repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
python-restx/flask-restx
api
549
SwaggerUIBundle is not defined
I am using `flask-restx==1.1.0` My Python is `3.8.10` Sometime I am seeing this issue in my swagger dashboard `GET https://{host}/api/swaggerui/swagger-ui-standalone-preset.js net::ERR_ABORTED 404 (NOT FOUND) {host}/:71 GET https://{host}/api/swaggerui/swagger-ui-bundle.js net::ERR_ABORTED 404 (NOT FOUND) {host}/:7 GET https://{host}/api/swaggerui/swagger-ui.css net::ERR_ABORTED 404 (NOT FOUND) (index):75 Uncaught ReferenceError: SwaggerUIBundle is not defined at window.onload ((index):75:40)` And my dashboard is not getting load because of this issue Can someone please help me with this ? I am not able to find much about this issue in internet already
open
2023-06-29T10:29:34Z
2023-07-07T03:26:03Z
https://github.com/python-restx/flask-restx/issues/549
[ "bug" ]
viveksahu56722
5
horovod/horovod
pytorch
3,240
One process are worked in two GPUs?
**Environment:** 1. Framework: PyTorch 2. Framework version: I do not know 3. Horovod version: 0.23.0 4. MPI version: 4.0.0 5. CUDA version:11.2 6. NCCL version:2.8.4 + cuda 11.1 7. Python version: 3.8 8. Spark / PySpark version: no 9. Ray version: no 10. OS and version: Ubuntu 18.04 11. GCC version: I do not know 12. CMake version: I do not know **Checklist:** 1. Did you search issues to find if somebody asked this question before? Yes but no answer 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? yes, but no answer 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? no **Bug report:** Please describe erroneous behavior you're observing and steps to reproduce it. I use the following Dockerfile to make a docker image: [](url)https://drive.google.com/file/d/1aZAGyqCyBbB7hgR1uHn-KPX98ymLjBMx/view?usp=sharing And then I run the horovod example: pytorch_mnist.py But I got the following picture: <img width="483" alt="b25845e196c2411c2a4b7350da28749" src="https://user-images.githubusercontent.com/30434881/138592927-2f8b2abe-5fe4-4bfd-9746-59c553c3a5f5.png"> It seems that PID worked in two GPUs, such as 801, 802 and 803. But the training process can be done. How can I do? Thank you in advance.
open
2021-10-24T11:56:55Z
2021-10-24T12:01:13Z
https://github.com/horovod/horovod/issues/3240
[ "bug" ]
xml94
0
Yorko/mlcourse.ai
seaborn
697
fix Plotly visualizations in JupyterBook
Topics 2 and 9, part 2. [Plolty & JupyterBook](https://jupyterbook.org/interactive/interactive.html#plotly), `iplot` is not working
closed
2021-12-28T02:16:08Z
2022-08-27T20:25:07Z
https://github.com/Yorko/mlcourse.ai/issues/697
[ "jupyter-book" ]
Yorko
0
supabase/supabase-py
flask
576
Change the functions method inside of supabase-py to a property
Currently the supabase-py library has a functions method but this should follow all the other services inside of the library and use a property instead. To currently invoke a function your code looks like: ```python supabase.functions().invoke() ``` This change will make this code look like: ```python supabase.functions.invoke() ```
closed
2023-10-02T16:20:08Z
2023-10-04T10:33:06Z
https://github.com/supabase/supabase-py/issues/576
[]
silentworks
2
streamlit/streamlit
data-visualization
10,055
Preserve exact spacing in `st.text`
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar issues. - [X] I added a very descriptive title to this issue. - [X] I have provided sufficient information below to help reproduce this issue. ### Summary st.text behavior seems to have changed between 1.37 and the latest version (1.41) in which it no longer respects pre-formatted spacing. ### Reproducible Code Example ```Python import streamlit as st def display_preformatted_text(): preformatted_text = """ Interface: GigabitEthernet1/0/1 MAC Address: 00:1A:2B:3C:4D:5E IPv4 Address: 192.168.1.10 IPv6 Address: fe80::1a2b:3c4d:5e6f User-Name: user1 User-Role: admin Status: active Domain: example.com Current Policy: default Vlan: 10 Device-name: device1 """ st.text(preformatted_text) st.write(preformatted_text) st.code(preformatted_text,language=None ) display_preformatted_text() ``` ### Steps To Reproduce Should be demonstrated in example code (self-evident) ### Expected Behavior Adding an option to preserve spacing like previous behavior ### Current Behavior Screenshot of before (1.37) -> (1.41): ![image](https://github.com/user-attachments/assets/65088035-6a16-452d-803e-6104ac942665) While I am aware I can get similar results with st.code it does add a grey background that I can't seem to remove. An option to remove the grey background on st.code to the standard black might be sufficient too. ![image](https://github.com/user-attachments/assets/2308040c-8cf6-45b7-998a-725dc3858539) I think ideally, I would like the option to preserve spacing(old behavior) or not preserve spacing (current behavior). ### Is this a regression? - [X] Yes, this used to work in a previous version. ### Debug info - Streamlit version: 1.41 - Python version: 3.12 - Operating System: win - Browser: edge ### Additional Information _No response_
closed
2024-12-20T03:10:56Z
2025-02-12T16:51:47Z
https://github.com/streamlit/streamlit/issues/10055
[ "type:enhancement", "feature:st.text" ]
netnem
6
ageitgey/face_recognition
python
641
has anybody tried it on windows ?
* face_recognition version: * Python version: * Operating System: ### Description Describe what you were trying to get done. Tell us what happened, what went wrong, and what you expected to happen. IMPORTANT: If your issue is related to a specific picture, include it so others can reproduce the issue. ### What I Did ``` Paste the command(s) you ran and the output. If there was a crash, please include the traceback here. ```
closed
2018-10-07T12:15:14Z
2019-07-18T14:31:31Z
https://github.com/ageitgey/face_recognition/issues/641
[]
safaad
4
Avaiga/taipy
data-visualization
1,504
[๐Ÿ› BUG] f-string syntax not working in lambda expression
### What went wrong? ๐Ÿค” Using `{}` in a lambda expression will result in the visual element not showing up. ### Expected Behavior We should find a way to make it work. If it is impossible, we should have some kind of warning and documentation. ### Steps to Reproduce Issue ```python from taipy.gui import Gui import taipy.gui.builder as tgb value = 10 with tgb.Page() as page: # Not working tgb.text(value=lambda value: f"1: Value {value}") # Not working tgb.text(value=lambda value: "2: Value {value}") # Works tgb.text(value=lambda value: "3: Value " + str(value)) # Works tgb.text("4: Value {value}") Gui(page=page).run(title="Frontend Demo") ``` ![image](https://github.com/Avaiga/taipy/assets/98709993/f9732751-6369-4f84-97dd-dcd8b693c70d) ### Browsers Chrome ### OS Windows ### Version of Taipy Develop - 7/11/24 ### Additional Context _No response_ ### Acceptance Criteria - [ ] Ensure new code is unit tested, and check code coverage is at least 90%. - [ ] Create related issue in taipy-doc for documentation and Release Notes. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)
closed
2024-07-11T08:01:27Z
2024-07-11T11:49:21Z
https://github.com/Avaiga/taipy/issues/1504
[ "๐Ÿ–ฐ GUI", "๐Ÿ’ฅMalfunction", "๐ŸŸง Priority: High" ]
FlorianJacta
3
piccolo-orm/piccolo
fastapi
690
uniform behaviour on joining null values
Lets say the artist is unknown (= null), and we have a query like this: ``` song = await Song.select(Song.artist.all_columns()).first() ``` When using SQLiteEngine, `song['artist']['id']` is `None`, but with PostgresEngine it seems that `song['artist']` is `None`. Can we make it so that SQLiteEngine behave like PostgresEngine in this regard?
closed
2022-11-28T23:14:17Z
2022-11-29T15:07:07Z
https://github.com/piccolo-orm/piccolo/issues/690
[]
powellnorma
3
koaning/scikit-lego
scikit-learn
37
missing documentation: Estimator Transformer
The `EstimatorTransformer` is complicated enough to add an .rst document for. Might be nice to check if we can automatically test this as well.
closed
2019-03-20T06:02:49Z
2019-06-20T20:59:10Z
https://github.com/koaning/scikit-lego/issues/37
[ "good first issue" ]
koaning
0
healthchecks/healthchecks
django
231
Feature Request: Turn off/separate "Up" emails on an integration
We are planning to configure emails to be sent to our ticketing system but we only want to create tickets for when checks are down. At the moment, a ticket would also be created when the check comes back up. It would be great if the "up" email could be turned off or sent to a different email address (so that the "up" email could go to the team rather than the ticketing system).
