AI Chat Models
### 🚀 The feature adding a class for MistralAI chat models ### Motivation, pitch the Large MistralAI Model Performs very well, and the reasoning, and code capabilities are perfect according to what I have tested till now using multiple datasets and using the same prompts of PandasAI. below is an example of prompts used, and the response: Prompt: ``` Using prompt: <dataframe> dfs[0]:3x2 Network_Activity_Type_Code,Network_Activity_Type_Name 3,Internet 1,Outgoing_Call 2,Incoming_Call </dataframe> <dataframe> dfs[1]:10000x8 Subscription_Id,Running_Date,Rate_Plan_Product_Id,Call_Gap_Days,Most_Used_Governorate,Most_Used_Qism,Most_Used_Region,Duality_Flag 749,2019-05-23,2,18,Qena,puy,west,N 263,2016-08-31,12,50,Alex,xyz,west,Y 956,2016-05-15,6,18,Giza,puy,north,N </dataframe> <dataframe> dfs[2]:10000x6 Subscription_Id,Rate_Plan_Product_Id,Network_Activity_Type_Code,Duration,Data_Volumne,Running_Date 708,14,1,59,17,2020-08-23 52,1,1,15,89,2016-03-18 211,10,3,95,71,2017-09-08 </dataframe> <dataframe> dfs[3]:16x5 Rate_Plan_Product_Id,Rate_Plan_code,Rate_Plan_Description,Rate_Plan_Type,Rate_Plan_Group 2,53,XYZU,Prepaid,Youth 3,52,XYZU,Prepaid,Youth 1,33,XYZU,Prepaid,Ahl </dataframe> <dataframe> dfs[4]:10000x10 Subscription_Id,Running_Date,Total_Revenue,Recharges,Baki_Revenue,Nota_Revenue,Connect_Revenue,Admin_Fees,Tesla_Revenue,Balance_Transfer_Fees 871,2019-10-23,48,39,61,39,49,97,13,85 729,2016-06-21,96,20,16,86,93,22,31,96 483,2020-03-15,47,19,32,47,11,31,15,82 </dataframe> <dataframe> dfs[5]:10000x2 Subscription_Id,Rate_Plan_Group 956,Camp 263,Ahl 749,Youth </dataframe> Update this initial code: ```python # TODO: import the required dependencies import pandas as pd # Write code here # Declare result var: type (possible values "string", "number", "dataframe", "plot"). Examples: { "type": "string", "value": f"The highest salary is {highest_salary}." } or { "type": "number", "value": 125 } or { "type": "dataframe", "value": pd.DataFrame({...}) } or { "type": "plot", "value": "temp_chart.png" } ``` Q: what's the total revenue per governorate? Variable `dfs: list[pd.DataFrame]` is already declared. At the end, declare "result" variable as a dictionary of type and value. ``` response: ``` # Merge dfs[4] and dfs[1] on Subscription_Id merged_df = pd.merge(dfs[4], dfs[1], on='Subscription_Id') # Group the merged dataframe by Most_Used_Governorate and sum the Total_Revenue column total_revenue_per_governorate = merged_df.groupby('Most_Used_Governorate')['Total_Revenue'].sum().reset_index() # Declare the result variable result = { "type": "dataframe", "value": total_revenue_per_governorate } ``` ### Alternatives _No response_ ### Additional context _No response_
closed
2024-02-26T20:59:10Z
2024-06-08T16:03:52Z
https://github.com/sinaptik-ai/pandas-ai/issues/962
[]
Ezzaldin97
6
TheAlgorithms/Python
python
11,586
Common errors used in python
### What would you like to share? IOError Raised when an I/O operation fails for an I/O-related reason, e.g., "file not found". ImportError: Raised when an important statement fails to find the module definition IndexError: Raised when a sequence index is out of range KeyError: Raised when a dictionary key is not found NameError: Raised when a local or global name is not found TypeError Raised when an operation or function is applied to an object of inappropriate type For a complete list of all errors go to https://docs.python.org/3/library/expectations.html. ### Additional information _No response_
closed
2024-09-27T11:45:22Z
2024-09-30T10:02:23Z
https://github.com/TheAlgorithms/Python/issues/11586
[ "awaiting triage" ]
Phyhoncoder13
6
aleju/imgaug
machine-learning
71
generate N augemented images from one image
Hi, is it possible to generate N augmented images from one image given as input. If not could you please put me on the write path on how to tweak `imgaug `to make it possible. I am only using `Sequential()` as meta augmenter. Thank you for your effort implementing this cool library.
closed
2017-10-17T09:40:25Z
2017-10-17T14:09:09Z
https://github.com/aleju/imgaug/issues/71
[]
sdikby
4
mage-ai/mage-ai
data-science
4,871
Codespace/devcontainer for contributing
**Is your feature request related to a problem? Please describe.** It will make it easier for contributors to jump straight in without having to do any setup. (Also make speed up time for installs if you have a custom image - just spin up container and its ready.) **Describe the solution you'd like** Create a dev container for vscode and codespace. **Additional context** I would do it but do not know the repo that well yet to define what is needed for development.
open
2024-04-02T16:05:43Z
2024-04-03T17:06:39Z
https://github.com/mage-ai/mage-ai/issues/4871
[]
mike-leuer
4
deepset-ai/haystack
pytorch
8,147
Validated and hardened OPEA examples using Haystack
**Is your feature request related to a problem? Please describe.** OPEA (Open Platform for Enterprise AI) is a newly introduced project by the Linux Foundation. You can find all the details at https://opea.dev/. It provides an open source platform that allows the creation of GenAI applications. They have [multiple samples](https://github.com/opea-project/GenAIExamples) that use the [underlying components](https://github.com/opea-project/GenAIComps). Creating samples that show how Haystack can be used for composing these samples is a commonly asked feature by customers and in public presentations. This feature request will create a Haystack version of all the GenAI Examples in the OPEA repo. Deepset is a partner and their logo/quote is on the website. **Describe the solution you'd like** All GenAI examples validated and hardened using Haystack and contributed back to the OPEA GenAI Examples repo. **Describe alternatives you've considered** This has never been tried and needs to be tested/validated using Haystack. **Additional context** Customers and partners have asked how to compose these samples using Haystack. This question has been asked in public presentations as well. Validating and hardening OPEA samples using Haystack would fulfill that need.
open
2024-08-01T17:10:28Z
2024-09-09T03:31:20Z
https://github.com/deepset-ai/haystack/issues/8147
[ "P2" ]
arun-gupta
0
lexiforest/curl_cffi
web-scraping
430
When accessing a link on the Amazon website that requires a 302 redirect, it returns a 400 error.
**Describe the bug** When accessing a link on the Amazon website that requires a 302 redirect, it returns a 400 error. **To Reproduce** ``` https://www.amazon.com.br/sspa/click?ie=UTF8&spc=MToxNTE2MDY5ODk3MjUzNTYzOjE3MzEwNDgzOTY6c3BfYnRmOjMwMDQwOTY0MTkyNDIwMjo6MDo6&url=%2FRel%25C3%25B3gio-Seiko-FD462W-comuta%25C3%25A7%25C3%25A3o-anal%25C3%25B3gica%2Fdp%2FB00BH83M86%2Fref%3Dsr_1_58_sspa%3F__mk_pt_BR%3D%25C3%2585M%25C3%2585%25C5%25BD%25C3%2595%25C3%2591%26dib%3DeyJ2IjoiMSJ9.kiEe7C09pDW7u4_0s0Ws3bOu7x97Fl9ruJJU44ZD6pQHik0mB9N80sjGu87zh9wbz3PhJnl6E-RyMfjj4XKsKULwa3BBCiwj_QNKqGO5dCVpC67vX2iE06vyQFAjcLSm_G43rRYUfKb-tA5py5zdiMGDwP8y6pDuwk03Q31GM3LCa2wE2p1qAsSX-LeaMpz3sDq8tFBWjlUJxM_jSVpacFrtB23CgRNZJuigNqMZebB8ar4dIyqwBJh1cxb-kd9Oom64bkAF8NEPIxiXrJm-9kw93Vdr6P_SKGFsw_xFWrE.01cHJVOD9CIlk3VlQmY6OYFyN-2W3AUnKCuCWwOF13E%26dib_tag%3Dse%26keywords%3Dseiko%26qid%3D1731048396%26sr%3D8-58-spons%26ufe%3Dapp_do%253Aamzn1.fos.25548f35-0de7-44b3-b28e-0f56f3f96147%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9idGY%26psc%3D1 ``` **Versions** - OS: macOS Sequoia 15.0.1 - curl_cffi version 0.7.3
closed
2024-11-11T03:08:23Z
2024-12-03T09:07:42Z
https://github.com/lexiforest/curl_cffi/issues/430
[ "bug" ]
chicagocong
3
aio-libs/aiomysql
sqlalchemy
617
aiomysql can't connect to database when mysql-connector can
This is a little bit weird. I don't know if this is an issue with aiomysql or some kind of dependency not being satisfied. I have a docker container running a python app. The Dockerfile is: ``` FROM python:3.9.5-buster WORKDIR /usr/src/app COPY . . RUN apt-get -y update && apt-get -y upgrade RUN apt-get -y install gcc RUN pip install --no-cache-dir -r requirements.txt CMD [ "python", "app.py" ] ``` Inside app, I can run one of two possible code sets. Codeset 1 works, codeset 2 failed with: ``` pymysql.err.OperationalError: (2003, "Can't connect to MySQL server on '172.17.0.2'") ``` **codeset 1** ``` import mysql.connector mydb = mysql.connector.connect( host="host-ip", user="username", password="password", database="database" ) mycursor = mydb.cursor() mycursor.execute("SHOW TABLES") myresult = mycursor.fetchall() for x in myresult: print(x) ``` **codeset 2** ``` import asyncio import aiomysql loop = asyncio.get_event_loop() async def test_example(): try: conn = await aiomysql.connect(host='host-ip', port=3306, user='username', password='password', db='database', loop=loop) cur = await conn.cursor() await cur.execute("SELECT * FROM test") print(cur.description) r = await cur.fetchall() print(r) await cur.close() conn.close() except Exception as e: print(e) loop.run_until_complete(test_example()) ``` I can connect to the MySQL database using mariadb-client and mysql.connector just fine, but not aiomysql. Edit: python version is 3.10.
closed
2021-09-27T09:31:15Z
2022-01-13T00:23:27Z
https://github.com/aio-libs/aiomysql/issues/617
[]
surpriseassociate
4
miguelgrinberg/python-socketio
asyncio
757
Raise an Exception when we reach max client reconnection_attempts
**Is your feature request related to a problem? Please describe.** After the max reconnection attempts I get a log output, but nothing else actionable. **Describe the solution you'd like** raise an Exception which I can catch and close the rest of the loops in my program (ASyncClient) or make the client's `attempt_count` attribute readable. But exception is preferable - maybe that exception is optionally raisable. **Describe alternatives you've considered** monkey patching the whole _handle_reconnect is a lot. raising an error in the connect_error handler - but that disallows any reconnection attempts. **Additional context** This is while using the asyncclient
closed
2021-07-27T11:39:37Z
2021-10-05T16:48:09Z
https://github.com/miguelgrinberg/python-socketio/issues/757
[ "bug" ]
tomharvey
4
ludwig-ai/ludwig
data-science
3,245
`torchaudio` incorrectly installing 2.0.0 with `torch==1.13.1`
**Describe the bug** When installing `torch==1.13.1` with a specified `extra_index_url`, `torchaudio==2.0.0` is installed: **To Reproduce** Steps to reproduce the behavior: ``` (test_env) % pip install --no-cache-dir torch==1.13.1 torchaudio --extra-index-url=https://download.pytorch.org/whl/cpu Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cpu Collecting torch==1.13.1 Downloading https://download.pytorch.org/whl/cpu/torch-1.13.1-cp38-none-macosx_10_9_x86_64.whl (135.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 135.4/135.4 MB 109.0 MB/s eta 0:00:00 Collecting torchaudio Downloading https://download.pytorch.org/whl/cpu/torchaudio-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.9/3.9 MB 91.3 MB/s eta 0:00:00 Requirement already satisfied: typing-extensions in ./test_env/lib/python3.8/site-packages (from torch==1.13.1) (4.5.0) Installing collected packages: torch, torchaudio Successfully installed torch-1.13.1 torchaudio-2.0.0 ``` **Expected behavior** `torchaudio==0.13.1` would be installed. **Environment (please complete the following information):** - OS: MacOS - Version: 13.1 - Python version: 3.8 - Ludwig version: 0.7.2
closed
2023-03-14T21:11:27Z
2023-03-17T15:49:53Z
https://github.com/ludwig-ai/ludwig/issues/3245
[]
geoffreyangus
1
HumanSignal/labelImg
deep-learning
74
the question about "make all"
zr@zr:~$ make all make: *** No rule to make target 'all'. Stop. zr@zr:~$ sudo su root@zr:/home/zr# pip install lxml Requirement already satisfied: lxml in /usr/local/lib/python2.7/dist-packages root@zr:/home/zr# make all make: *** No rule to make target 'all'. Stop. ask for help! thank you!
closed
2017-03-30T09:02:10Z
2017-03-30T12:59:09Z
https://github.com/HumanSignal/labelImg/issues/74
[]
xiaoheizi123
0
pytest-dev/pytest-html
pytest
392
github action step that ensures that scss was compiled into css for all PRs
@gnikonorov proposed to have a github action step that ensures that scss was compiled into css for all PRs. see also the discussion here: https://github.com/pytest-dev/pytest-html/pull/385#discussion_r531829718
open
2020-11-30T17:46:55Z
2020-12-03T05:08:58Z
https://github.com/pytest-dev/pytest-html/issues/392
[ "Infrastructure" ]
jkowalleck
2
pytorch/vision
machine-learning
8,252
Reading frames from VideoReader freezes eventually
### 🐛 Describe the bug The problem only occurs under some specific conditions: 1. The video backend is 'video_reader' 2. The VideoReader object is initialized with raw bytes rather than a path string 3. This byte buffer is loaded from an avi video file Example code: ``` from torchvision.io import VideoReader torchvision.set_video_backend('video_reader') with open('/path/to/video.avi', 'rb') as fp: data = fp.read() reader = VideoReader(data) frames = [] # this loop stops freezes after a while (usually towards the end of the video) for data in reader: frames.append(frame['data']) ``` ### Versions Collecting environment information... PyTorch version: 2.1.1 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 7.5.0-6ubuntu2) 7.5.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.31 Python version: 3.11.6 | packaged by conda-forge | (main, Oct 3 2023, 10:40:35) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-5.4.0-169-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-PCIE-40GB GPU 1: NVIDIA A100-PCIE-40GB GPU 2: NVIDIA A100-PCIE-40GB GPU 3: NVIDIA A100-PCIE-40GB GPU 4: NVIDIA A100-PCIE-40GB GPU 5: NVIDIA A100-PCIE-40GB GPU 6: NVIDIA A100-PCIE-40GB GPU 7: NVIDIA A100-PCIE-40GB Nvidia driver version: 525.147.05 cuDNN version: Probably one of the following: /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn.so.8.1.0 /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.1.0 /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.1.0 /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.1.0 /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.1.0 /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.1.0 /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.1.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 43 bits physical, 48 bits virtual CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7452 32-Core Processor Stepping: 0 Frequency boost: enabled CPU MHz: 3272.256 CPU max MHz: 2350.0000 CPU min MHz: 1500.0000 BogoMIPS: 4700.22 Virtualization: AMD-V L1d cache: 2 MiB L1i cache: 2 MiB L2 cache: 32 MiB L3 cache: 256 MiB NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca sme sev sev_es Versions of relevant libraries: [pip3] numpy==1.26.2 [pip3] numpy==1.26.2 [pip3] pytorch-lightning==2.1.2 [pip3] torch==2.1.1 [pip3] torchaudio==2.1.1 [pip3] torchdiffeq==0.2.3 [pip3] torchmetrics==1.2.1 [pip3] torchvision==0.16.1 [pip3] torchvision==0.16.1 [pip3] triton==2.1.0 [conda] blas 1.0 mkl [conda] libblas 3.9.0 12_linux64_mkl conda-forge [conda] libcblas 3.9.0 12_linux64_mkl conda-forge [conda] liblapack 3.9.0 12_linux64_mkl conda-forge [conda] mkl 2021.4.0 h06a4308_640 [conda] numpy 1.26.2 pypi_0 pypi [conda] pytorch 2.1.1 py3.11_cuda11.8_cudnn8.7.0_0 pytorch [conda] pytorch-cuda 11.8 h7e8668a_5 pytorch [conda] pytorch-lightning 2.1.2 pyhd8ed1ab_0 conda-forge [conda] pytorch-mutex 1.0 cuda pytorch [conda] torchaudio 2.1.1 dev_0 <develop> [conda] torchdiffeq 0.2.3 pypi_0 pypi [conda] torchmetrics 1.2.1 pyhd8ed1ab_0 conda-forge [conda] torchtriton 2.1.0 py311 pytorch [conda] torchvision 0.16.1 pypi_0 pypi
open
2024-02-05T01:05:18Z
2024-02-05T11:03:29Z
https://github.com/pytorch/vision/issues/8252
[]
treasan
1
matterport/Mask_RCNN
tensorflow
2,398
Problem with demo.ipynb (model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
Create Model and Load Trained Weights¶ # Create model object in inference mode. #model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) ​ # Load weights trained on MS-COCO model.load_weights(COCO_MODEL_PATH, by_name=True) --------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-13-a57dd9ffa939> in <module> 1 # Create model object in inference mode. 2 #model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) ----> 3 model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) 4 5 # Load weights trained on MS-COCO NameError: name 'config' is not defined Please how we solve this config not defind
open
2020-10-19T01:08:49Z
2020-12-06T17:46:41Z
https://github.com/matterport/Mask_RCNN/issues/2398
[]
fatana1
1
tox-dev/tox
automation
3,391
Free threaded Python support
I would like to be able to use ``py313t`` in the envlist to explicitly run ``python3.13t`` as a free-threaded nogil build in addition to ``py313`` which would run ``python3.13`` as an explicitly regular build. Is there already some way to do that which I missed? Currently ``py313t`` seems to use ``python``. Related: - https://github.com/pypa/virtualenv/issues/2776
open
2024-10-04T06:01:05Z
2025-01-20T18:07:58Z
https://github.com/tox-dev/tox/issues/3391
[ "help:wanted", "enhancement" ]
fschulze
8
python-gino/gino
asyncio
80
Use anonymous statement when needed
I'm using pgbouncer with transaction pooling enabled which means no prepared statements. I'd like to see an option to disable prepared statements. Actually, I think we should disable them at all because asyncpg has its own statements cache.
closed
2017-09-27T17:43:12Z
2018-01-31T11:25:03Z
https://github.com/python-gino/gino/issues/80
[ "task" ]
AmatanHead
5
slackapi/bolt-python
fastapi
764
Problem of receiving two or more duplicate messages when sending a message through chat_postMessage()
Problem of receiving two or more duplicate messages when sending a message through chat_postMessage() I'm using slack_bolt and when I send a message through chat_postMessage(), I get a problem with receiving a message with two or more duplicate messages. The message is sent as a combination of blocks, and the size of the block exceeds 4000 bytes. I tried debugging, but it doesn't seem to retry. An example of a block is shown below. ``` ex1) app.client.chat_postMessage(blocks=, channel=) ex2) blocks = [{'elements': [{'text': '*aaaaaaaaaa*', 'type': 'mrkdwn'}], 'type': 'context'}, {'elements': [{'alt_text': 'cute cat', 'image_url': 'https://cdn-icons-png.flaticon.com/512/752/752664.png', 'type': 'image'}, {'text': f'{"a"*37}', 'type': 'mrkdwn'}], 'type': 'context'}, {'elements': [{'text': f'>```{"a"*3920}```', 'type': 'mrkdwn'}], 'type': 'context'}, {'elements': [{'alt_text': 'cute cat', 'image_url': 'https://cdn-icons-png.flaticon.com/512/752/752665.png', 'type': 'image'}, {'text': f'{"a"*39}', 'type': 'mrkdwn'}], 'type': 'context'}, {'elements': [{'text': f'>```{"a"*100}```', 'type': 'mrkdwn'}], 'type': 'context'}] ```
closed
2022-11-10T16:19:07Z
2024-12-07T20:05:26Z
https://github.com/slackapi/bolt-python/issues/764
[ "question", "auto-triage-stale" ]
sh4n3e
25
zappa/Zappa
flask
1,350
Use UV to install packages much faster
Use UV - An extremely fast Python package and project manager, written in Rust to speed up the installation of dependencies https://github.com/astral-sh/uv ## Context Zappa creates a virtual env with all the dependencies for the app for Lambda handler, and zips it. UV is 10-100x faster than pip. We could see a great speed boost.
closed
2024-09-17T21:25:07Z
2025-01-31T19:36:50Z
https://github.com/zappa/Zappa/issues/1350
[ "no-activity", "auto-closed" ]
tugoavenza
4
NullArray/AutoSploit
automation
470
Unhandled Exception (06c10795b)
Autosploit version: `3.0` OS information: `Linux-4.15.0-20-generic-x86_64-with-LinuxMint-19.1-tessa` Running context: `./autosploit.py` Error meesage: `argument of type 'NoneType' is not iterable` Error traceback: ``` Traceback (most recent call): File "/home/meowcat285/Autosploit/autosploit/main.py", line 117, in main terminal.terminal_main_display(loaded_tokens) File "/home/meowcat285/Autosploit/lib/term/terminal.py", line 502, in terminal_main_display if "help" in choice_data_list: TypeError: argument of type 'NoneType' is not iterable ``` Metasploit launched: `False`
closed
2019-02-15T18:22:37Z
2019-02-19T04:23:39Z
https://github.com/NullArray/AutoSploit/issues/470
[]
AutosploitReporter
0
pywinauto/pywinauto
automation
1,391
Take ElementUI PATH
I was having some trouble retrieving elements once I had them stored. Pywinauto by default does not offer "support", be it a property or something like that, to store the value of the path to the element in question. I created the code below, it works in 80% of cases, but it can be improved by someone more experienced. For example, if you click on a button, the captured path will be different from the path you need, as unfortunately I was unable to "intercept" the mouse click to prevent an action from being taken. I'm using Windwos 11 with Pywinauto version 0.6.8 This class basically allows me to capture an element based on its Click ``` class ElementWatch: def init(self) -> None: self.LastSave = time() self.ElementWrapper: UIAWrapper = None self.Desktop = Desktop(backend="uia") move_event = (lambda x, y: self.on_mouse_move(x, y)) self._mouse_move_listener = Listener(on_move=move_event) click_event = (lambda x, y, button, pressed: self.on_mouse_click(x, y, button, pressed)) self._mouse_click_listener = Listener(on_click=click_event) def on_mouse_click(self, x, y, button, pressed): if pressed: try: current_element = self.Desktop.from_point(x, y) if isinstance(current_element, UIAWrapper): self.ElementWrapper = current_element self._mouse_click_listener.stop() self._mouse_move_listener.stop() except Exception as e: pass def on_mouse_move(self, x, y): try: current_element = self.Desktop.from_point(x, y) if isinstance(current_element, UIAWrapper): self.ElementUI = DesktopElementUI(current_element) self.ElementWrapper = current_element except Exception as e: pass def start_listener(self): #self._mouse_move_listener.start() self._mouse_click_listener.start() #self._mouse_move_listener.join() self._mouse_click_listener.join() ``` The methods below are helpers to make the calls we need to capture the element and generate the PATH ``` class Util: #call this for start watcher. @classmethod def find_element_with_click(self) -> UIAWrapper: watch = ElementWatch() watch.start_listener() return watch.ElementWrapper @classmethod def get_element_path(self, element: UIAWrapper) -> str: path = [] current_element: UIAWrapper = element while current_element: parent: UIAWrapper = current_element.parent() or None if parent is None or parent.parent() is None: break siblings: List[UIAWrapper] = parent.children() try: index = siblings.index(current_element) except: return '' path.insert(0, str(index)) current_element = parent return '|'.join(path) ``` This would be an example of use ``` from time import sleep if __name__ == '__main__': # After 5 seconds it starts monitoring the click, when clicked, it will capture the element. sleep(5) el = Util.find_element_with_click() path = Util.get_element_path(el) print(path) ``` As I mentioned previously, if it is something that generates an action and causes the application to change the elements, the generated path will not be correct in some cases. The idea is that when there is a "click" to obtain the element we want, this click should not be transmitted to the system and should only be used for pywinauto to understand that this is the desired element. I wasn't able to do this, but if anyone can, it's a way to generate a PATH based on the element's click.
open
2024-05-21T04:55:00Z
2024-05-21T04:59:18Z
https://github.com/pywinauto/pywinauto/issues/1391
[]
lucas-fsousa
0
sanic-org/sanic
asyncio
2,908
Start-up exception
### Is there an existing issue for this? - [X] I have searched the existing issues ### Describe the bug 1、DeprecationWarning ![image](https://github.com/sanic-org/sanic/assets/23091750/2c8effc0-558e-4bf9-adb0-88f93b6f2524) 2、IndexError Use the following CLI to start ```sanic main:app --host 0.0.0.0 --port 9001 --workers 2 --dev``` ![image](https://github.com/sanic-org/sanic/assets/23091750/d3841a3e-a5a3-43b3-9d6c-1cc1d43fce8a) ### Code snippet _No response_ ### Expected Behavior _No response_ ### How do you run Sanic? Sanic CLI ### Operating System Linux ### Sanic Version 23.12.1 ### Additional context _No response_
closed
2024-01-24T08:44:06Z
2024-01-31T14:25:34Z
https://github.com/sanic-org/sanic/issues/2908
[ "bug" ]
jsonvot
1
lepture/authlib
django
82
Version 0.10
In this version, Authlib will focus on improving API design and RFC implementations. ## API 1. [x] Make Grant extensible 2. [x] CodeChallenge Extension 3. [x] OpenID Extension ## RFC 1. [ ] RFC7516, implement full featured JWE 2. [x] OpenID Connect Discovery 1.0. Check #77 3. [ ] RFC7797 JSON Web Signature (JWS) Unencoded Payload Option 4. [x] RFC8414 ## Integrations Take a look and think about Django integrations. ## Documentation Rethink (rewrite) about documentation, its folder structure, connections between each specs.
closed
2018-08-16T15:51:30Z
2018-10-11T02:07:54Z
https://github.com/lepture/authlib/issues/82
[ "in future" ]
lepture
0
Guovin/iptv-api
api
538
啥都爬不到了
除了订阅源,组播,酒店,在线扫描都找不到源了,大佬更新一下吧
closed
2024-11-09T03:20:35Z
2024-11-09T03:52:36Z
https://github.com/Guovin/iptv-api/issues/538
[ "invalid" ]
mlzlzj
1
docarray/docarray
fastapi
1,828
DocList raises exception for type object.