closed
2019-03-18T15:27:44Z
2019-04-10T14:54:32Z
https://github.com/healthchecks/healthchecks/issues/231
[]
dalee-bis
1
scrapy/scrapy
web-scraping
5,855
test_batch_path_differ sometimes fails
See https://github.com/scrapy/scrapy/pull/5847#issuecomment-1471778039.
closed
2023-03-23T12:55:24Z
2023-04-19T06:33:34Z
https://github.com/scrapy/scrapy/issues/5855
[ "good first issue", "CI" ]
Gallaecio
2
openapi-generators/openapi-python-client
fastapi
928
Nullable array models generate failing code
**Describe the bug** When an array is marked as nullable (in OpenAPI 3.0 or 3.1) the generated code fails type checking with the message: ``` error: Incompatible types in assignment (expression has type "tuple[None, bytes, str]", variable has type "list[float] | Unset | None") [assignment] ``` From the end-to-end test suite, making `some_array` nullable (part of `Body_upload_file_tests_upload_post`) results in this change: ```diff @@ -165,10 +172,17 @@ class BodyUploadFileTestsUploadPost: else (None, str(self.some_number).encode(), "text/plain") ) - some_array: Union[Unset, Tuple[None, bytes, str]] = UNSET - if not isinstance(self.some_array, Unset): - _temp_some_array = self.some_array - some_array = (None, json.dumps(_temp_some_array).encode(), "application/json") + some_array: Union[List[float], None, Unset] + if isinstance(self.some_array, Unset): + some_array = UNSET + elif isinstance(self.some_array, list): + some_array = UNSET + if not isinstance(self.some_array, Unset): + _temp_some_array = self.some_array + some_array = (None, json.dumps(_temp_some_array).encode(), "application/json") + + else: + some_array = self.some_array some_optional_object: Union[Unset, Tuple[None, bytes, str]] = UNSET ``` **OpenAPI Spec File** The following patch applied the end-to-end test suite reproduces the problem: ```diff diff --git a/end_to_end_tests/baseline_openapi_3.0.json b/end_to_end_tests/baseline_openapi_3.0.json index d21d1d5..25adeaa 100644 --- a/end_to_end_tests/baseline_openapi_3.0.json +++ b/end_to_end_tests/baseline_openapi_3.0.json @@ -1778,6 +1778,7 @@ }, "some_array": { "title": "Some Array", + "nullable": true, "type": "array", "items": { "type": "number" diff --git a/end_to_end_tests/baseline_openapi_3.1.yaml b/end_to_end_tests/baseline_openapi_3.1.yaml index 03270af..4e33e68 100644 --- a/end_to_end_tests/baseline_openapi_3.1.yaml +++ b/end_to_end_tests/baseline_openapi_3.1.yaml @@ -1794,7 +1794,7 @@ info: }, "some_array": { "title": "Some Array", - "type": "array", + "type": [ "array", "null" ], "items": { "type": "number" } ``` **Desktop (please complete the following information):** - openapi-python-client version 0.17.0
closed
2024-01-03T15:15:57Z
2024-01-04T00:29:42Z
https://github.com/openapi-generators/openapi-python-client/issues/928
[]
kgutwin
1
falconry/falcon
api
1,907
Make JSONHandler customization docs clearer
As pointed out by @Stargateur in https://github.com/falconry/falcon/issues/1906#issuecomment-817374057, our [`JSONHandler`](https://falcon.readthedocs.io/en/stable/api/media.html#falcon.media.JSONHandler) customization docs could be made clearer by separately illustrating different (albeit closely related) concepts: * Use a custom JSON library (such as the exemplified `rapidjson`). Customize parameters. * Use the stdlib's `json` module, just provide custom serialization or deserialization parameters. Also link to the ["Prettifying JSON Responses" recipe](https://falcon.readthedocs.io/en/stable/user/recipes/pretty-json.html), which illustrates customization of `dumps` parameters. * Add a sentence or two about replacing the default JSON handlers, not just toss in a code snippet as it is at the time of writing this. Also link to [Replacing the Default Handlers](https://falcon.readthedocs.io/en/stable/api/media.html#custom-media-handlers) from that explanation.
closed
2021-04-11T21:28:07Z
2021-06-26T13:52:57Z
https://github.com/falconry/falcon/issues/1907
[ "documentation", "good first issue" ]
vytas7
2
ITCoders/Human-detection-and-Tracking
numpy
30
The node is neither a map nor an empty collection in function 'cvGetFileNodeByName'
Hello everybody, When I run main.py, I get the following error : ``` Traceback (most recent call last): File "/home/mounir/PycharmProjects/Human-detection-and-Tracking-master/main.py", line 137, in <module> recognizer.read("model.yaml") cv2.error: OpenCV(4.0.0-pre) /home/mounir/opencv/modules/core/src/persistence_c.cpp:757: error: (-2:Unspecified error) The node is neither a map nor an empty collection in function 'cvGetFileNodeByName' ``` I have the latest OpenCV version installed ## Details * **Exact error or Issue details** * **OpenCV Version ** : 4.0.0-pre (I know you told us to opt for 3.1.1 * **Python Version** : 3.6 * **Operating System** : Ubuntu 18.04 * **Changes done, if any in the original code** : Yes, some changes have been done. `recognizer = cv2.face.LBPHFaceRecognizer_create()` instead of `recognizer = cv2.face.createLBPHFaceRecognizer()` and `recognizer.read("model.yaml")` instead of `recognizer.load("model.yaml")` Thanks for your help !
closed
2018-06-12T14:18:19Z
2018-06-13T05:17:47Z
https://github.com/ITCoders/Human-detection-and-Tracking/issues/30
[]
MounirB
1
tflearn/tflearn
data-science
220
One-hot output string labels
Hi, I'm just wondering I have the following output in my network: ``` network = fully_connected(network, len(mod), activation='softmax',name="out") ``` So there are 11 output neurons (len(mod) == 11), I'm wondering if it is possible to associate strings with those neurons, where the strings will be saved, when I freeze the graph. I'm struggling to find if this is possible. For instance I've tried the following: ``` s = tf.Variable("test string",name="outputs") tf.add_to_collection(tf.GraphKeys.VARIABLES, s) ops = tf.initialize_all_variables() sess.run([ops,s]) ``` But it doesn't appear to be saved in the graph, when i use my savegraph routine after the sess.run Any pointers would be great cheers Chris
closed
2016-07-22T13:46:24Z
2016-07-24T15:07:52Z
https://github.com/tflearn/tflearn/issues/220
[]
chrisruk
2
babysor/MockingBird
deep-learning
42
ไฝฟ็”จ็™พๅบฆ็ฝ‘็›˜ๆœ€ๆ–ฐ้ข„่ฎญ็ปƒๆจกๅž‹๏ผŒspectrogramไธๆญฃๅธธ๏ผŒๅชๆœ‰ไธค็ง’ๆ‚้Ÿณ
![image](https://user-images.githubusercontent.com/61355888/130432009-ca953fc9-5319-4bc0-b127-ec38fc060432.png)
closed
2021-08-23T10:24:09Z
2021-08-23T10:50:19Z
https://github.com/babysor/MockingBird/issues/42
[]
gebumc
2
zihangdai/xlnet
nlp
221
Experiment attention on attention on XLnet
*In this paper, we propose the Attention on Attention (AoA) module, an extension to conventional attention mechanisms, to address the irrelevant attention issue. Fur- thermore, we propose AoANet for image captioning by ap- plying AoA to both the encoder and decoder. Extensive ex- periments conducted on the MS COCO dataset demonstrate the superiority and general applicability of our proposed AoA module and AoANet. More remarkably, we achieve a new state-of-the-art performance for image captioning.* From https://paperswithcode.com/paper/attention-on-attention-for-image-captioning This seems like a generalist innovation to try!