### Initial Checks - [X] I have read and followed [the docs](https://docs.docarray.org/) and still think this is a bug ### Description This [commit](https://github.com/docarray/docarray/commit/2f3b85e333446cfa9b8c4877c4ccf9ae49cae660) introduced a check to verify that DocList is not used with an object: ``` if ( isinstance(item, object) and not is_typevar(item) and not isinstance(item, str) and item is not Any ): raise TypeError('Expecting a type, got object instead') ``` This is quite a broad condition (it breaks things like `DocList[TorchTensor]`, or nested `DocList[DocList[...]]` for me for instance) as: - Almost everything will be an object so the first line if almost a catch-all. - `is_typevar` only checks for TypeVar objects. Should this not check as well for something `not isinstance(item, type)` instead of `not is_typevar` to allow for classes ? This way only non class objects (like instances of class object that are not classes themselves) will raise the `TypeError`. ### Example Code ```Python from docarray import DocList from docarray.typing import TorchTensor test = DocList[TorchTensor] ``` ### Python, DocArray & OS Version ```Text 0.39.1 ``` ### Affected Components - [ ] [Vector Database / Index](https://docs.docarray.org/user_guide/storing/docindex/) - [X] [Representing](https://docs.docarray.org/user_guide/representing/first_step) - [ ] [Sending](https://docs.docarray.org/user_guide/sending/first_step/) - [ ] [storing](https://docs.docarray.org/user_guide/storing/first_step/) - [X] [multi modal data type](https://docs.docarray.org/data_types/first_steps/)
open
2023-10-30T19:17:54Z
2023-10-31T09:26:38Z
https://github.com/docarray/docarray/issues/1828
[]
corentinmarek
3
tflearn/tflearn
data-science
668
How to use data_flow.FeedDictFlow?
I want to just use class FeedDictFlow, ImagePreprocessing and ImageAugmentation. but how to let test data set and validating date set to share the same parameters such as mean and variviance of training data. this is outline of my code: ` X_train, y_train, X_test, y_test = dataset.cifar_100() image_batch = tf.placehoder() label_batch = tf.placehoder() feed_dict = {image_batch:X_train, label_batch:y_train} test_feed_dict = {image_batch:X_test, label_batch:y_test} loss, acc = model(image_batch, label_batch) # define a neural net img_prep = tflearn.ImagePreprocessing() img_prep.add_featurewise_zero_center() img_aug = tflearn.ImageAugmentation() img_aug.add_random_flip_leftright() with tf.Session() as sess: coord = tf.train.Coordinator() df = data_flow.FeedDictFlow(feed_dict, coord, batch_size=batch_size, dprep_dict=img_prep, daug_dict=img_aug, index_array=None, num_threads=1) df.start() test_df = data_flow.FeedDictFlow(test_feed_dict, coord, batch_size=batch_size, dprep_dict=img_prep, daug_dict=None, index_array=None, num_threads=1) test_df.start() for i in range(training_iters): train_batch = df.next() sess.run([loss, acc], train_batch) if i == TEST_ITER: test_batch = test_df.next() sess.run([loss, acc], test_batch) ... ` Does this methods make test data set and training data set share the same image preprocessing parameter such as mean of data set?
open
2017-03-18T04:58:14Z
2017-03-18T08:15:50Z
https://github.com/tflearn/tflearn/issues/668
[]
lfwin
1
daleroberts/itermplot
matplotlib
33
Using ITERMPLOT=rv cycles between black and white axis labels
The first plot rendered using ITERMPLOT=rv has white axes and labels, and every other cycles between black and white.
open
2018-08-10T20:14:13Z
2021-07-06T21:47:45Z
https://github.com/daleroberts/itermplot/issues/33
[]
r-zip
1
pytest-dev/pytest-xdist
pytest
402
logging not captured
test_5.py file content ```python import logging logger = logging.getLogger(__file__) def test_1(): logger.info('123123') def test_2(): logger.info('123123') def test_3(): logger.info('123123') def test_4(): logger.info('123123') ``` pytest.ini ``` [pytest] log_cli=true log_cli_level=DEBUG log_format = %(asctime)s %(levelname)s (%(threadName)-10s) %(filename)s:%(lineno)d %(message)s log_date_format = %Y-%m-%d %H:%M:%S ``` run `pytest test/test_5 -n auto` logs: ``` ================================================================= test session starts ================================================================= platform darwin -- Python 3.6.5, pytest-4.1.1, py-1.7.0, pluggy-0.8.1 -- /Users/w/.virtualenvs/pytest_xdist_fixture_scope_test/bin/python cachedir: .pytest_cache rootdir: /Users/w/pytest_xdist_fixture_scope_test, inifile: pytest.ini plugins: xdist-1.26.0, forked-1.0.1 [gw0] darwin Python 3.6.5 cwd: /Users/w/pytest_xdist_fixture_scope_test [gw1] darwin Python 3.6.5 cwd: /Users/w/pytest_xdist_fixture_scope_test [gw2] darwin Python 3.6.5 cwd: /Users/wpytest_xdist_fixture_scope_test [gw3] darwin Python 3.6.5 cwd: /Users/wpytest_xdist_fixture_scope_test [gw0] Python 3.6.5 (default, Apr 25 2018, 14:23:58) -- [GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.1)] [gw1] Python 3.6.5 (default, Apr 25 2018, 14:23:58) -- [GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.1)] [gw2] Python 3.6.5 (default, Apr 25 2018, 14:23:58) -- [GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.1)] [gw3] Python 3.6.5 (default, Apr 25 2018, 14:23:58) -- [GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.1)] gw0 [4] / gw1 [4] / gw2 [4] / gw3 [4] scheduling tests via LoadScheduling test/test_5.py::test_1 test/test_5.py::test_2 [gw0] [ 25%] PASSED test/test_5.py::test_1 test/test_5.py::test_3 [gw1] [ 50%] PASSED test/test_5.py::test_2 [gw2] [ 75%] PASSED test/test_5.py::test_3 test/test_5.py::test_4 [gw3] [100%] PASSED test/test_5.py::test_4 ============================================================== 4 passed in 1.47 seconds =============================================================== ``` There are no logs print out. I saw #256 , but it doesn't help
open
2019-01-13T03:54:56Z
2024-09-22T21:17:11Z
https://github.com/pytest-dev/pytest-xdist/issues/402
[]
zsluedem
17
xonsh/xonsh
data-science
5,064
Running the script with binary inside fails with UnicodeDecodeError
## xonfig <details> ``` $ xonfig +------------------+------------------------------------+ | xonsh | 0.13.4 | | Python | 3.10.9 | | PLY | 3.11 | | have readline | True | | prompt toolkit | 3.0.36 | | shell type | prompt_toolkit | | history backend | sqlite | | pygments | 2.14.0 | | on posix | True | | on linux | True | | distro | arch | | on wsl | False | | on darwin | False | | on windows | False | | on cygwin | False | | on msys2 | False | | is superuser | False | | default encoding | utf-8 | | xonsh encoding | utf-8 | | encoding errors | surrogateescape | | xontrib 1 | kitty | | RC file 1 | /home/nicolas/.config/xonsh/rc.xsh | +------------------+------------------------------------+ ``` </details> ## Expected Behavior xonsh should run `mill`. ## Current Behavior When I try to run [mill](https://com-lihaoyi.github.io/mill/mill/Intro_to_Mill.html), instead of it running, I get a `UnicodeDecodeError`, see the traceback for details. I use mill version 0.10.11. This also happens when calling `mill --help` or `--version`. I can reproduce this on a fresh `archlinux` Docker container with just `xonsh` and `mill` installed. I've never seen this happen with any other command. Mill works as expected from bash or zsh. Interestingly, this doesn't happen when using mill via the bootstrapping script (see https://com-lihaoyi.github.io/mill/mill/Installation.html). This might indicate something weird happening in the Arch package specifically, but I'd argue anyway that xonsh shouldn't crash like that regardless of what Arch's mill does. ### Traceback (if applicable) <details> ``` $ mill <xonsh-code>:1:0 - mill <xonsh-code>:1:0 + ![mill] Traceback (most recent call last): File "/usr/bin/xonsh", line 33, in <module> sys.exit(load_entry_point('xonsh==0.13.4', 'console_scripts', 'xonsh')()) File "/usr/lib/python3.10/site-packages/xonsh/main.py", line 470, in main _failback_to_other_shells(args, err) File "/usr/lib/python3.10/site-packages/xonsh/main.py", line 417, in _failback_to_other_shells raise err File "/usr/lib/python3.10/site-packages/xonsh/main.py", line 468, in main sys.exit(main_xonsh(args)) File "/usr/lib/python3.10/site-packages/xonsh/main.py", line 534, in main_xonsh exc_info = run_script_with_cache( File "/usr/lib/python3.10/site-packages/xonsh/codecache.py", line 166, in run_script_with_cache code = f.read() File "/usr/lib/python3.10/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0x98 in position 2836: invalid start byte ``` </details> ## Steps to Reproduce ``` mill ``` Or if you want to try it with Docker: ``` $ sudo docker run -it --rm archlinux $ pacman -Sy $ pacman xonsh mill $ xonsh $ mill ``` ## For community ⬇️ **Please click the 👍 reaction instead of leaving a `+1` or 👍 comment**
open
2023-02-19T00:42:36Z
2023-02-23T17:42:43Z
https://github.com/xonsh/xonsh/issues/5064
[ "integration-with-other-tools", "executor", "priority-high" ]
Eisfunke
1
gradio-app/gradio
data-visualization
10,775
Python gradio_client can't send files without an extension
### Describe the bug When the python gradio_client sends a file without an extension, e.g., `/tmp/test`, the sever throws an exception and fails to return a result. If the file sends a file with an extension, e.g., `/tmp/test.txt`, it works fine. I'm not sure if the problem is on the client or server side. ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction Server: ```python import gradio as gr def echo(d, history): print(f"cool {d} {history}") return f"You said: {d['text']} and uploaded {len(d['files'])} files" demo = gr.ChatInterface(fn=echo, multimodal=True, type="messages", examples=["hello", "hola", "merhaba"], title="Echo Bot") demo.launch() ``` Client: ```python from gradio_client import Client, handle_file file_with_extension = handle_file("/tmp/test.txt") file_without_extension = handle_file("/tmp/test") client = Client("http://localhost:7860/") result = client.predict( message={"text":"Describe this image","files":[file_with_extension]}, api_name="/chat" ) print(result) print("We were able to upload a file with an extension") # this won't work result = client.predict( message={"text":"Describe this image","files":[file_without_extension]}, api_name="/chat" ) print(result) ``` ### Screenshot Client Logs ``` Loaded as API: http://localhost:7860/ ✔ You said: Describe this image and uploaded 1 files We were able to upload a file with an extension Traceback (most recent call last): File "/home/ed/Projects/re-copilot/testing/test.py", line 15, in <module> result = client.predict( File "/home/ed/Projects/re-copilot/venv/lib/python3.10/site-packages/gradio_client/client.py", line 478, in predict ).result() File "/home/ed/Projects/re-copilot/venv/lib/python3.10/site-packages/gradio_client/client.py", line 1539, in result return super().result(timeout=timeout) File "/usr/lib/python3.10/concurrent/futures/_base.py", line 458, in result return self.__get_result() File "/usr/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result raise self._exception File "/usr/lib/python3.10/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/home/ed/Projects/re-copilot/venv/lib/python3.10/site-packages/gradio_client/client.py", line 1158, in _inner predictions = _predict(*data) File "/home/ed/Projects/re-copilot/venv/lib/python3.10/site-packages/gradio_client/client.py", line 1270, in _predict raise AppError( gradio_client.exceptions.AppError: The upstream Gradio app has raised an exception but has not enabled verbose error reporting. To enable, set show_error=True in launch(). ``` ### Logs ```shell Server logs: * Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`. cool {'text': 'Describe this image', 'files': ['/tmp/gradio/c060b44d3dd57019b0d1cadc60331dd4400b7cb15819dbfdf3138450ca6d4db3/test.txt']} [] Traceback (most recent call last): File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio/queueing.py", line 625, in process_events response = await route_utils.call_process_api( File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio/route_utils.py", line 322, in call_process_api output = await app.get_blocks().process_api( File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio/blocks.py", line 2092, in process_api inputs = await self.preprocess_data( File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio/blocks.py", line 1775, in preprocess_data inputs_cached = await processing_utils.async_move_files_to_cache( File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio/processing_utils.py", line 648, in async_move_files_to_cache return await client_utils.async_traverse( File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio_client/utils.py", line 1128, in async_traverse new_obj[key] = await async_traverse(value, func, is_root) File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio_client/utils.py", line 1133, in async_traverse new_obj.append(await async_traverse(item, func, is_root)) File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio_client/utils.py", line 1123, in async_traverse if is_root(json_obj): File "/home/ed/.pyenv/versions/gradio/lib/python3.10/site-packages/gradio_client/utils.py", line 1175, in is_file_obj_with_meta and d["meta"].get("_type", "") == "gradio.FileData" AttributeError: 'NoneType' object has no attribute 'get' ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.20.0 gradio_client version: 1.7.2 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.6.2.post1 audioop-lts is not installed. fastapi: 0.115.4 ffmpy: 0.4.0 gradio-client==1.7.2 is not installed. groovy: 0.1.2 httpx: 0.27.2 huggingface-hub: 0.29.2 jinja2: 3.1.4 markupsafe: 2.1.5 numpy: 1.26.4 orjson: 3.10.11 packaging: 24.1 pandas: 2.2.3 pillow: 11.0.0 pydantic: 2.9.2 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.2 ruff: 0.9.10 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.41.2 tomlkit: 0.12.0 typer: 0.12.5 typing-extensions: 4.12.2 urllib3: 2.2.3 uvicorn: 0.32.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.10.0 httpx: 0.27.2 huggingface-hub: 0.29.2 packaging: 24.1 typing-extensions: 4.12.2 websockets: 12.0 ``` ### Severity I can work around it
open
2025-03-10T17:42:28Z
2025-03-10T18:49:42Z
https://github.com/gradio-app/gradio/issues/10775
[ "bug" ]
edmcman
3
codertimo/BERT-pytorch
nlp
68
How to Output Embedded Word Vector
I want to output the word vector
open
2019-07-24T02:50:14Z
2020-03-12T03:40:31Z
https://github.com/codertimo/BERT-pytorch/issues/68
[]
enze5088
6
kennethreitz/responder
flask
405
api attribute of request is None
Yesterday I updated to responder 2.0.3. In my route, I make use of the api attribute. This worked in the past. But after upgrading to version 2.0.0 it is always None. I checked the implementation. The `__call__` method of `Route `in `routes.py` creates a new `Request` object without providing an api argument and the default in `models.py` is `None`. Is this a intentional design change or a bug. Maybe I'm spotting the wrong piece of code. If this is an intentional change, what is the best way to access the api in a Route-class method? I found a work around by adding my own middleware.