open
2019-08-21T19:35:14Z
2019-08-25T12:56:18Z
https://github.com/zihangdai/xlnet/issues/221
[]
LifeIsStrange
2
google-research/bert
nlp
744
Two fields for sentence classification
Hi, I need to do classification using several fields (at least two). What is the best way for representation such data after tokenizer? Variants: 1) `['CLS']<field1 tokens> [SEP] <field2 tokens>`? What segment_ids should be used in such case? 2) `['CLS']<field1 tokens> [my_unique_sequence] <field2 tokens>`? At the moment It looks working better than classification using only field1 or field2. I still not sure that did it in the best way. What is the best way to select such `[my_unique_sequence]`? Should it be only letters or it can have punctuation marks? I'm using segment_ids with 0 only in such case. Is it right? Thanks in advance
open
2019-07-03T13:49:22Z
2019-07-03T13:49:22Z
https://github.com/google-research/bert/issues/744
[]
AlexanderKUA
0
pytest-dev/pytest-cov
pytest
180
Omiting folders for coverage from setup.cfg
I'm running on my project PyTest and Coverage, and I'm trying to implement this plugin, the issue I'm having is than I haven't been able to make it run omitting some folders, and I haven't been able to make it run as automated as I want. Perhaps what I need is more help than reporting an issue, but up to now I haven't been able to find a way it picks the `omit=` line, perhaps is related to additional configurations. My libraries: ``` Python 3.5.2 coverage==4.0.3 pytest==3.2.3 pytest-cov==2.5.1 pytest-django==2.9.1 pytest-flake8==0.9.1 pytest-sugar==0.7.1 django-coverage-plugin==1.3 ``` My `setup.cfg` file (Partially, the last part is for PyLint and is really long): ``` [tool:pytest] DJANGO_SETTINGS_MODULE=config.settings.local python_files=tests.py test_*.py *_tests.py addopts=--cov=accountant --cov-config setup.cfg [coverage:run] source=accountant/* omit=*/migrations/*,*/tests/* plugins=django_coverage_plugin [flake8] max-line-length=80 exclude=.tox,.git,*/migrations/*,*/static/CACHE/*,docs,node_modules,build,dist,*.egg-info statistics=True ```
closed
2017-11-03T14:04:18Z
2018-10-30T01:16:50Z
https://github.com/pytest-dev/pytest-cov/issues/180
[]
sebastian-code
7
CorentinJ/Real-Time-Voice-Cloning
pytorch
1,160
GIT from Anaconda
Hello. I am using win 11 and the newest build of Anaconda. I tried to install this from there and it won't work. It is not available on the repos there. Has it been taken down? Is there any other way to get this working?
open
2023-02-05T13:40:12Z
2023-02-05T13:40:12Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1160
[]
Supermatt01
0
yezyilomo/django-restql
graphql
85
Toggle automatic application on EagerLoadingMixin
We have a few cases where we might not want to apply the `EagerLoadingMixin` `get_queryset` by default. For example, we might have our own prefetching/joining we want to do when someone doesn't send in a `query`. Currently, the mixin will return a query result even if a user did not send one in and will then apply the prefetching and joining specified on the view. I'm imagining this as a boolean field on the mixin, such as `auto_apply_eager_loading` or some equivalent, and that field would be checked in the overridden `get_queryset` before attempting to apply it.
closed
2019-11-25T17:53:14Z
2019-12-02T19:18:18Z
https://github.com/yezyilomo/django-restql/issues/85
[]
ashleyredzko
4
jupyterlab/jupyter-ai
jupyter
1,208
Jupyter_ai for Azure OpenAI throws 'InternalServerError' for all chat responses
<!-- Welcome! Thank you for contributing. These HTML comments will not render in the issue. Before creating a new issue: * Search for relevant issues * Follow the issue reporting guidelines: https://jupyterlab.readthedocs.io/en/latest/getting_started/issue.html --> ## Description Jupyter_ai throwing InternalServerError for the chat response for Azure Openai provider It works for the `/generate` command but the chat responds with the below error for all questions this is with the latest version of jupyter_ai and its dependencies Any help or insights on this issue would be greatly appreciated `Traceback (most recent call last): File "/opt/conda/lib/python3.11/site-packages/jupyter_ai/chat_handlers/base.py", line 226, in on_message await self.process_message(message) File "/opt/conda/lib/python3.11/site-packages/jupyter_ai/chat_handlers/default.py", line 72, in process_message await self.stream_reply(inputs, message) File "/opt/conda/lib/python3.11/site-packages/jupyter_ai/chat_handlers/base.py", line 564, in stream_reply async for chunk in chunk_generator: File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 5535, in astream async for item in self.bound.astream( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 5535, in astream async for item in self.bound.astream( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 3430, in astream async for chunk in self.atransform(input_aiter(), config, **kwargs): File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 3413, in atransform async for chunk in self._atransform_stream_with_config( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 2301, in _atransform_stream_with_config chunk: Output = await asyncio.create_task( # type: ignore[call-arg] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 3383, in _atransform async for output in final_pipeline: File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 5571, in atransform async for item in self.bound.atransform( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 4941, in atransform async for output in self._atransform_stream_with_config( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 2301, in _atransform_stream_with_config chunk: Output = await asyncio.create_task( # type: ignore[call-arg] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 4922, in _atransform async for chunk in output.astream( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 5535, in astream async for item in self.bound.astream( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 3430, in astream async for chunk in self.atransform(input_aiter(), config, **kwargs): File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 3413, in atransform async for chunk in self._atransform_stream_with_config( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 2301, in _atransform_stream_with_config chunk: Output = await asyncio.create_task( # type: ignore[call-arg] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 3383, in _atransform async for output in final_pipeline: File "/opt/conda/lib/python3.11/site-packages/langchain_core/output_parsers/transform.py", line 84, in atransform async for chunk in self._atransform_stream_with_config( File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 2259, in _atransform_stream_with_config final_input: Optional[Input] = await py_anext(input_for_tracing, None) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/langchain_core/utils/aiter.py", line 76, in anext_impl return await __anext__(iterator) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/langchain_core/utils/aiter.py", line 125, in tee_peer item = await iterator.