closed
2019-10-27T06:38:21Z
2024-03-31T00:57:29Z
https://github.com/kennethreitz/responder/issues/405
[]
FirstKlaas
0
autogluon/autogluon
data-science
4,681
torch.load Compatibility Issue: Unsupported Global fastcore.foundation.L with weights_only=True
Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html. Detailed Traceback: Traceback (most recent call last): File "C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\trainer\abstract_trainer.py", line 2103, in _train_and_save model = self._train_single(**model_fit_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\trainer\abstract_trainer.py", line 1993](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/trainer/abstract_trainer.py#line=1992), in _train_single model = model.fit(X=X, y=y, X_val=X_val, y_val=y_val, X_test=X_test, y_test=y_test, total_resources=total_resources, **model_fit_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\models\abstract\abstract_model.py", line 925](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/models/abstract/abstract_model.py#line=924), in fit out = self._fit(**kwargs) ^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\models\ensemble\stacker_ensemble_model.py", line 270](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/models/ensemble/stacker_ensemble_model.py#line=269), in _fit return super()._fit(X=X, y=y, time_limit=time_limit, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\models\ensemble\bagged_ensemble_model.py", line 298](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/models/ensemble/bagged_ensemble_model.py#line=297), in _fit self._fit_folds( File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\models\ensemble\bagged_ensemble_model.py", line 724](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/models/ensemble/bagged_ensemble_model.py#line=723), in _fit_folds fold_fitting_strategy.after_all_folds_scheduled() File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\models\ensemble\fold_fitting_strategy.py", line 317](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/models/ensemble/fold_fitting_strategy.py#line=316), in after_all_folds_scheduled self._fit_fold_model(job) File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\models\ensemble\fold_fitting_strategy.py", line 322](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/models/ensemble/fold_fitting_strategy.py#line=321), in _fit_fold_model fold_model = self._fit(self.model_base, time_start_fold, time_limit_fold, fold_ctx, self.model_base_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\models\ensemble\fold_fitting_strategy.py", line 358](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/models/ensemble/fold_fitting_strategy.py#line=357), in _fit fold_model.fit(X=X_fold, y=y_fold, X_val=X_val_fold, y_val=y_val_fold, time_limit=time_limit_fold, num_cpus=num_cpus, num_gpus=num_gpus, **kwargs_fold) File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\core\models\abstract\abstract_model.py", line 925](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/core/models/abstract/abstract_model.py#line=924), in fit out = self._fit(**kwargs) ^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\tabular\models\fastainn\tabular_nn_fastai.py", line 365](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/tabular/models/fastainn/tabular_nn_fastai.py#line=364), in _fit self.model.fit_one_cycle(epochs, params["lr"], cbs=callbacks) File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\callback\schedule.py", line 121](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/callback/schedule.py#line=120), in fit_one_cycle self.fit(n_epoch, cbs=ParamScheduler(scheds)+L(cbs), reset_opt=reset_opt, wd=wd, start_epoch=start_epoch) File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\learner.py", line 266](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/learner.py#line=265), in fit self._with_events(self._do_fit, 'fit', CancelFitException, self._end_cleanup) File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\learner.py", line 203](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/learner.py#line=202), in _with_events self(f'after_{event_type}'); final() ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\learner.py", line 174](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/learner.py#line=173), in __call__ def __call__(self, event_name): L(event_name).map(self._call_one) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\fastcore\foundation.py", line 159](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastcore/foundation.py#line=158), in map def map(self, f, *args, **kwargs): return self._new(map_ex(self, f, *args, gen=False, **kwargs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\fastcore\basics.py", line 910](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastcore/basics.py#line=909), in map_ex return list(res) ^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\fastcore\basics.py", line 895](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastcore/basics.py#line=894), in __call__ return self.func(*fargs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\learner.py", line 178](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/learner.py#line=177), in _call_one for cb in self.cbs.sorted('order'): cb(event_name) ^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\callback\core.py", line 64](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/callback/core.py#line=63), in __call__ except Exception as e: raise modify_exception(e, f'Exception occured in `{self.__class__.__name__}` when calling event `{event_name}`:\n\t{e.args[0]}', replace=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\callback\core.py", line 62](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/callback/core.py#line=61), in __call__ try: res = getcallable(self, event_name)() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\autogluon\tabular\models\fastainn\callbacks.py", line 116](file:///C:/Users/celes/anaconda3/Lib/site-packages/autogluon/tabular/models/fastainn/callbacks.py#line=115), in after_fit self.learn.load(f"{self.fname}", with_opt=self.with_opt) File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\learner.py", line 422](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/learner.py#line=421), in load load_model(file, self.model, self.opt, device=device, **kwargs) File "[C:\Users\celes\anaconda3\Lib\site-packages\fastai\learner.py", line 53](file:///C:/Users/celes/anaconda3/Lib/site-packages/fastai/learner.py#line=52), in load_model state = torch.load(file, map_location=device, **torch_load_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "[C:\Users\celes\anaconda3\Lib\site-packages\torch\serialization.py", line 1455](file:///C:/Users/celes/anaconda3/Lib/site-packages/torch/serialization.py#line=1454), in load raise pickle.UnpicklingError(_get_wo_message(str(e))) from None _pickle.UnpicklingError: Exception occured in `AgSaveModelCallback` when calling event `after_fit`: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint. (1) Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source. (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message. WeightsUnpickler error: Unsupported global: GLOBAL fastcore.foundation.L was not an allowed global by default. Please use `torch.serialization.add_safe_globals([L])` or the `torch.serialization.safe_globals([L])` context manager to allowlist this global if you trust this class/function.
closed
2024-11-23T11:41:14Z
2024-11-23T14:04:34Z
https://github.com/autogluon/autogluon/issues/4681
[ "enhancement" ]
celestinoxp
0
labmlai/annotated_deep_learning_paper_implementations
deep-learning
257
Chinese Translation
I noticed that the Chinese translation appears to be machine-generated. Do you have any plans to officially translate this excellent project? If needed, I am willing to take on the responsibility for the Chinese translation!
open
2024-06-17T13:18:06Z
2024-06-22T00:02:32Z
https://github.com/labmlai/annotated_deep_learning_paper_implementations/issues/257
[]
pengchzn
4
PokeAPI/pokeapi
api
710
Error formating
Hello! As you might know, pokemon legends are out. Wich can cause not found errors in the db. But instead of formating it in json you format it in plain html. Why is this? As this can break alot of code . My request is if you guys could kindly change up that to json. Thank you! Zakaria Aourzag
open
2022-04-15T07:25:08Z
2022-04-19T11:01:04Z
https://github.com/PokeAPI/pokeapi/issues/710
[]
zaourzag
8
ultralytics/ultralytics
python
19,305
Ultralytics memory problem
how to minimize the memory usage of gpu while training other than setting parameter of workers?
closed
2025-02-19T05:13:32Z
2025-02-21T05:05:12Z
https://github.com/ultralytics/ultralytics/issues/19305
[ "bug", "segment", "detect" ]
abhishekb-weboccult
11
littlecodersh/ItChat
api
640
添加表情包到微信?
如果能够实现自动添加一系列gif或者图片到微信表情包那就太好了。
closed
2018-04-19T06:02:39Z
2023-02-06T08:56:06Z
https://github.com/littlecodersh/ItChat/issues/640
[ "help wanted" ]
foreverlms
4
pydantic/FastUI
fastapi
262
Could we build a "plugin" system to expand the components library?
I think it would be great if components that are built in separate python / js package by the community could be brought in the `fastui` framework. This would make the components much easier to "pick and choose" and many of the components might not need to be in the main framework. My lack of js knowledge unfortunately prevent me for now to provide more thoughts as i'm not sure how that could be integrated in the current `prebuilt_html` approach and other. NB: I think the `polars` model for plugins is pretty cool, so just sharing for inspiration (albeit with a rust to python approach): [plugins](https://docs.pola.rs/user-guide/expressions/plugins/#community-plugins), [community](https://docs.pola.rs/user-guide/expressions/plugins/#community-plugins)
open
2024-04-05T08:55:37Z
2024-04-05T08:55:37Z
https://github.com/pydantic/FastUI/issues/262
[]
tim-x-y-z
0
OpenInterpreter/open-interpreter
python
888
Windows os feastures not available?
### Is your feature request related to a problem? Please describe. the demo show a mac opening youtube I apologize for the confusion. While the demo may have shown a simulated interaction where the assistant operated a browser and clicked on a play button, in reality, as an AI text-based assistant, I cannot directly access or control your browser or any other application on your computer. The demo was created to showcase potential capabilities, but the actual implementation of executing actions on a user's machine would require additional permissions and security considerations. However, I can still assist you with providing instructions on how to perform tasks manually or suggest alternative approaches using available tools or methods. If you have any specific tasks or questions, please let me know, and I will do my best to provide guidance. ### Describe the solution you'd like i have wox but I apologize for the confusion. While the demo may have shown a simulated interaction where the assistant operated a browser and clicked on a play button, in reality, as an AI text-based assistant, I cannot directly access or control your browser or any other application on your computer. The demo was created to showcase potential capabilities, but the actual implementation of executing actions on a user's machine would require additional permissions and security considerations. However, I can still assist you with providing instructions on how to perform tasks manually or suggest alternative approaches using available tools or methods. If you have any specific tasks or questions, please let me know, and I will do my best to provide guidance. ### Describe alternatives you've considered _No response_ ### Additional context _No response_
closed
2024-01-08T22:32:24Z
2024-10-31T16:58:22Z
https://github.com/OpenInterpreter/open-interpreter/issues/888
[ "Enhancement" ]
BishAU
1
plotly/dash
plotly
2,627
[Feature Request] --contact-address with multiple workers at specific port range.