__anext__() ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/langchain_core/runnables/base.py", line 1471, in atransform async for output in self.astream(final, config, **kwargs): File "/opt/conda/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 494, in astream raise e File "/opt/conda/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py", line 472, in astream async for chunk in self._astream( File "/opt/conda/lib/python3.11/site-packages/langchain_openai/chat_models/base.py", line 881, in _astream response = await self.async_client.create(**payload) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/openai/resources/chat/completions.py", line 1720, in create return await self._post( ^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/openai/_base_client.py", line 1849, in post return await self.request(cast_to, opts, stream=stream, stream_cls=stream_cls) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/openai/_base_client.py", line 1543, in request return await self._request( ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/openai/_base_client.py", line 1629, in _request return await self._retry_request( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/openai/_base_client.py", line 1676, in _retry_request return await self._request( ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/openai/_base_client.py", line 1629, in _request return await self._retry_request( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/openai/_base_client.py", line 1676, in _retry_request return await self._request( ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/openai/_base_client.py", line 1644, in _request raise self._make_status_error_from_response(err.response) from None openai.InternalServerError: Internal Server Error` ## Reproduce <!--Describe step-by-step instructions to reproduce the behavior--> Start with the base Docker image for JupyterLab 4.1.8. Install the jupyter_ai package in the Dockerfile. ``` # Use the JupyterLab 4.1.8 minimal notebook image as the base image FROM quay.io/jupyter/minimal-notebook:x86_64-lab-4.1.8 AS base # Install Jupyter AI with all its dependencies pip install -U "jupyter-ai[all]" ``` Build the Docker Image and run in a container Verify Jupyter AI Chat in the local host <img width="890" alt="Image" src="https://github.com/user-attachments/assets/c22c64fd-2fa0-4b8f-90c7-ce3c68ea1ac7" /> <!--Describe how you diagnosed the issue. See the guidelines at https://jupyterlab.readthedocs.io/en/latest/getting_started/issue.html --> ## Expected behavior The chat should work and provide the correct answer. ## Context Hello, We are upgrading from JupyterLab 3.6.7, along with other packages, including Jupyter AI. Jupyter AI works fine with the current setup (JupyterLab 3.6.7). However, after upgrading the packages and Jupyter AI, I am encountering an Internal Server Error for all chat-based queries. Interestingly, some commands, such as /generate a notebook about how to add 5 numbers in Python, work fine and successfully generate the notebook. - Browser and version: Chrome - JupyterLab version: 4.1.8 other package versions ``` jupyter_ai 2.29.0 jupyter_ai_magics 2.29.0 jupyter_client 8.6.1 jupyter_core 5.7.2 jupyter-events 0.10.0 jupyter-lsp 2.2.5 jupyter_packaging 0.12.3 jupyter_server 2.14.0 jupyter_server_terminals 0.5.3 jupyter-telemetry 0.1.0 jupyterhub 4.1.5 jupyterlab 4.1.8 jupyterlab_pygments 0.3.0 jupyterlab_server 2.27.1 jupyterlab_widgets 3.0.13 langchain 0.3.14 langchain-anthropic 0.3.3 langchain-aws 0.2.11 langchain-cohere 0.3.4 langchain-community 0.3.14 langchain-core 0.3.30 langchain-experimental 0.3.4 langchain-google-genai 2.0.8 langchain-mistralai 0.2.4 langchain-nvidia-ai-endpoints 0.3.7 langchain-ollama 0.2.2 langchain-openai 0.3.0 langchain-text-splitters 0.3.5 langsmith 0.2.11 libmambapy 1.5.8 ``` <!--The more content you provide, the more we can help!--> <details><summary>Troubleshoot Output</summary> <pre> jupyter troubleshoot pip list: Package Version Editable project location ----------------------------- --------------- ----------------------------------- ai21 3.0.1 ai21-tokenizer 0.12.0 aiohappyeyeballs 2.4.4 aiohttp 3.11.11 aiolimiter 1.2.1 aiosignal 1.3.2 aiosqlite 0.20.0 alembic 1.13.1 annotated-types 0.7.0 anthropic 0.43.1 anyio 4.8.0 archspec 0.2.3 argon2-cffi 23.1.0 argon2-cffi-bindings 21.2.0 arrow 1.3.0 arxiv 2.1.3 asttokens 2.4.1 async-generator 1.10 async-lru 2.0.4 attrs 23.2.0 Babel 2.14.0 bce-python-sdk 0.9.25 beautifulsoup4 4.12.3 bleach 6.1.0 blinker 1.8.1 boltons 24.0.0 boto3 1.36.2 botocore 1.36.2 Brotli 1.1.0 cached-property 1.5.2 cachetools 5.5.0 certifi 2024.2.2 certipy 0.1.3 cffi 1.16.0 charset-normalizer 3.3.2 click 8.1.8 cloudpickle 3.1.1 cohere 5.13.8 colorama 0.4.6 comm 0.2.2 conda 24.4.0 conda-libmamba-solver 24.1.0 conda-package-handling 2.2.0 conda_package_streaming 0.9.0 cryptography 42.0.6 dask 2025.1.0 dataclasses-json 0.6.7 debugpy 1.8.1 decorator 5.1.1 deepmerge 2.0 defusedxml 0.7.1 deprecation 2.1.0 dill 0.3.9 diskcache 5.6.3 distributed 2025.1.0 distro 1.9.0 entrypoints 0.4 eval_type_backport 0.2.2 exceptiongroup 1.2.0 executing 2.0.1 faiss-cpu 1.9.0.post1 fastavro 1.10.0 fastjsonschema 2.19.1 feedparser 6.0.11 filelock 3.16.1 filetype 1.2.0 fqdn 1.5.1 frozenlist 1.5.0 fsspec 2024.12.0 future 1.0.0 google-ai-generativelanguage 0.6.10 google-api-core 2.24.0 google-api-python-client 2.159.0 google-auth 2.37.0 google-auth-httplib2 0.2.0 google-generativeai 0.8.3 googleapis-common-protos 1.66.0 gpt4all 2.8.2 greenlet 3.0.3 grpcio 1.69.0 grpcio-status 1.69.0 h11 0.14.0 h2 4.1.0 hpack 4.0.0 httpcore 1.0.5 httplib2 0.22.0 httpx 0.27.0 httpx-sse 0.4.0 huggingface-hub 0.27.1 hyperframe 6.0.1 idna 3.7 importlib_metadata 7.1.0 importlib_resources 6.4.0 ipykernel 6.29.3 ipython 8.22.2 ipython-genutils 0.2.0 ipywidgets 8.1.5 isoduration 20.11.0 jedi 0.19.1 Jinja2 3.1.3 jiter 0.8.2 jmespath 1.0.1 json5 0.9.25 jsonpatch 1.33 jsonpath-ng 1.7.0 jsonpointer 2.4 jsonschema 4.22.0 jsonschema-specifications 2023.12.1 jupyter_ai 2.29.0 jupyter_ai_magics 2.29.0 jupyter_client 8.6.1 jupyter_core 5.7.2 jupyter-events 0.10.0 jupyter-lsp 2.2.5 jupyter_packaging 0.12.3 jupyter_server 2.14.0 jupyter_server_terminals 0.5.3 jupyter-telemetry 0.1.0 jupyterhub 4.1.5 jupyterlab 4.1.8 jupyterlab_pygments 0.3.0 jupyterlab_server 2.27.1 jupyterlab_widgets 3.0.13 langchain 0.3.14 langchain-anthropic 0.3.3 langchain-aws 0.2.11 langchain-cohere 0.3.4 langchain-community 0.3.14 langchain-core 0.3.30 langchain-experimental 0.3.4 langchain-google-genai 2.0.8 langchain-mistralai 0.2.4 langchain-nvidia-ai-endpoints 0.3.7 langchain-ollama 0.2.2 langchain-openai 0.3.0 langchain-text-splitters 0.3.5 langsmith 0.2.11 libmambapy 1.5.8 locket 1.0.0 Mako 1.3.3 mamba 1.5.8 markdown-it-py 3.0.0 MarkupSafe 2.1.5 marshmallow 3.25.1 matplotlib-inline 0.1.7 mdurl 0.1.2 menuinst 2.0.2 mistune 3.0.2 msgpack 1.1.0 multidict 6.1.0 multiprocess 0.70.17 mypy-extensions 1.0.0 nbclassic 1.0.0 nbclient 0.10.0 nbconvert 7.16.4 nbformat 5.10.4 nest_asyncio 1.6.0 notebook 7.1.3 notebook_shim 0.2.4 numpy 1.26.4 oauthlib 3.2.2 ollama 0.4.6 openai 1.59.8 orjson 3.10.14 overrides 7.7.0 packaging 24.0 pamela 1.1.0 pandas 2.2.3 pandocfilters 1.5.0 parameterized 0.9.0 parso 0.8.4 partd 1.4.2 pexpect 4.9.0 pickleshare 0.7.5 pillow 10.4.0 pip 24.0 pkgutil_resolve_name 1.3.10 platformdirs 4.2.1 pluggy 1.5.0 ply 3.11 prometheus_client 0.20.0 prompt-toolkit 3.0.42 propcache 0.2.1 proto-plus 1.25.0 protobuf 5.29.3 psutil 5.9.8 ptyprocess 0.7.0 pure-eval 0.2.2 pyarrow 19.0.0 pyasn1 0.6.1 pyasn1_modules 0.4.1 pycosat 0.6.6 pycparser 2.22 pycryptodome 3.21.0 pycurl 7.45.3 pydantic 2.10.5 pydantic_core 2.27.2 pydantic-settings 2.7.1 Pygments 2.18.0 PyJWT 2.8.0 pyOpenSSL 24.0.0 pyparsing 3.2.1 pypdf 5.1.0 PySocks 1.7.1 python-dateutil 2.9.0 python-dotenv 1.0.1 python-json-logger 2.0.7 pytz 2024.1 PyYAML 6.0.1 pyzmq 26.0.2 qianfan 0.4.12.2 referencing 0.35.1 regex 2024.11.6 requests 2.32.3 requests-toolbelt 1.0.0 rfc3339-validator 0.1.4 rfc3986-validator 0.1.1 rich 13.9.4 rpds-py 0.18.0 rsa 4.9 ruamel.yaml 0.18.6 ruamel.yaml.clib 0.2.8 s3transfer 0.11.1 Send2Trash 1.8.3 sentencepiece 0.2.0 setuptools 69.5.1 sgmllib3k 1.0.0 shellingham 1.5.4 six 1.16.0 sniffio 1.3.1 sortedcontainers 2.4.0 soupsieve 2.5 SQLAlchemy 2.0.30 stack-data 0.6.2 tabulate 0.9.0 tblib 3.0.0 tenacity 8.5.0 terminado 0.18.1 tiktoken 0.8.0 tinycss2 1.3.0 together 1.3.11 tokenizers 0.21.0 tomli 2.0.1 tomlkit 0.13.2 toolz 1.0.0 tornado 6.4 tqdm 4.66.4 traitlets 5.14.3 truststore 0.8.0 typer 0.15.1 types-python-dateutil 2.9.0.20240316 types-requests 2.32.0.20241016 typing_extensions 4.12.2 typing-inspect 0.9.0 typing-utils 0.1.0 tzdata 2024.2 uri-template 1.3.0 uritemplate 4.1.1 urllib3 2.2.1 wcwidth 0.2.13 webcolors 1.13 webencodings 0.5.1 websocket-client 1.8.0 wheel 0.43.0 widgetsnbextension 4.0.13 yarl 1.18.3 zict 3.0.0 zipp 3.17.0 zstandard 0.19.0 conda env: name: base channels: - conda-forge dependencies: - _libgcc_mutex=0.1=conda_forge - _openmp_mutex=4.5=2_gnu - alembic=1.13.1=pyhd8ed1ab_1 - archspec=0.2.3=pyhd8ed1ab_0 - argon2-cffi=23.1.0=pyhd8ed1ab_0 - argon2-cffi-bindings=21.2.0=py311h459d7ec_4 - arrow=1.3.0=pyhd8ed1ab_0 - asttokens=2.4.1=pyhd8ed1ab_0 - async-lru=2.0.4=pyhd8ed1ab_0 - async_generator=1.10=py_0 - attrs=23.2.0=pyh71513ae_0 - babel=2.14.0=pyhd8ed1ab_0 - beautifulsoup4=4.12.3=pyha770c72_0 - bleach=6.1.0=pyhd8ed1ab_0 - blinker=1.8.1=pyhd8ed1ab_0 - boltons=24.0.0=pyhd8ed1ab_0 - brotli-python=1.1.0=py311hb755f60_1 - bzip2=1.0.8=hd590300_5 - c-ares=1.28.1=hd590300_0 - ca-certificates=2024.2.2=hbcca054_0 - cached-property=1.5.2=hd8ed1ab_1 - cached_property=1.5.2=pyha770c72_1 - certifi=2024.2.2=pyhd8ed1ab_0 - certipy=0.1.3=py_0 - cffi=1.16.0=py311hb3a22ac_0 - charset-normalizer=3.3.2=pyhd8ed1ab_0 - colorama=0.4.6=pyhd8ed1ab_0 - comm=0.2.2=pyhd8ed1ab_0 - conda=24.4.0=py311h38be061_0 - conda-libmamba-solver=24.1.0=pyhd8ed1ab_0 - conda-package-handling=2.2.0=pyh38be061_0 - conda-package-streaming=0.9.0=pyhd8ed1ab_0 - configurable-http-proxy=4.6.1=h92b4e83_0 - cryptography=42.0.6=py311h4a61cc7_0 - debugpy=1.8.1=py311hb755f60_0 - decorator=5.1.1=pyhd8ed1ab_0 - defusedxml=0.7.1=pyhd8ed1ab_0 - distro=1.9.0=pyhd8ed1ab_0 - entrypoints=0.4=pyhd8ed1ab_0 - exceptiongroup=1.2.0=pyhd8ed1ab_2 - executing=2.0.1=pyhd8ed1ab_0 - fmt=10.2.1=h00ab1b0_0 - fqdn=1.5.1=pyhd8ed1ab_0 - greenlet=3.0.3=py311hb755f60_0 - h11=0.14.0=pyhd8ed1ab_0 - h2=4.1.0=pyhd8ed1ab_0 - hpack=4.0.0=pyh9f0ad1d_0 - httpcore=1.0.5=pyhd8ed1ab_0 - httpx=0.27.0=pyhd8ed1ab_0 - hyperframe=6.0.1=pyhd8ed1ab_0 - icu=73.2=h59595ed_0 - idna=3.7=pyhd8ed1ab_0 - importlib-metadata=7.1.0=pyha770c72_0 - importlib_metadata=7.1.0=hd8ed1ab_0 - importlib_resources=6.4.0=pyhd8ed1ab_0 - ipykernel=6.29.3=pyhd33586a_0 - ipython=8.22.2=pyh707e725_0 - ipython_genutils=0.2.0=py_1 - isoduration=20.11.0=pyhd8ed1ab_0 - jedi=0.19.1=pyhd8ed1ab_0 - jinja2=3.1.3=pyhd8ed1ab_0 - json5=0.9.25=pyhd8ed1ab_0 - jsonpatch=1.33=pyhd8ed1ab_0 - jsonpointer=2.4=py311h38be061_3 - jsonschema=4.22.0=pyhd8ed1ab_0 - jsonschema-specifications=2023.12.1=pyhd8ed1ab_0 - jsonschema-with-format-nongpl=4.22.0=pyhd8ed1ab_0 - jupyter-lsp=2.2.5=pyhd8ed1ab_0 - jupyter_client=8.6.1=pyhd8ed1ab_0 - jupyter_core=5.7.2=py311h38be061_0 - jupyter_events=0.10.0=pyhd8ed1ab_0 - jupyter_server=2.14.0=pyhd8ed1ab_0 - jupyter_server_terminals=0.5.3=pyhd8ed1ab_0 - jupyter_telemetry=0.1.0=pyhd8ed1ab_1 - jupyterhub=4.1.5=pyh31011fe_0 - jupyterhub-base=4.1.5=pyh31011fe_0 - jupyterlab=4.1.8=pyhd8ed1ab_0 - jupyterlab_pygments=0.3.0=pyhd8ed1ab_1 - jupyterlab_server=2.27.1=pyhd8ed1ab_0 - keyutils=1.6.1=h166bdaf_0 - krb5=1.21.2=h659d440_0 - ld_impl_linux-64=2.40=h55db66e_0 - libarchive=3.7.2=h2aa1ff5_1 - libcurl=8.7.1=hca28451_0 - libedit=3.1.20191231=he28a2e2_2 - libev=4.33=hd590300_2 - libexpat=2.6.2=h59595ed_0 - libffi=3.4.2=h7f98852_5 - libgcc-ng=13.2.0=h77fa898_6 - libgomp=13.2.0=h77fa898_6 - libiconv=1.17=hd590300_2 - libmamba=1.5.8=had39da4_0 - libmambapy=1.5.8=py311hf2555c7_0 - libnghttp2=1.58.0=h47da74e_1 - libnsl=2.0.1=hd590300_0 - libsodium=1.0.18=h36c2ea0_1 - libsolv=0.7.29=ha6fb4c9_0 - libsqlite=3.45.3=h2797004_0 - libssh2=1.11.0=h0841786_0 - libstdcxx-ng=13.2.0=hc0a3c3a_6 - libuuid=2.38.1=h0b41bf4_0 - libuv=1.48.0=hd590300_0 - libxcrypt=4.4.36=hd590300_1 - libxml2=2.12.6=h232c23b_2 - libzlib=1.2.13=hd590300_5 - lz4-c=1.9.4=hcb278e6_0 - lzo=2.10=hd590300_1001 - mako=1.3.3=pyhd8ed1ab_0 - mamba=1.5.8=py311h3072747_0 - markupsafe=2.1.5=py311h459d7ec_0 - matplotlib-inline=0.1.7=pyhd8ed1ab_0 - menuinst=2.0.2=py311h38be061_0 - mistune=3.0.2=pyhd8ed1ab_0 - nbclassic=1.0.0=pyhb4ecaf3_1 - nbclient=0.10.0=pyhd8ed1ab_0 - nbconvert=7.16.4=hd8ed1ab_0 - nbconvert-core=7.16.4=pyhd8ed1ab_0 - nbconvert-pandoc=7.16.4=hd8ed1ab_0 - nbformat=5.10.4=pyhd8ed1ab_0 - ncurses=6.4.20240210=h59595ed_0 - nest-asyncio=1.6.0=pyhd8ed1ab_0 - nodejs=20.12.2=hb753e55_0 - notebook=7.1.3=pyhd8ed1ab_0 - notebook-shim=0.2.4=pyhd8ed1ab_0 - oauthlib=3.2.2=pyhd8ed1ab_0 - openssl=3.3.0=hd590300_0 - overrides=7.7.0=pyhd8ed1ab_0 - packaging=24.0=pyhd8ed1ab_0 - pamela=1.1.0=pyh1a96a4e_0 - pandoc=3.1.13=ha770c72_0 - pandocfilters=1.5.0=pyhd8ed1ab_0 - parso=0.8.4=pyhd8ed1ab_0 - pexpect=4.9.0=pyhd8ed1ab_0 - pickleshare=0.7.5=py_1003 - pip=24.0=pyhd8ed1ab_0 - pkgutil-resolve-name=1.3.10=pyhd8ed1ab_1 - platformdirs=4.2.1=pyhd8ed1ab_0 - pluggy=1.5.0=pyhd8ed1ab_0 - prometheus_client=0.20.0=pyhd8ed1ab_0 - prompt-toolkit=3.0.42=pyha770c72_0 - psutil=5.9.8=py311h459d7ec_0 - ptyprocess=0.7.0=pyhd3deb0d_0 - pure_eval=0.2.2=pyhd8ed1ab_0 - pybind11-abi=4=hd8ed1ab_3 - pycosat=0.6.6=py311h459d7ec_0 - pycparser=2.22=pyhd8ed1ab_0 - pycurl=7.45.3=py311h3393d6f_1 - pygments=2.18.0=pyhd8ed1ab_0 - pyjwt=2.8.0=pyhd8ed1ab_1 - pyopenssl=24.0.0=pyhd8ed1ab_0 - pysocks=1.7.1=pyha2e5f31_6 - python=3.11.9=hb806964_0_cpython - python-dateutil=2.9.0=pyhd8ed1ab_0 - python-fastjsonschema=2.19.1=pyhd8ed1ab_0 - python-json-logger=2.0.7=pyhd8ed1ab_0 - python_abi=3.11=4_cp311 - pytz=2024.1=pyhd8ed1ab_0 - pyyaml=6.0.1=py311h459d7ec_1 - pyzmq=26.0.2=py311h08a0b41_0 - readline=8.2=h8228510_1 - referencing=0.35.1=pyhd8ed1ab_0 - reproc=14.2.4.post0=hd590300_1 - reproc-cpp=14.2.4.post0=h59595ed_1 - rfc3339-validator=0.1.4=pyhd8ed1ab_0 - rfc3986-validator=0.1.1=pyh9f0ad1d_0 - rpds-py=0.18.0=py311h46250e7_0 - ruamel.yaml=0.18.6=py311h459d7ec_0 - ruamel.yaml.clib=0.2.8=py311h459d7ec_0 - send2trash=1.8.3=pyh0d859eb_0 - setuptools=69.5.1=pyhd8ed1ab_0 - six=1.16.0=pyh6c4a22f_0 - sniffio=1.3.1=pyhd8ed1ab_0 - soupsieve=2.5=pyhd8ed1ab_1 - sqlalchemy=2.0.30=py311h331c9d8_0 - stack_data=0.6.2=pyhd8ed1ab_0 - terminado=0.18.1=pyh0d859eb_0 - tinycss2=1.3.0=pyhd8ed1ab_0 - tk=8.6.13=noxft_h4845f30_101 - tomli=2.0.1=pyhd8ed1ab_0 - tornado=6.4=py311h459d7ec_0 - tqdm=4.66.4=pyhd8ed1ab_0 - traitlets=5.14.3=pyhd8ed1ab_0 - truststore=0.8.0=pyhd8ed1ab_0 - types-python-dateutil=2.9.0.20240316=pyhd8ed1ab_0 - typing_utils=0.1.0=pyhd8ed1ab_0 - uri-template=1.3.0=pyhd8ed1ab_0 - urllib3=2.2.1=pyhd8ed1ab_0 - wcwidth=0.2.13=pyhd8ed1ab_0 - webcolors=1.13=pyhd8ed1ab_0 - webencodings=0.5.1=pyhd8ed1ab_2 - websocket-client=1.8.0=pyhd8ed1ab_0 - wheel=0.43.0=pyhd8ed1ab_1 - xz=5.2.6=h166bdaf_0 - yaml=0.2.5=h7f98852_2 - yaml-cpp=0.8.0=h59595ed_0 - zeromq=4.3.5=h75354e8_3 - zipp=3.17.0=pyhd8ed1ab_0 - zlib=1.2.13=hd590300_5 - zstandard=0.19.0=py311hd4cff14_0 - zstd=1.5.6=ha6fb4c9_0 - pip: - ai21==3.0.1 - ai21-tokenizer==0.12.0 - aiohappyeyeballs==2.4.4 - aiohttp==3.11.11 - aiolimiter==1.2.1 - aiosignal==1.3.2 - aiosqlite==0.20.0 - al-server-extension==0.1.0 - annotated-types==0.7.0 - anthropic==0.43.1 - anyio==4.8.0 - arxiv==2.1.3 - bce-python-sdk==0.9.25 - boto3==1.36.2 - botocore==1.36.2 - cachetools==5.5.0 - click==8.1.8 - cloudpickle==3.1.1 - cohere==5.13.8 - dask==2025.1.0 - dataclasses-json==0.6.7 - deepmerge==2.0 - deprecation==2.1.0 - dill==0.3.9 - diskcache==5.6.3 - distributed==2025.1.0 - eval-type-backport==0.2.2 - faiss-cpu==1.9.0.post1 - fastavro==1.10.0 - feedparser==6.0.11 - filelock==3.16.1 - filetype==1.2.0 - frozenlist==1.5.0 - fsspec==2024.12.0 - future==1.0.0 - google-ai-generativelanguage==0.6.10 - google-api-core==2.24.0 - google-api-python-client==2.159.0 - google-auth==2.37.0 - google-auth-httplib2==0.2.0 - google-generativeai==0.8.3 - googleapis-common-protos==1.66.0 - gpt4all==2.8.2 - grpcio==1.69.0 - grpcio-status==1.69.0 - httplib2==0.22.0 - httpx-sse==0.4.0 - huggingface-hub==0.27.1 - ipywidgets==8.1.5 - jiter==0.8.2 - jmespath==1.0.1 - jsonpath-ng==1.7.0 - jupyter-ai==2.29.0 - jupyter-ai-magics==2.29.0 - jupyter-packaging==0.12.3 - jupyterlab-widgets==3.0.13 - langchain==0.3.14 - langchain-anthropic==0.3.3 - langchain-aws==0.2.11 - langchain-cohere==0.3.4 - langchain-community==0.3.14 - langchain-core==0.3.30 - langchain-experimental==0.3.4 - langchain-google-genai==2.0.8 - langchain-mistralai==0.2.4 - langchain-nvidia-ai-endpoints==0.3.7 - langchain-ollama==0.2.2 - langchain-openai==0.3.0 - langchain-text-splitters==0.3.5 - langsmith==0.2.11 - locket==1.0.0 - markdown-it-py==3.0.0 - marshmallow==3.25.1 - mdurl==0.1.2 - msgpack==1.1.0 - multidict==6.1.0 - multiprocess==0.70.17 - mypy-extensions==1.0.0 - numpy==1.26.4 - ollama==0.4.6 - openai==1.59.8 - orjson==3.10.14 - pandas==2.2.3 - parameterized==0.9.0 - partd==1.4.2 - pillow==10.4.0 - ply==3.11 - propcache==0.2.1 - proto-plus==1.25.0 - protobuf==5.29.3 - pyarrow==19.0.0 - pyasn1==0.6.1 - pyasn1-modules==0.4.1 - pycryptodome==3.21.0 - pydantic==2.10.5 - pydantic-core==2.27.2 - pydantic-settings==2.7.1 - pyparsing==3.2.1 - pypdf==5.1.0 - python-dotenv==1.0.1 - qianfan==0.4.12.2 - regex==2024.11.6 - requests==2.32.3 - requests-toolbelt==1.0.0 - rich==13.9.4 - rsa==4.9 - s3transfer==0.11.1 - sentencepiece==0.2.0 - sgmllib3k==1.0.0 - shellingham==1.5.4 - sortedcontainers==2.4.0 - tabulate==0.9.0 - tblib==3.0.0 - tenacity==8.5.0 - tiktoken==0.8.0 - together==1.3.11 - tokenizers==0.21.0 - tomlkit==0.13.2 - toolz==1.0.0 - typer==0.15.1 - types-requests==2.32.0.20241016 - typing-extensions==4.12.2 - typing-inspect==0.9.0 - tzdata==2024.2 - uritemplate==4.1.1 - widgetsnbextension==4.0.13 - yarl==1.18.3 - zict==3.0.0 prefix: /opt/conda </pre> </details> <details><summary>Command Line Output</summary> <pre> I 2025-01-17 21:29:33.641 ServerApp] al_server_extension | extension was successfully linked. [I 2025-01-17 21:29:33.648 ServerApp] jupyter_ai | extension was successfully linked. [I 2025-01-17 21:29:33.648 ServerApp] jupyter_lsp | extension was successfully linked. [I 2025-01-17 21:29:33.652 ServerApp] jupyter_server_terminals | extension was successfully linked. [I 2025-01-17 21:29:33.657 ServerApp] jupyterlab | extension was successfully linked. [I 2025-01-17 21:29:33.662 ServerApp] nbclassic | extension was successfully linked. [I 2025-01-17 21:29:33.667 ServerApp] notebook | extension was successfully linked. [I 2025-01-17 21:29:33.675 ServerApp] notebook_shim | extension was successfully linked. /opt/conda/lib/python3.11/site-packages/traitlets/traitlets.py:1241: UserWarning: Overriding existing pre_save_hook (custom_pre_save_hook) with a new one (custom_pre_save_hook). return self.func(*args, **kwargs) /opt/conda/lib/python3.11/site-packages/traitlets/traitlets.py:1241: UserWarning: Overriding existing post_save_hook (custom_post_save_hook) with a new one (custom_post_save_hook). return self.func(*args, **kwargs) [I 2025-01-17 21:29:33.698 ServerApp] notebook_shim | extension was successfully loaded. [I 2025-01-17 21:29:33.699 ServerApp] Registered common endpoints server extension [I 2025-01-17 21:29:33.699 ServerApp] al_server_extension | extension was successfully loaded. [I 2025-01-17 21:29:33.699 AiExtension] Configured provider allowlist: ['azure-chat-openai'] [I 2025-01-17 21:29:33.699 AiExtension] Configured provider blocklist: None [I 2025-01-17 21:29:33.699 AiExtension] Configured model allowlist: None [I 2025-01-17 21:29:33.699 AiExtension] Configured model blocklist: None [I 2025-01-17 21:29:33.700 AiExtension] Configured model parameters: {'azure-chat-openai:XXXXXXXXXX': {'azure_endpoint': 'https://XXXXXXXXXXXXXXXX/openai-proxy', 'openai_api_version': '2023-07-01-preview'}} [I 2025-01-17 21:29:33.707 AiExtension] Skipping blocked provider `ai21`. [I 2025-01-17 21:29:33.829 AiExtension] Skipping blocked provider `bedrock`. [I 2025-01-17 21:29:33.829 AiExtension] Skipping blocked provider `bedrock-chat`. [I 2025-01-17 21:29:33.829 AiExtension] Skipping blocked provider `bedrock-custom`. [I 2025-01-17 21:29:33.938 AiExtension] Skipping blocked provider `anthropic-chat`. [I 2025-01-17 