Sorry I confused dask with dash! **Is your feature request related to a problem? Please describe.** I'm running dash worker in a isolated network A. These workers has an internal IP address (192.168.0.1) and an external IP address 10.0.0.1. There are some other workers in network B or C, they can only communicat using external address(There are firewalls or other restrictions etc.). **So --contact-address.** is required. I want to run multuple workers using --nworkers > 1 ( or --nworkers auto), **But**: * if --nworkers is specificted, --bind-address is **NOT** allowed. * If --contact-address is specificted --bind-address is **required**. Even though I can run multiple instances with --nworkers 1, but If I want to start **hunders of worekrs in one node**, thing is going to be difficult. Put another way: things could have been very simple. **Describe the solution you'd like** * --bind-address can specific address and a range of ports. So it no longer conflicts with --nworkers. for example: tcp://192.168.0.1:6000-6256 **Describe alternatives you've considered** I couldn't think of a better solution.
closed
2023-08-17T12:09:38Z
2023-08-17T12:13:49Z
https://github.com/plotly/dash/issues/2627
[]
nanoric
0
biolab/orange3
pandas
6,640
New widget : cleansing data
**What's your use case?** More than once, the data I work on contains null values, or unwanted space at the end of fields, and sometimes a full field is empty or there totally empty rows in the middle of the data set. There aren't a lot of case but it's happen so many times a widget to automatize that would be great. **What's your proposed solution?** A widget with the main cleaning operations. Somthing like that : ![image](https://github.com/biolab/orange3/assets/46959192/8927cf4b-f772-4fe4-9be8-729694c11027) **Are there any alternative solutions?** using on all the concerned workflows several widgets to process the data.
closed
2023-11-18T21:14:36Z
2023-12-08T08:06:50Z
https://github.com/biolab/orange3/issues/6640
[]
simonaubertbd
4
JaidedAI/EasyOCR
deep-learning
1,128
Process finished with exit code -1073741795 (0xC000001D)
Description of the problem: EasyOcr is successfully installed, the program starts, but the text from the picture does not output at all. Code: import easy ocr Reader = easyocr.Reader(['ru', 'en']) # this needs to be run only once to load the model into memory result = Reader.readtext('12.jpg ') Conclusion: neither CUDA nor MPS are available — the CPU is used by default. Note. This module works much faster with a GPU. The process is completed with exit code -1073741795 (0xC000001D). My torment: I ran into a big problem when using easyOCR, namely, when working on a laptop with an i5 -8250U processor, I installed and tested your library for the first time, it started almost immediately without problems and recognized the text with the image, which I was very happy about. Developing a program for classifying PDF files by keywords) At the end of the practice, I threw the virtual environment with this project on a flash drive, then started running it on an old laptop (i3-2100m, GT-610m) and the library refused to work on it, then I tried to run it on a PC (i7-4960X, RTX 2060, 64 RAM). I spent 10 hours trying to run this library, in the end I didn't succeed, the attempts I made during these 10 hours: Reinstalling EasyOCR Reinstalling PIL, V2, Torch I was poking around in the code, I didn't understand anything Created a new virtual environment, reinstalled everything, nothing helped Old Python and other Python versions are installed. Changed dependency versions randomly I tried to install it very carefully several times according to the manual: pip install torch torchvision torchaudio pip install easyocr And it didn't help, it outputs "The process is completed with exit code -1073741795 (0xC000001D) I don't know what to do anymore, but I'm asking for help with this problem.
open
2023-09-01T21:05:34Z
2024-11-08T02:52:42Z
https://github.com/JaidedAI/EasyOCR/issues/1128
[]
Michaelufcb
6
voxel51/fiftyone
data-science
5,292
[BUG] Downloading dataset from HF HUB
Documentation [says](https://docs.voxel51.com/integrations/huggingface.html?highlight=wider#:~:text=(dataset)-,Detection%20Datasets,-Loading%20detection%20datasets): > ### Detection Datasets > > Loading detection datasets from the Hub is just as easy. For example, to load the [MS COCO](https://huggingface.co/datasets/detection-datasets/coco) dataset, you can specify the detection_fields as "objects", which is the standard column name for detection features in Hugging Face datasets: > > ```python > from fiftyone.utils.huggingface import load_from_hub > > dataset = load_from_hub( > "detection-datasets/coco", > format="parquet", > detection_fields="objects", > max_samples=1000, > ) > > session = fo.launch_app(dataset) > ``` > > The same syntax works for many other popular detection datasets on the Hub, including: > > * [CPPE - 5](https://huggingface.co/datasets/rishitdagli/cppe-5) (use "rishitdagli/cppe-5") > * [WIDER FACE](https://huggingface.co/datasets/CUHK-CSE/wider_face) (use "CUHK-CSE/wider_face") > * [License Plate Object Detection](https://huggingface.co/datasets/keremberke/license-plate-object-detection) (use "keremberke/license-plate-object-detection") > * [Aerial Sheep Object Detection](https://huggingface.co/datasets/keremberke/aerial-sheep-object-detection) (use "keremberke/aerial-sheep-object-detection") But when trying it for the `CUHK-CSE/wider_face` seems it might not be able to consume it like the others. https://datasets-server.huggingface.co/splits?dataset=detection-datasets/coco endpoint from example is returning properly, but https://datasets-server.huggingface.co/splits?dataset=CUHK-CSE%2Fwider_face is not. Code to reproduce: ```python import fiftyone as fo from fiftyone.utils.huggingface import load_from_hub dataset = load_from_hub( "CUHK-CSE/wider_face", format="parquet", detection_fields="objects", max_samples=1000, ) if __name__ == "__main__": session = fo.launch_app(dataset) ``` Throws `KeyError: 'splits'` errror.
open
2024-12-18T02:42:06Z
2024-12-18T03:10:05Z
https://github.com/voxel51/fiftyone/issues/5292
[ "bug" ]
ankandrew
1
plotly/dash
dash
3,064
[BUG] Cannot extract virtualRowData from an AG Grid table using pattern matching
**Describe your context** Please provide us your environment, so we can easily reproduce the issue. - replace the result of `pip list | grep dash` below ``` async-dash 0.1.0a1 dash 2.18.2 dash_ag_grid 31.2.0 dash-bootstrap-components 1.6.0 dash_canvas 0.1.0 dash-core-components 2.0.0 dash_daq 0.5.0 dash-dndkit 0.0.3 dash-extensions 1.0.15 dash-html-components 2.0.0 dash-iconify 0.1.2 dash-leaflet 1.0.15 dash-loading-spinners 1.0.3 dash-mantine-components 0.12.1 dash-paperdragon 0.1.0 dash-resizable-panels 0.1.0 dash-svg 0.0.12 dash-table 5.0.0 dash_treeview_antd 0.0.1 ``` **Describe the bug** I am creating AG Grid tables dynamically and trying to reference them as Inputs/States dynamically in a Callback (using pattern matching) to get the virtualRowData. However, pattern matching can only return the component IDs. ``` import dash_bootstrap_components as dbc from dash import Dash, dcc, html, Input, Output, callback, ALL import dash_ag_grid as dag app = Dash(__name__) def create_grid(opt:int, data:dict|list = None): columnDefs = [ {'headerName': 'Label', 'field': 'label'}, {'headerName': 'Name', 'field': 'name', 'flex': 2} ] grid = dag.AgGrid( id=f"registration-{opt}-slides", rowData = [ {'label': 'Test Label 1', 'name': 'Test Name 1'}, {'label': 'Test Label 2', 'name': 'Test Name 2'}, {'label': 'Test Label 3', 'name': 'Test Name 3'} ], columnDefs=columnDefs, defaultColDef={'resizable': True}, dashGridOptions={ "rowHeight": 70, "rowDragManaged": True, "rowDragEntireRow": True, "rowDragMultiRow": True, "rowSelection": "multiple", "suppressMoveWhenRowDragging": True, }, dangerously_allow_code=True, ) return grid content = dcc.Tab( label='Dynamic Components', children = [ dbc.Row( children = [ dbc.Col( children = [ html.Div( id='registration-grids', children = [ html.Div( id = 'grid-container', children = [_create_grid_div("Option 1")]), ], ) ] ) ] ) ] ) def _create_grid_div(opt): grid = html.Div( id={"type": "dynamic-cards", "index": opt}, children = [ html.H4(opt), create_grid(opt) ], className='registration-table-div' ) return grid @callback( Output('dummy-div', 'children'), Input({'type': "dynamic-cards", 'index': ALL}, 'id'), Input({'type': "dynamic-cards", 'index': ALL}, 'virtualRowData'), Input('registration-Option 1-slides', 'virtualRowData'), prevent_initial_call=True ) def _explore_virtual_data(id, vrd, opt1_vrd): print(f"id: {id}") print(f"vrd: {vrd}") print(f"opt1_vrd: {opt1_vrd}") return dash.no_update dummy_div = html.Div( children = [], id='dummy-div' ) app.layout = html.Div([ dummy_div, content], ) if __name__ == "__main__": app.run_server(port=8888, jupyter_mode="external", debug=True, dev_tools_ui=True) ``` This results in the following output: ``` id: [{'type': 'dynamic-cards', 'index': 'Option 1'}] vrd: [None] opt1_vrd: [{'label': 'Test Label 1', 'name': 'Test Name 1'}, {'label': 'Test Label 2', 'name': 'Test Name 2'}, {'label': 'Test Label 3', 'name': 'Test Name 3'}] ``` **Expected behavior** I expect that using pattern matching will allow me to get the virtualRowData from an AG Grid table just as I can calling the component directly. Can this be done, or is there another way to attain my goal?
closed
2024-11-07T16:15:18Z
2024-11-08T15:50:11Z
https://github.com/plotly/dash/issues/3064
[]
akunihiro
2
matplotlib/matplotlib
data-science
29,414
[ENH]: Compute ticks of log scaled axes a bit better?
### Problem Taken from [here](https://github.com/matplotlib/matplotlib/issues/8768/#issuecomment-889516769), I found the following ticks (from `plt.semilogy([1.5, 50])`): ![image](https://github.com/user-attachments/assets/a5b3e30a-2c2e-4ba1-bd75-b727acee045d) Not informative enough. I wish there was an easy way to `set_minor_formatter` such that say e.g `2x10^0`, `3x10^0` would have been displayed. I tried to use (full MWE this time): ```python import matplotlib.pyplot as plt from matplotlib import ticker plt.semilogy([1.5, 50]) plt.gca().yaxis.set_minor_formatter(ticker.LogFormatter(base=10, labelOnlyBase=True)) plt.show() ``` But it changed nothing. OTH I was capable to obtain my desired output with: ```python #!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from matplotlib import ticker plt.semilogy([1.5, 50]) def get_minor_tick_string(x, pos): b = np.floor(np.log10(x)).astype(int) p = pos % 8 if p < 3: return f"${p+2}\\cdot 10^{b}$" else: return "" plt.gca().yaxis.set_minor_formatter(get_minor_tick_string) plt.show() ``` But I'm sure it is not very versatile. It produces: ![image](https://github.com/user-attachments/assets/80f70a0a-e54e-4e6f-9f42-e60d1b9e8e35) Which is not bad. ### Proposed solution I'd like to first explain in the docs / fix the behavior of `set_minor_formatter(ticker.LogFormatter(base=10, labelOnlyBase=True))`. 2ndly, I'd like to discuss the possibility of adding tick labels as shown above, because I think I'm not the only one that was not satisfied by this default behavior.
closed
2025-01-06T18:52:37Z
2025-01-07T10:47:55Z
https://github.com/matplotlib/matplotlib/issues/29414
[ "New feature" ]
doronbehar
2
ivy-llc/ivy
pytorch
28,039
Fix Frontend Failing Test: torch - tensor.torch.Tensor.reshape
To-do List: https://github.com/unifyai/ivy/issues/27498
open
2024-01-25T09:07:11Z
2024-01-25T09:07:11Z
https://github.com/ivy-llc/ivy/issues/28039
[ "Sub Task" ]
Purity-E
0
jmcnamara/XlsxWriter
pandas
940
question: scale_with_doc when adding pictures in header/footer
### Question Hey, I've been trying to attach a picture in the header and footer of my worksheet and this works. Unfortunately, the pictures are scaled causing them to appear differently than I would expect. For example, I attach a picture in the header and when I open the xlsx file, I see the following in the Format Header Picture: <img width="299" alt="image" src="https://user-images.githubusercontent.com/23147823/212534184-68bbaff0-7582-4ced-8be5-0f8eb0fd0b1c.png"> It scaled to 44%. Same for the footer, where it got scaled 200%. I tried using the `scale_with_doc: False` option but that didn't seem to do anything. Is there a way to fix this?
closed
2023-01-15T09:53:52Z
2023-01-17T10:36:18Z
https://github.com/jmcnamara/XlsxWriter/issues/940
[ "question" ]
sidfeiner
5
ivy-llc/ivy
pytorch
28,104
Fix Frontend Failing Test: torch - tensor.torch.Tensor.int
To-do List:https://github.com/unifyai/ivy/issues/27498
closed
2024-01-29T06:12:17Z
2024-01-29T12:01:27Z
https://github.com/ivy-llc/ivy/issues/28104
[ "Sub Task" ]
Husienvora
1
flasgger/flasgger
flask
161
Accessing response model
I have a .yml file with a response model like this: ``` responses: 200: description: The customer and its properties are deleted 400: description: The request contains invalid syntax, value or cannot be fulfilled 403: description: The customer cannot be deleted because there are still resources associated to the customer ``` I'd like to use that to create the response portion of my API. Something like: ``` if response_code == 200: result = run_some_function() return jsonify(result), response_code elif response_code in responses.keys(): return {'description': responses[response_code]}, response_code else: return {'description': "Unspecified Server Error"}, 500 ``` I see how I can access a schema but not the responses. So that I'd only have to write minimal code
open
2017-10-24T00:26:08Z
2018-10-01T17:31:31Z
https://github.com/flasgger/flasgger/issues/161
[ "hacktoberfest" ]
currand
0
onnx/onnxmltools
scikit-learn
599
Please verify 1.13.0 ONNX release candidate on TestPyPI
Hi, We have released TestPyPI packages of ONNX 1.9.0: [onnx ](https://test.pypi.org/project/onnx/1.13.0rc1/)(ONNX 1.13.0rc1 is the latest version number for testing now). Please verify it and let us know about any problems. Thank you for your help!
closed
2022-11-30T16:40:34Z
2022-12-12T15:36:50Z
https://github.com/onnx/onnxmltools/issues/599
[]
p-wysocki
1
SALib/SALib
numpy
233
Do SAlib supports only vector inputs?