21:29:34.119 AiExtension] Registered model provider `azure-chat-openai`. [I 2025-01-17 21:29:34.919 AiExtension] Skipping blocked provider `cohere`. [I 2025-01-17 21:29:35.149 AiExtension] Skipping blocked provider `gemini`. [I 2025-01-17 21:29:35.149 AiExtension] Skipping blocked provider `gpt4all`. [I 2025-01-17 21:29:35.149 AiExtension] Skipping blocked provider `huggingface_hub`. [I 2025-01-17 21:29:35.160 AiExtension] Skipping blocked provider `mistralai`. [I 2025-01-17 21:29:35.178 AiExtension] Skipping blocked provider `nvidia-chat`. [I 2025-01-17 21:29:35.244 AiExtension] Skipping blocked provider `ollama`. [I 2025-01-17 21:29:35.244 AiExtension] Skipping blocked provider `openai`. [I 2025-01-17 21:29:35.244 AiExtension] Skipping blocked provider `openai-chat`. [I 2025-01-17 21:29:35.257 AiExtension] Skipping blocked provider `openrouter`. [I 2025-01-17 21:29:35.257 AiExtension] Skipping blocked provider `qianfan`. [I 2025-01-17 21:29:35.257 AiExtension] Skipping blocked provider `sagemaker-endpoint`. [I 2025-01-17 21:29:35.257 AiExtension] Skipping blocked provider `togetherai`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `azure`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `bedrock`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `cohere`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `gpt4all`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `huggingface_hub`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `mistralai`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `ollama`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `openai`. [I 2025-01-17 21:29:35.265 AiExtension] Skipping blocked provider `qianfan`. [I 2025-01-17 21:29:35.271 AiExtension] Registered providers. [I 2025-01-17 21:29:35.271 AiExtension] Registered jupyter_ai server extension [I 2025-01-17 21:29:35.286 AiExtension] Registered context provider `file`. [I 2025-01-17 21:29:35.287 AiExtension] Initialized Jupyter AI server extension in 1588 ms. [I 2025-01-17 21:29:35.288 ServerApp] jupyter_ai | extension was successfully loaded. [I 2025-01-17 21:29:35.289 ServerApp] jupyter_lsp | extension was successfully loaded. [I 2025-01-17 21:29:35.290 ServerApp] jupyter_server_terminals | extension was successfully loaded. [I 2025-01-17 21:29:35.291 LabApp] JupyterLab extension loaded from /opt/conda/lib/python3.11/site-packages/jupyterlab [I 2025-01-17 21:29:35.291 LabApp] JupyterLab application directory is /opt/conda/share/jupyter/lab [I 2025-01-17 21:29:35.291 LabApp] Extension Manager is 'pypi'. [I 2025-01-17 21:29:35.298 ServerApp] jupyterlab | extension was successfully loaded. _ _ _ _ | | | |_ __ __| |__ _| |_ ___ | |_| | '_ \/ _` / _` | _/ -_) \___/| .__/\__,_\__,_|\__\___| |_| Read the migration plan to Notebook 7 to learn about the new features and the actions to take if you are using extensions. https://jupyter-notebook.readthedocs.io/en/latest/migrate_to_notebook7.html Please note that updating to Notebook 7 might break some of your extensions. [I 2025-01-17 21:29:35.300 ServerApp] nbclassic | extension was successfully loaded. [I 2025-01-17 21:29:35.301 ServerApp] notebook | extension was successfully loaded. [C 2025-01-17 21:29:35.302 ServerApp] Running as root is not recommended. Use --allow-root to bypass.</pre> </details> </pre> </details>
open
2025-01-17T21:43:03Z
2025-01-31T19:29:11Z
https://github.com/jupyterlab/jupyter-ai/issues/1208
[ "bug" ]
eazuman
9
miguelgrinberg/Flask-SocketIO
flask
1,078
Embedded Server not listening for ws:// or wss:// prefix
When running the [embedded server](https://flask-socketio.readthedocs.io/en/latest/#embedded-server): ``` socketio.run(app, host='0.0.0.0', port=5005) ``` Using a the [socket.io](https://github.com/socketio/socket.io) client forcing websockets over polling: ``` let namespace = '/' + m_websocket_info['listener'] + '/' + m_user_location_id; if (location.port === "5000") { namespace = location.protocol + '//' + location.hostname + ':5005' + namespace; } socket = io(namespace, { transports: ['websocket'] }); ``` Despite `location.protocol` being `http:` the browser console shows the following error: ``` index.js:83 WebSocket connection to 'ws://localhost:5005/socket.io/?EIO=3&transport=websocket' failed: Unknown reason ``` When the traffic is routed through nginx there are no errors: ``` # https://uwsgi-docs.readthedocs.io/en/latest/Nginx.html upstream web_upstream{ server server-web:5000; } upstream socket_upstream{ server server-socket:5005; } server { listen 80 default_server; # error_log /var/log/nginx/error.log debug; server_name _; location / { try_files $uri @web; } location /socket.io { try_files $uri @socket; } location @web { # https://nginx.org/en/docs/http/ngx_http_uwsgi_module.html # https://serverfault.com/a/800729 proxy_pass http://web_upstream; } location @socket { # http://nginx.org/en/docs/http/websocket.html # https://nginx.org/en/docs/http/ngx_http_proxy_module.html # https://flask-socketio.readthedocs.io/en/latest/#using-nginx-as-a-websocket-reverse-proxy proxy_pass http://socket_upstream; proxy_http_version 1.1; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "upgrade"; proxy_set_header Host $host; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_buffering off; proxy_read_timeout 120s; } } ``` Routing through nginx is used in production, however connecting indirectly to the container breaks debugging using the [vscode chrome debugger](https://github.com/Microsoft/vscode-chrome-debug).
closed
2019-10-09T18:03:01Z
2019-10-10T16:36:24Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1078
[ "question" ]
jonfen
2
nltk/nltk
nlp
2,809
Trying to get in touch regarding a security issue
Hey there! I'd like to report a security issue but cannot find contact instructions on your repository. If not a hassle, might you kindly add a `SECURITY.md` file with an email, or another contact method? GitHub [recommends](https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository) this best practice to ensure security issues are responsibly disclosed, and it would serve as a simple instruction for security researchers in the future. Thank you for your consideration, and I look forward to hearing from you! (cc @huntr-helper)
closed
2021-09-19T19:26:09Z
2021-09-25T14:46:45Z
https://github.com/nltk/nltk/issues/2809
[]
JamieSlome
2
donnemartin/system-design-primer
python
285
Point this course at resume?
Hi! Thanks for maintaining this list of important work on system design. I wonder how one can write about this course at the resume / CV? If it goes to the Education section then it needs some credentials. If in the Projects section then it needs some measurable outcome.
closed
2019-05-29T09:55:42Z
2020-07-04T16:26:30Z
https://github.com/donnemartin/system-design-primer/issues/285
[ "question" ]
artkpv
2
tflearn/tflearn
data-science
713
How to get features from a specific layer if I use merge layer?