The shape of output array of my model which i suppose to use as an argument for SAlib's analyse (SOBOL) does not fit the shape of array which sobol needs. I have a parameter array which has a shape of (28,13) that is produced by SAlib package's saltelli function. On the other hand, my model computes a solution at numerous time points, say 200. So in the end I have an output array of (28,200) I must use this output array as an argument for the SAlib's Sobol function. But as far as i understand from the example in the SAlib's doc , the input argument of Sobol must have a column array such as (28,) The thing i want to learn is , do i infer correct conclusion from SAlib's document as SAlib's Sobol function needs only a column array ? or can i feed it with an array of (28,200) ? PS : actually i tried (28,200) and got some error. But I am not sure this error occurs because SAlib does not support array shape of (28,200) or my code have an error. (I first asked this to the stackoverflow but couldn't get any answer. https://stackoverflow.com/questions/55634208/does-salib-sensitivity-analysis-package-support-only-one-column-vector-input)
closed
2019-04-13T07:38:13Z
2019-04-20T12:07:04Z
https://github.com/SALib/SALib/issues/233
[ "question" ]
kayakml
5
thtrieu/darkflow
tensorflow
440
my dataset is tfrecord,I want to know how to train my own dataset?
I convert a dataset to tfrecord format,I want to know how can I train it,or is the darkflow can only be used to train VOC dataset?
closed
2017-11-23T06:28:58Z
2018-09-14T08:35:42Z
https://github.com/thtrieu/darkflow/issues/440
[]
geroge-gao
3
amidaware/tacticalrmm
django
1,359
Bug: running scripts and sending commands on Microsoft Exchange Servers
**Server Info (please complete the following information):** - OS: Ubuntu Server 20.04 - Browser: chrome 108 - RMM Version (as shown in top left of web UI): 0.15.3 **Installation Method:** - [ ] Standard - [x] Docker **Agent Info (please complete the following information):** - Agent version (as shown in the 'Summary' tab of the agent from web UI): 2.4.2 - Agent OS: Windows Server 2016 **Describe the bug** If I run a powershell script on this server, which is an exchange-server, I get the following error: exec: "Powershell": cannot run executable found relative to current directory I reinstalled the wohle agent, the powershell.exe is available in c:\windows\system32, DISM and SFC Check made with no problems, Server has been restarted several times. **To Reproduce** Steps to reproduce the behavior: Because I do not know, how the procedure looks like to start the powershell script, I can not reprocedure this. On all other systems I got, the scripts start, but not on this. **Expected behavior** The scripts should run. **Screenshots** no **Additional context** none
closed
2022-12-02T08:47:15Z
2022-12-12T07:50:06Z
https://github.com/amidaware/tacticalrmm/issues/1359
[]
rawbyne
26
wkentaro/labelme
deep-learning
904
The key point belongs to the bbox, how to label the information?
How to mark the key points of the face and the face frame at the same time?How to judge whether the key points of a human face belong to a human face? How to judge whether the key points of a human face are not on the face?
closed
2021-08-11T08:19:32Z
2022-06-25T04:38:48Z
https://github.com/wkentaro/labelme/issues/904
[]
watertianyi
1
pydantic/logfire
pydantic
674
API access to the span generated by the @logfire.instrument() decorator
### Description (as discussed on Slack) I'd like to have access to the span generated by the decorator. eg of how I'm hoping to use it: ``` @logfire.instrument() def lf_example(): result = do_some_things() if result: # Set an attribute on the current logfire span from the decorator logfire.set_attribute(status='OK') else: logfire.set_attribute(status='ERROR') ``` An idea explored on Slack was to use otel apis: ``` from opentelemetry.trace.propagation import get_current_span get_current_span().set_attribute(...) ``` But it seems that the otel apis don't work with non-primatives. An idea was to add a `logfire.get_current_span` api that would get the LogfireSpan instance.
open
2024-12-13T20:53:18Z
2024-12-16T11:56:56Z
https://github.com/pydantic/logfire/issues/674
[ "Feature Request" ]
milest
0
microsoft/nni
data-science
5,800
How to display error messages
When I encounter some errors, the process will exit without giving me any information. Actually, it is common to have some bugs in my code, but after experiment.run(port=8080, wait_completion=False,debug=True) the new process will not print my debug info onto the terminal. For example, if I read a non-existent file, the process will fail sliently, and I have to gauss what has happened. I attempt to read " https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/HowToDebug.md " but the file does't exist. 当使用nni运行带有bug的代码时,似乎nni会跳过此次trail,并且不报告错误在何处。例如我读取数据的路径出现了错误,在nni的终端里并不会报告此错误。 此外, " https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/HowToDebug.md " 也无法打开。 **Environment**: - Training service (local|remote|pai|aml|etc): local - Client OS: Windows 11 / ubuntu 20.04 - Python version: 3.8 - Is conda/virtualenv/venv used?: yes - Is running in Docker?: no **Configuration**: - Experiment config (remember to remove secrets!): - Search space: **Log message**: - nnimanager.log: - dispatcher.log: - nnictl stdout and stderr: **How to reproduce it?**: You can make a bug deliberatly, and you will see that nothing about the bug is reported.
open
2024-08-01T15:40:29Z
2024-08-01T15:40:29Z
https://github.com/microsoft/nni/issues/5800
[]
ayachi3
0
youfou/wxpy
api
101
sent_message.py 报错
> File "/usr/local/lib/python3.6/site-packages/wxpy/api/messages/sent_message.py", line 88, in member > if isinstance(Group, self.receiver): ``` @property def member(self): """ 若在群聊中发送消息,则为群员 """ from wxpy import Group if isinstance(Group, self.receiver): return self.receiver.self ``` 这个isinstance是不是参数搞反了
closed
2017-06-28T08:01:43Z
2017-06-29T02:42:14Z
https://github.com/youfou/wxpy/issues/101
[]
ourbest
1
explosion/spacy-streamlit
streamlit
7
Cannot use `visualize` multiple times in the same script
When using `visualize` methods multiple times, we get into a `DuplicateWidgetID` error. ```python import spacy_streamlit models = ["en_core_web_sm", "en_core_web_md"] text1 = "Sundar Pichai is the CEO of Google." text2 = "Randy Zwitch is Head of Developer Relations at Streamlit" spacy_streamlit.visualize(models, text1) spacy_streamlit.visualize(models, text2) ``` ![image](https://user-images.githubusercontent.com/5351877/88261207-1ff59300-ccc6-11ea-924f-527f0b715777.png) Adding/generating a `key` parameter to pass to those widgets should do. [Original forum thread](https://discuss.streamlit.io/t/spacys-entity-visualiser-cant-be-duplicated-out-of-the-box-is-there-a-way-to-get-1-visualiser-per-text-area/4434/4)
closed
2020-07-23T07:23:23Z
2020-07-26T19:57:03Z
https://github.com/explosion/spacy-streamlit/issues/7
[]
andfanilo
0
seleniumbase/SeleniumBase
pytest
3,533
Nested calls to `element.query_selector(selector)` fail
I can't figure out why, but `element.query_selector(selector)` seems to only work the first time I call it. Here is an example on https://www.dezlearn.com/nested-iframes-example/ ```python from seleniumbase import Driver driver = Driver(uc=True) driver.uc_activate_cdp_mode("https://www.dezlearn.com/nested-iframes-example/") driver.sleep(5) iframe1 = driver.cdp.find_element("iframe#parent_iframe") # this works print(type(iframe1)) # type(iframe1) is <class 'seleniumbase.undetected.cdp_driver.element.Element'> iframe2 = iframe1.query_selector("iframe#iframe1") # this works print(type(iframe2)) # type(iframe2) is <class 'seleniumbase.undetected.cdp_driver.element.Element'> button = iframe2.query_selector("button#u_5_6") # this doesn't work, but doesn't output any error message either print(type(button)) # type(button) is <class 'NoneType'> ``` Can you replicate this? I'm on SeleniumBase version `4.34.15`
closed
2025-02-18T16:39:58Z
2025-02-18T19:13:14Z
https://github.com/seleniumbase/SeleniumBase/issues/3533
[ "workaround exists", "UC Mode / CDP Mode" ]
julesmcrt
1
hankcs/HanLP
nlp
1,170
FAQ第一条
![图片](https://user-images.githubusercontent.com/13548273/57191377-6c38a400-6f57-11e9-91f9-928b71247edd.png) 文中提到无论怎么分词,商品、和服、服务都不可能同时出现,这是不严谨的。 ![图片](https://user-images.githubusercontent.com/13548273/57191407-c76a9680-6f57-11e9-8567-cf0979b8f234.png)
closed
2019-05-05T09:04:05Z
2020-01-01T10:49:52Z
https://github.com/hankcs/HanLP/issues/1170
[ "ignored" ]
soongp
1
sktime/pytorch-forecasting
pandas
1,685
[ENH] enable large data use cases - decouple data input from `pandas`, allow `polars`, `dask`, and/or `spark`
A key limitation of current architecture seems to be the reliance on `pandas` of the input, which limites useability in large data cases. While `torch` with appropriate backends should be able to handle large data, `pandas` as a container choice, in particular the current instantiation which seems to rely on in-memory, will prove to be the bottleneck. We should therefore consider and implement support for data backends that scale better, such as `polars`, `dask`, or `spark`, and see how easy it is to get the `pandas` `pyarrow` integration to work. Architecturally, I think we should: * build a more abstract data loader layer * make `pandas` one of multiple potential data soft dependencies * try to prioritize the solution that would provide us with the quickest "impact for time invested" The key entry point for this extension or refactor is `TimeSeriesDataSet`, which requires `pandas` objects to be passed.
open
2024-09-23T09:09:44Z
2025-01-12T20:38:25Z
https://github.com/sktime/pytorch-forecasting/issues/1685
[ "enhancement" ]
fkiraly
7
keras-team/keras
deep-learning
20,274
Incompatibility in 'tf.GradientTape.watch' of TensorFlow 2.17 in Keras 3.4.1
I read the issue 19155 (https://github.com/keras-team/keras/issues/19155), but still have problem I am trying to perform gradient descent on the model.trainable variables, but have errors regarding model.trainable_variables Tensorflow version is 2.17.0 keras version is 3.4.1 def get_grad(model, X_train, data_train): with tf.GradientTape(persistent=True) as tape: # This tape is for derivatives with # respect to trainable variables tape.watch(model.trainable_variables.value) ###added .value from issue 19155 loss = compute_loss(model, X_train, data_train) g = tape.gradient(loss, model.trainable_variables.value) # del tape return loss, g ################### Error: AttributeError: in user code: File "<ipython-input-13-fc15d0ce6166>", line 7, in train_step * loss, grad_theta = get_grad(model, X_train, data_train) File "<ipython-input-11-cca40e4543b3>", line 6, in get_grad * tape.watch(model.trainable_variables.value) AttributeError: 'list' object has no attribute 'value'
closed
2024-09-20T06:20:02Z
2024-10-22T02:03:06Z
https://github.com/keras-team/keras/issues/20274
[ "stat:awaiting response from contributor", "stale", "type:Bug" ]
yajuna
4
amidaware/tacticalrmm
django
1,849
[BUG]: Resolved Alerts are triggered after exiting maintenance mode
**Server Info (please complete the following information):** - OS: Debian (Kubernetes Node) - Browser: Chrome / Edge - RMM Version (as shown in top left of web UI): v0.18.2 **Installation Method:** - [ ] Standard - [ ] Standard with `--insecure` flag at install - [ x ] Docker **Agent Info (please complete the following information):** - Agent version (as shown in the 'Summary' tab of the agent from web UI): v2.7.0 - Agent OS: [e.g. Win 10 v2004, Server 2016] Windows Server 2019 Standard **Describe the bug** It seems like whenever we turn off maintenance mode we get a ton of “resolved” alerts. We don’t get alerted during the window which is correct, but we get alerted for service restorations after the window is over, even if those services were resolved during the window. This has been going on for as long as I remember, I just haven't had time to open an issue for it. I am confident every version of Tactical has done this, at least in our specific environment. **To Reproduce** Steps to reproduce the behavior: 1. Put a client in maintenance mode 2. Trigger a reboot 3. Exit maintenance mode (can be an hour later, it still does it) 4. "Service Check: Resolved" gets triggered even though the service was started long before exiting maintenance mode **Expected behavior** Maintenance mode should not trigger Resolved alerts after exiting maintenance mode. **Screenshots** N/A **Additional context** @wh1te909 is familiar with our environment. It is technically "unsupported" but nonetheless if it's something on our side, just need to know what the cause is so we can address and resolve accordingly. I am filing it as a bug report for now per conversation on Discord.
closed
2024-04-18T18:07:54Z
2024-06-28T20:30:09Z
https://github.com/amidaware/tacticalrmm/issues/1849
[]
joeldeteves
3
SciTools/cartopy
matplotlib
2,212
stock_img() fails with scipy 1.11
### Description <!-- Please provide a general introduction to the issue/proposal. --> Calling `ax.stock_img()` on a GeoAxes object fails in an environment with scipy 1.11.1 and Cartopy 0.21.1 The same code works as expected in an environment with scipy 1.10.1 and Cartopy 0.21.1. <!-- If you are reporting a bug, attach the *entire* traceback from Python. If you are proposing an enhancement/new feature, provide links to related articles, reference examples, etc. If you are asking a question, please ask on StackOverflow and use the cartopy tag. All cartopy questions on StackOverflow can be found at https://stackoverflow.com/questions/tagged/cartopy --> #### Code to reproduce ``` import matplotlib.pyplot as plt from cartopy import crs as ccrs fig = plt.figure(figsize=(11, 8.5)) ax = plt.subplot(1, 1, 1, projection=ccrs.Mollweide(central_longitude=0)) ax.stock_img() ``` #### Traceback ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[1], line 5 3 fig = plt.figure(figsize=(11, 8.5)) 4 ax = plt.subplot(1, 1, 1, projection=ccrs.Mollweide(central_longitude=0)) ----> 5 ax.stock_img() File ~/miniconda3/envs/test-cartopy/lib/python3.11/site-packages/cartopy/mpl/geoaxes.py:1019, in GeoAxes.stock_img(self, name) 1014 source_proj = ccrs.PlateCarree() 1015 fname = os.path.join(config["repo_data_dir"], 1016 'raster', 'natural_earth', 1017 '50-natural-earth-1-downsampled.png') -> 1019 return self.imshow(imread(fname), origin='upper', 1020 transform=source_proj, 1021 extent=[-180, 180, -90, 90]) 1022 else: 1023 raise ValueError('Unknown stock image %r.' % name) File ~/miniconda3/envs/test-cartopy/lib/python3.11/site-packages/cartopy/mpl/geoaxes.py:318, in _add_transform.<locals>.wrapper(self, *args, **kwargs) 313 raise ValueError(f'Invalid transform: Spherical {func.__name__} ' 314 'is not supported - consider using ' 315 'PlateCarree/RotatedPole.') 317 kwargs['transform'] = transform --> 318 return func(self, *args, **kwargs) File ~/miniconda3/envs/test-cartopy/lib/python3.11/site-packages/cartopy/mpl/geoaxes.py:1331, in GeoAxes.imshow(self, img, *args, **kwargs) 1329 from cartopy.img_transform import warp_array 1330 original_extent = extent -> 1331 img, extent = warp_array(img, 1332 source_proj=transform, 1333 source_extent=original_extent, 1334 target_proj=self.projection, 1335 target_res=regrid_shape, 1336 target_extent=target_extent, 1337 mask_extrapolated=True, 1338 ) 1339 alpha = kwargs.pop('alpha', None) 1340 if np.array(alpha).ndim == 2: File ~/miniconda3/envs/test-cartopy/lib/python3.11/site-packages/cartopy/img_transform.py:192, in warp_array(array, target_proj, source_proj, target_res, source_extent, target_extent, mask_extrapolated) 186 # XXX Take into account the extents of the original to determine 187 # target_extents? 188 target_native_x, target_native_y, extent = mesh_projection( 189 target_proj, target_res[0], target_res[1], 190 x_extents=target_x_extents, y_extents=target_y_extents) --> 192 array = regrid(array, source_native_xy[0], source_native_xy[1], 193 source_proj, target_proj, 194 target_native_x, target_native_y, 195 mask_extrapolated) 196 return array, extent File ~/miniconda3/envs/test-cartopy/lib/python3.11/site-packages/cartopy/img_transform.py:278, in regrid(array, source_x_coords, source_y_coords, source_proj, target_proj, target_x_points, target_y_points, mask_extrapolated) 274 else: 275 # Versions of scipy >= v0.16 added the balanced_tree argument, 276 # which caused the KDTree to hang with this input. 277 kdtree = scipy.spatial.cKDTree(xyz, balanced_tree=False) --> 278 _, indices = kdtree.query(target_xyz, k=1) 279 mask = indices >= len(xyz) 280 indices[mask] = 0 File _ckdtree.pyx:795, in scipy.spatial._ckdtree.cKDTree.query() ValueError: 'x' must be finite, check for nan or inf values ``` <details> <summary>Full environment definition</summary> <!-- fill in the following information as appropriate --> ### Operating system Mac OS Monterey Version 12.6.7 ### Cartopy version 0.21.1 ### conda list ``` # packages in environment at /Users/br546577/miniconda3/envs/test-cartopy: # # Name Version Build Channel anyio 3.7.1 pyhd8ed1ab_0 conda-forge appnope 0.1.3 pyhd8ed1ab_0 conda-forge argon2-cffi 21.3.0 pyhd8ed1ab_0 conda-forge argon2-cffi-bindings 21.2.0 py311he2be06e_3 conda-forge asttokens 2.2.1 pyhd8ed1ab_0 conda-forge attrs 23.1.0 pyh71513ae_1 conda-forge backcall 0.2.0 pyh9f0ad1d_0 conda-forge backports 1.0 pyhd8ed1ab_3 conda-forge backports.functools_lru_cache 1.6.5 pyhd8ed1ab_0 conda-forge beautifulsoup4 4.12.2 pyha770c72_0 conda-forge bleach 6.0.0 pyhd8ed1ab_0 conda-forge brotli 1.0.9 h1a8c8d9_9 conda-forge brotli-bin 1.0.9 h1a8c8d9_9 conda-forge brotli-python 1.0.9 py311ha397e9f_9 conda-forge bzip2 1.0.8 h3422bc3_4 conda-forge c-ares 1.19.1 hb547adb_0 conda-forge ca-certificates 2023.5.7 hf0a4a13_0 conda-forge cartopy 0.21.1 py311hbf64cf6_1 conda-forge certifi 2023.5.7 pyhd8ed1ab_0 conda-forge cffi 1.15.1 py311hae827db_3 conda-forge charset-normalizer 3.2.0 pyhd8ed1ab_0 conda-forge comm 0.1.3 pyhd8ed1ab_0 conda-forge contourpy 1.1.0 py311he4fd1f5_0 conda-forge cycler 0.11.0 pyhd8ed1ab_0 conda-forge debugpy 1.6.7 py311ha397e9f_0 conda-forge decorator 5.1.1 pyhd8ed1ab_0 conda-forge defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge entrypoints 0.4 pyhd8ed1ab_0 conda-forge exceptiongroup 1.1.2 pyhd8ed1ab_0 conda-forge executing 1.2.0 pyhd8ed1ab_0 conda-forge flit-core 3.9.0 pyhd8ed1ab_0 conda-forge fonttools 4.40.0 py311heffc1b2_0 conda-forge freetype 2.12.1 hd633e50_1 conda-forge geos 3.11.2 hb7217d7_0 conda-forge idna 3.4 pyhd8ed1ab_0 conda-forge importlib-metadata 6.8.0 pyha770c72_0 conda-forge importlib_metadata 6.8.0 hd8ed1ab_0 conda-forge importlib_resources 6.0.0 pyhd8ed1ab_1 conda-forge ipykernel 6.24.0 pyh5fb750a_0 conda-forge ipython 8.14.0 pyhd1c38e8_0 conda-forge ipython_genutils 0.2.0 py_1 conda-forge ipywidgets 8.0.7 pyhd8ed1ab_0 conda-forge jedi 0.18.2 pyhd8ed1ab_0 conda-forge jinja2 3.1.2 pyhd8ed1ab_1 conda-forge jsonschema 4.18.1 pyhd8ed1ab_0 conda-forge jsonschema-specifications 2023.6.1 pyhd8ed1ab_0 conda-forge jupyter 1.0.0 py311h267d04e_8 conda-forge jupyter_client 8.3.0 pyhd8ed1ab_0 conda-forge jupyter_console 6.6.3 pyhd8ed1ab_0 conda-forge jupyter_core 5.3.1 py311h267d04e_0 conda-forge jupyter_events 0.6.3 pyhd8ed1ab_0 conda-forge jupyter_server 2.7.0 pyhd8ed1ab_0 conda-forge jupyter_server_terminals 0.4.4 pyhd8ed1ab_1 conda-forge jupyterlab_pygments 0.2.2 pyhd8ed1ab_0 conda-forge jupyterlab_widgets 3.0.8 pyhd8ed1ab_0 conda-forge kiwisolver 1.4.4 py311hd6ee22a_1 conda-forge krb5 1.20.1 h69eda48_0 conda-forge lcms2 2.15 hd835a16_1 conda-forge lerc 4.0.0 h9a09cb3_0 conda-forge libblas 3.9.0 17_osxarm64_openblas conda-forge libbrotlicommon 1.0.9 h1a8c8d9_9 conda-forge libbrotlidec 1.0.9 h1a8c8d9_9 conda-forge libbrotlienc 1.0.9 h1a8c8d9_9 conda-forge libcblas 3.9.0 17_osxarm64_openblas conda-forge libcurl 8.1.2 h912dcd9_0 conda-forge libcxx 16.0.6 h4653b0c_0 conda-forge libdeflate 1.18 h1a8c8d9_0 conda-forge libedit 3.1.20191231 hc8eb9b7_2 conda-forge libev 4.33 h642e427_1 conda-forge libexpat 2.5.0 hb7217d7_1 conda-forge libffi 3.4.2 h3422bc3_5 conda-forge libgfortran 5.0.0 12_2_0_hd922786_31 conda-forge libgfortran5 12.2.0 h0eea778_31 conda-forge libjpeg-turbo 2.1.5.1 h1a8c8d9_0 conda-forge liblapack 3.9.0 17_osxarm64_openblas conda-forge libnghttp2 1.52.0 hae82a92_0 conda-forge libopenblas 0.3.23 openmp_hc731615_0 conda-forge libpng 1.6.39 h76d750c_0 conda-forge libsodium 1.0.18 h27ca646_1 conda-forge libsqlite 3.42.0 hb31c410_0 conda-forge libssh2 1.11.0 h7a5bd25_0 conda-forge libtiff 4.5.1 h23a1a89_0 conda-forge libwebp-base 1.3.1 hb547adb_0 conda-forge libxcb 1.15 hf346824_0 conda-forge libzlib 1.2.13 h53f4e23_5 conda-forge llvm-openmp 16.0.6 h1c12783_0 conda-forge markupsafe 2.1.3 py311heffc1b2_0 conda-forge matplotlib-base 3.7.2 py311h3bc9839_0 conda-forge matplotlib-inline 0.1.6 pyhd8ed1ab_0 conda-forge mistune 3.0.0 pyhd8ed1ab_0 conda-forge munkres 1.1.4 pyh9f0ad1d_0 conda-forge nbclassic 1.0.0 pyhb4ecaf3_1 conda-forge nbclient 0.8.0 pyhd8ed1ab_0 conda-forge nbconvert 7.6.0 pyhd8ed1ab_0 conda-forge nbconvert-core 7.6.0 pyhd8ed1ab_0 conda-forge nbconvert-pandoc 7.6.0 pyhd8ed1ab_0 conda-forge nbformat 5.9.1 pyhd8ed1ab_0 conda-forge ncurses 6.4 h7ea286d_0 conda-forge nest-asyncio 1.5.6 pyhd8ed1ab_0 conda-forge notebook 6.5.4 pyha770c72_0 conda-forge notebook-shim 0.2.3 pyhd8ed1ab_0 conda-forge numpy 1.25.1 py311hb8f3215_0 conda-forge openjpeg 2.5.0 hbc2ba62_2 conda-forge openssl 3.1.1 h53f4e23_1 conda-forge overrides 7.3.1 pyhd8ed1ab_0 conda-forge packaging 23.1 pyhd8ed1ab_0 conda-forge pandoc 3.1.3 hce30654_0 conda-forge pandocfilters 1.5.0 pyhd8ed1ab_0 conda-forge parso 0.8.3 pyhd8ed1ab_0 conda-forge pexpect 4.8.0 pyh1a96a4e_2 conda-forge pickleshare 0.7.5 py_1003 conda-forge pillow 10.0.0 py311h095fde6_0 conda-forge pip 23.1.2 pyhd8ed1ab_0 conda-forge pkgutil-resolve-name 1.3.10 pyhd8ed1ab_0 conda-forge platformdirs 3.8.1 pyhd8ed1ab_0 conda-forge pooch 1.7.0 pyha770c72_3 conda-forge proj 9.2.1 h8fdea58_0 conda-forge prometheus_client 0.17.1 pyhd8ed1ab_0 conda-forge prompt-toolkit 3.0.39 pyha770c72_0 conda-forge prompt_toolkit 3.0.39 hd8ed1ab_0 conda-forge psutil 5.9.5 py311he2be06e_0 conda-forge pthread-stubs 0.4 h27ca646_1001 conda-forge ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge pure_eval 0.2.2 pyhd8ed1ab_0 conda-forge pycparser 2.21 pyhd8ed1ab_0 conda-forge pygments 2.15.1 pyhd8ed1ab_0 conda-forge pyobjc-core 9.2 py311hb702dc4_0 conda-forge pyobjc-framework-cocoa 9.2 py311hb702dc4_0 conda-forge pyparsing 3.0.9 pyhd8ed1ab_0 conda-forge pyproj 3.6.0 py311h280d66e_1 conda-forge pyshp 2.3.1 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 pyha2e5f31_6 conda-forge python 3.11.4 h47c9636_0_cpython conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python-fastjsonschema 2.17.1 pyhd8ed1ab_0 conda-forge python-json-logger 2.0.7 pyhd8ed1ab_0 conda-forge python_abi 3.11 3_cp311 conda-forge pyyaml 6.0 py311he2be06e_5 conda-forge pyzmq 25.1.0 py311hb1af645_0 conda-forge readline 8.2 h92ec313_1 conda-forge referencing 0.29.1 pyhd8ed1ab_0 conda-forge requests 2.31.0 pyhd8ed1ab_0 conda-forge rfc3339-validator 0.1.4 pyhd8ed1ab_0 conda-forge rfc3986-validator 0.1.1 pyh9f0ad1d_0 conda-forge rpds-py 0.8.10 py311h0563b04_0 conda-forge scipy 1.11.1 py311h93d07a4_0 conda-forge send2trash 1.8.2 pyhd1c38e8_0 conda-forge setuptools 68.0.0 pyhd8ed1ab_0 conda-forge shapely 2.0.1 py311h7f8cfc4_1 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge sniffio 1.3.0 pyhd8ed1ab_0 conda-forge soupsieve 2.3.2.post1 pyhd8ed1ab_0 conda-forge sqlite 3.42.0 h203b68d_0 conda-forge stack_data 0.6.2 pyhd8ed1ab_0 conda-forge terminado 0.17.1 pyhd1c38e8_0 conda-forge tinycss2 1.2.1 pyhd8ed1ab_0 conda-forge tk 8.6.12 he1e0b03_0 conda-forge tornado 6.3.2 py311heffc1b2_0 conda-forge traitlets 5.9.0 pyhd8ed1ab_0 conda-forge typing-extensions 4.7.1 hd8ed1ab_0 conda-forge typing_extensions 4.7.1 pyha770c72_0 conda-forge typing_utils 0.1.0 pyhd8ed1ab_0 conda-forge tzdata 2023c h71feb2d_0 conda-forge urllib3 2.0.3 pyhd8ed1ab_1 conda-forge wcwidth 0.2.6 pyhd8ed1ab_0 conda-forge webencodings 0.5.1 py_1 conda-forge websocket-client 1.6.1 pyhd8ed1ab_0 conda-forge wheel 0.40.0 pyhd8ed1ab_0 conda-forge widgetsnbextension 4.0.8 pyhd8ed1ab_0 conda-forge xorg-libxau 1.0.11 hb547adb_0 conda-forge xorg-libxdmcp 1.1.3 h27ca646_0 conda-forge xz 5.2.6 h57fd34a_0 conda-forge yaml 0.2.5 h3422bc3_2 conda-forge zeromq 4.3.4 hbdafb3b_1 conda-forge zipp 3.16.0 pyhd8ed1ab_1 conda-forge zstd 1.5.2 h4f39d0f_7 conda-forge ``` ### pip list ``` Package Version ----------------------------- ----------- anyio 3.7.1 appnope 0.1.3 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 asttokens 2.2.1 attrs 23.1.0 backcall 0.2.0 backports.functools-lru-cache 1.6.5 beautifulsoup4 4.12.2 bleach 6.0.0 Brotli 1.0.9 Cartopy 0.21.1 certifi 2023.5.7 cffi 1.15.1 charset-normalizer 3.2.0 comm 0.1.3 contourpy 1.1.0 cycler 0.11.0 debugpy 1.6.7 decorator 5.1.1 defusedxml 0.7.1 entrypoints 0.4 exceptiongroup 1.1.2 executing 1.2.0 fastjsonschema 2.17.1 flit_core 3.9.0 fonttools 4.40.0 idna 3.4 importlib-metadata 6.8.0 importlib-resources 6.0.0 ipykernel 6.24.0 ipython 8.14.0 ipython-genutils 0.2.0 ipywidgets 8.0.7 jedi 0.18.2 Jinja2 3.1.2 jsonschema 4.18.1 jsonschema-specifications 2023.6.1 jupyter 1.0.0 jupyter_client 8.3.0 jupyter-console 6.6.3 jupyter_core 5.3.1 jupyter-events 0.6.3 jupyter_server 2.7.0 jupyter_server_terminals 0.4.4 jupyterlab-pygments 0.2.2 jupyterlab-widgets 3.0.8 kiwisolver 1.4.4 MarkupSafe 2.1.3 matplotlib 3.7.2 matplotlib-inline 0.1.6 mistune 3.0.0 munkres 1.1.4 nbclassic 1.0.0 nbclient 0.8.0 nbconvert 7.6.0 nbformat 5.9.1 nest-asyncio 1.5.6 notebook 6.5.4 notebook_shim 0.2.3 numpy 1.25.1 overrides 7.3.1 packaging 23.1 pandocfilters 1.5.0 parso 0.8.3 pexpect 4.8.0 pickleshare 0.7.5 Pillow 10.0.0 pip 23.1.2 pkgutil_resolve_name 1.3.10 platformdirs 3.8.1 pooch 1.7.0 prometheus-client 0.17.1 prompt-toolkit 3.0.39 psutil 5.9.5 ptyprocess 0.7.0 pure-eval 0.2.2 pycparser 2.21 Pygments 2.15.1 pyobjc-core 9.2 pyobjc-framework-Cocoa 9.2 pyparsing 3.0.9 pyproj 3.6.0 pyshp 2.3.1 PySocks 1.7.1 python-dateutil 2.8.2 python-json-logger 2.0.7 PyYAML 6.0 pyzmq 25.1.0 referencing 0.29.1 requests 2.31.0 rfc3339-validator 0.1.4 rfc3986-validator 0.1.1 rpds-py 0.8.10 scipy 1.11.1 Send2Trash 1.8.2 setuptools 68.0.0 shapely 2.0.1 six 1.16.0 sniffio 1.3.0 soupsieve 2.3.2.post1 stack-data 0.6.2 terminado 0.17.1 tinycss2 1.2.1 tornado 6.3.2 traitlets 5.9.0 typing_extensions 4.7.1 typing-utils 0.1.0 urllib3 2.0.3 wcwidth 0.2.6 webencodings 0.5.1 websocket-client 1.6.1 wheel 0.40.0 widgetsnbextension 4.0.8 zipp 3.16.0 ``` </details>
closed
2023-07-12T22:02:31Z
2023-07-13T01:24:21Z
https://github.com/SciTools/cartopy/issues/2212
[]
brian-rose
1
zalandoresearch/fashion-mnist
computer-vision
124
BenchMark: CNN with 5 Conv Layers. Accuracy on FashionMNIST Dataset: 93.15
The model details are as follows: Preprocessing by calculating mean and std beforehand. Trained using Cross Entropy Loss and Adam Optimizer. The initial learning rate is 0.01 which is decreased to 1/4 after every 8 epochs. The layers in sequence are: Convolutional layer with 32 feature maps of size 3 x 3, stride 1 and pooling 0. BatchNorm layer followed by ReLU activation. Convolutional layer with 64 feature maps of size 3 x 3, stride 1 and pooling 0 BatchNorm layer followed by ReLU activation. Convolutional layer with 128 feature maps of size 3 x 3, stride 1 and pooling 1 BatchNorm layer followed by ReLU activation. Max Pooling layer of size 2 x 2 and stride 2. Convolutional layer with 256 feature maps of size 3 x 3, stride 1 and pooling 0 BatchNorm layer followed by ReLU activation. Convolutional layer with 512 feature maps of size 3 x 3, stride 1 and pooling 0 BatchNorm layer followed by ReLU activation. Max Pooling layer of size 8 x 8 and stride 1. Fully connected layer of input size 512 and output size 10. Accuracy achieved on Fashion MNIST Test Dataset is 93.15% This network has been implemented in PyTorch. The code can be found [here](https://gist.github.com/Noumanmufc1/60f00e434f0ce42b6f4826029737490a)
closed
2018-07-26T11:10:38Z
2018-07-27T02:54:40Z
https://github.com/zalandoresearch/fashion-mnist/issues/124
[ "benchmark" ]
nouman-10
0
KaiyangZhou/deep-person-reid
computer-vision
423
Pre-trained model training issue
Hi @KaiyangZhou, I am getting following issue while performing model training. engine.run( save_dir='log/osnet_ain_transfer', max_epoch=60, eval_freq=10, print_freq=10, test_only=False, fixbase_epoch=5, open_layers='classifier' ) => Start training * Only train classifier (epoch: 1/5) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-21-db919c647e64> in <module> 6 test_only=False, 7 fixbase_epoch=5, ----> 8 open_layers='classifier' 9 ) 10 # or open_layers=['fc', 'classifier'] if there is another fc layer that ~/person_reid_new/deep-person-reid/torchreid/engine/engine.py in run(self, save_dir, max_epoch, start_epoch, print_freq, fixbase_epoch, open_layers, start_eval, eval_freq, test_only, dist_metric, normalize_feature, visrank, visrank_topk, use_metric_cuhk03, ranks, rerank) 191 print_freq=print_freq, 192 fixbase_epoch=fixbase_epoch, --> 193 open_layers=open_layers 194 ) 195 ~/person_reid_new/deep-person-reid/torchreid/engine/engine.py in train(self, print_freq, fixbase_epoch, open_layers) 243 for self.batch_idx, data in enumerate(self.train_loader): 244 data_time.update(time.time() - end) --> 245 loss_summary = self.forward_backward(data) 246 batch_time.update(time.time() - end) 247 losses.update(loss_summary) ~/person_reid_new/deep-person-reid/torchreid/engine/image/softmax.py in forward_backward(self, data) 84 85 outputs = self.model(imgs) ---> 86 loss = self.compute_loss(self.criterion, outputs, pids) 87 88 self.optimizer.zero_grad() ~/person_reid_new/deep-person-reid/torchreid/engine/engine.py in compute_loss(self, criterion, outputs, targets) 437 loss = DeepSupervision(criterion, outputs, targets) 438 else: --> 439 loss = criterion(outputs, targets) 440 return loss 441 ~/anaconda3/envs/newmmpose/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs) 548 result = self._slow_forward(*input, **kwargs) 549 else: --> 550 result = self.forward(*input, **kwargs) 551 for hook in self._forward_hooks.values(): 552 hook_result = hook(self, input, result) ~/person_reid_new/deep-person-reid/torchreid/losses/cross_entropy_loss.py in forward(self, inputs, targets) 44 log_probs = self.logsoftmax(inputs) 45 zeros = torch.zeros(log_probs.size()) ---> 46 targets = zeros.scatter_(1, targets.unsqueeze(1).data.cpu(), 1) 47 if self.use_gpu: 48 targets = targets.cuda() RuntimeError: index 5019 is out of bounds for dimension 1 with size 30
closed
2021-03-14T17:32:52Z
2021-04-09T15:44:35Z
https://github.com/KaiyangZhou/deep-person-reid/issues/423
[]
malpeddinilesh
5