I am new to TFLearn. I want to get features from a specific layer and my network use a merge layer. But I got an error: ``` Assign requires shapes of both tensors to match. lhs shape= [256] rhs shape= [10] ``` This my code: ```python def single_net(test=False): # Building Residual Network net = tflearn.input_data(shape=[None, 28, 28, 1]) net = tflearn.conv_2d(net, 64, 3, activation='relu', bias=False) # Residual blocks net = tflearn.residual_bottleneck(net, 3, 16, 64) net = tflearn.residual_bottleneck(net, 1, 32, 128, downsample=True) net = tflearn.residual_bottleneck(net, 2, 32, 128) net = tflearn.residual_bottleneck(net, 1, 64, 256, downsample=True) net = tflearn.residual_bottleneck(net, 2, 64, 256) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) net = tflearn.fully_connected(net, 256, activation='tanh') if test: return net net = tflearn.fully_connected(net, 10, activation='softmax') net = tflearn.regression(net, optimizer='momentum', loss='categorical_crossentropy', learning_rate=0.1) return net def fc_fc_net(): net1=single_net() net2=single_net() net=tflearn.merge([net1,net2], mode = 'concat') return net def fc_fc_net_1(): net1=single_net(True) net2=single_net(True) net=tflearn.merge([net1,net2], mode = 'concat') return net ``` When I first train the network, I use fc_fc_net() function, and when I predict, I use fc_fc_net_1() function. But it has an error: ``` Assign requires shapes of both tensors to match. lhs shape= [256] rhs shape= [10] ```
closed
2017-04-14T13:03:22Z
2017-04-19T02:33:21Z
https://github.com/tflearn/tflearn/issues/713
[]
FoxerLee
0
HumanSignal/labelImg
deep-learning
229
Unable to run under PyQt4 environment
This edition has some new features which is much more friendly for users. But it is unable to run under PyQt4 environment, what is more, the windows app is unable to run as it is built with PyQt4. This problem is caused by importing QtCore from PyQt5 directly in the file resources.py without checking the PyQt version. It is easily to solve by just checking the PyQt version in the resources.py. - **OS:Ubuntu 16.04 - **PyQt version: PyQt4
closed
2018-01-27T03:18:40Z
2018-05-22T06:12:08Z
https://github.com/HumanSignal/labelImg/issues/229
[]
TommeyChang
3
bendichter/brokenaxes
matplotlib
5
using with subplots
Will it be possible to include an example on how to use it with subplots?
closed
2017-08-03T09:28:14Z
2017-08-09T16:54:13Z
https://github.com/bendichter/brokenaxes/issues/5
[]
themiyan
2
hankcs/HanLP
nlp
1,159
CollectionUtility.sortMapByValueๆ–นๆณ•ๅœจๅญ˜ๅœจbug
v1.72็‰ˆๆœฌๅญ˜ๅœจbug๏ผŒๆœ€ๆ–ฐ็‰ˆmasterไธญไพ็„ถๅญ˜ๅœจ com.hankcs.hanlp.classification.utilities.CollectionUtilityไธญ public static <K, V extends Comparable<V>> Map<K, V> sortMapByValue(Map<K, V> input, final boolean desc)ๆ–นๆณ•ๅญ˜ๅœจbug ArrayList<Map.Entry<K, V>> entryList = new ArrayList<Map.Entry<K, V>>(input.size()); ไธญ็š„input.size()ๅบ”่ฏฅๆ”นไธบinput.entrySet()
closed
2019-04-24T05:59:53Z
2019-04-27T22:08:32Z
https://github.com/hankcs/HanLP/issues/1159
[ "bug" ]
wyuz1028
1
lgienapp/aquarel
data-visualization
13
KeyError: 'xtick.labelcolor'
matplotlib==3.3.4. Require a minimum version of matplotlib module.
closed
2022-08-17T13:02:18Z
2022-08-23T12:44:25Z
https://github.com/lgienapp/aquarel/issues/13
[ "bug" ]
pangahn
1
polarsource/polar
fastapi
4,608
AssertionError
Sentry Issue: [SERVER-21G](https://polar-sh.sentry.io/issues/6120513945/?referrer=github_integration) ``` SSLError: [SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:1000) (15 additional frame(s) were not displayed) ... File "polar/webhook/tasks.py", line 124, in _webhook_event_send response = await client.post( AssertionError: File "polar/worker.py", line 304, in wrapper r = await f(*args, **kwargs) File "polar/webhook/tasks.py", line 40, in webhook_event_send return await _webhook_event_send( File "polar/webhook/tasks.py", line 150, in _webhook_event_send assert delivery.succeeded is not None ```
closed
2024-12-09T08:02:41Z
2024-12-09T08:07:33Z
https://github.com/polarsource/polar/issues/4608
[]
sentry-io[bot]
0
xonsh/xonsh
data-science
5,166
f-string with special syntax are not supported yet in py3.12: Unsupported fstring syntax
Python 3.12 has implemented [PEP 701](https://peps.python.org/pep-0701/) affecting [string literals](https://xon.sh/tutorial.html#advanced-string-literals): ```xsh # xonsh + python 3.12 f"{$HOME}" # Unsupported fstring syntax ``` We need to handle cases where $ENV variables are inside f-strings. Check the comment and related test for more info https://github.com/xonsh/xonsh/pull/5156#discussion_r1247003673 ### Workaround ```xsh print(p"$HOME") # p-string for path # /Users/me print(f"{__xonsh__.env['HOME']}") # /Users/me env = __xonsh__.env print(f"{env['HOME']}") # /Users/me ``` ## For community โฌ‡๏ธ **Please click the ๐Ÿ‘ reaction instead of leaving a `+1` or ๐Ÿ‘ comment**
open
2023-06-30T04:11:04Z
2024-10-31T09:24:54Z
https://github.com/xonsh/xonsh/issues/5166
[ "parser", "py312" ]
jnoortheen
11
dgtlmoon/changedetection.io
web-scraping
1,991
TrueNas Scale - Visual Filter Selector resolution/cropped result (missing env vars)
**Describe the bug** Visual Filtor Selector displays a cropped version of websites, making it almost unusable. (The red selections are not aligned with the screenshot; everything is shifted.) **Version** v0.45.7.3 **To Reproduce** Steps to reproduce the behavior: 1. The issue occurs with 100% of the added links. As a test link, use: https://www.20minutes.fr/locales/ **Expected behavior** The Visual Filter Selector should display the entire page, not a cropped version. **Screenshots** Visual selector cropped result : ![visual selector](https://github.com/dgtlmoon/changedetection.io/assets/139649040/4090ce57-918c-43c6-8248-8b995bcab7dd) Expected result : ![20minutes](https://github.com/dgtlmoon/changedetection.io/assets/139649040/6e04af86-ead3-44ad-94e9-2821ecaf33d5) **Desktop (please complete the following information):** - Hosted on TrueNas Scale - Latest update of ChangeDetection and Browserless - Fetch Method : Playwright Chromium/Javascript via 'ws://localip:port/&stealth=1&--disable-web-security=true' **Additional context** I need to specify that it has never worked properly, it's not a new behavior; I have been experiencing this issue since I installed ChangeDetection for the first time a few months ago. I am unsure whether it is related to Browserless or ChangeDetection. Feel free to ask if I can provide more useful information to troubleshoot this issue. Thanks!
closed
2023-11-20T09:17:27Z
2023-11-20T17:32:43Z
https://github.com/dgtlmoon/changedetection.io/issues/1991
[ "triage" ]
FhenrisGit
11
deezer/spleeter
tensorflow
604
[Feature] Yosemite Compatibility?
## Description I run OSX 10.10.5 on my mid 2012 MacBook Pro, 2.3 GHz core i7 with eight virtual cores, 16GB RAM, and two internal 1TB SSDโ€™s. My d.a.w. of choice is ProTools, and version 10.3.10 is what I have a license for and what all of my plug-ins are licensed for. I refuse to upgrade when my hardware and software is working perfectly but Iโ€™m having issues finding things that are compatible with anything below 10.11. I really need something like this and was hoping there was a gooey version available that was pre-compiled that will work with Yosemite. If not, I would be extremely grateful if somebody with more coding experience could message me somehow and help me do it. I have some experience with Command line in Darwin and Linux, but usually just following instructions and memorizing certain tasks. I have not built some thing from source code completely by myself except for a couple times many years ago at the beginning of the OSX86 project using OSX 10.4.3. This is my first time posting on here as usually I just read, so please be easier on me if I made a mistake and posted some thing in the wrong place. Iโ€™m still learning my way around. ## Additional information <!-- Add any additional description -->
closed
2021-04-03T07:51:26Z
2021-04-03T19:26:24Z
https://github.com/deezer/spleeter/issues/604
[ "enhancement", "feature" ]
louisCyphre666
1
kennethreitz/responder
graphql
470
Uvicorn version too old ?
Hi, I can notice that `uvicorn` version in use in old. https://github.com/taoufik07/responder/blob/6ff47adbb51ea4c822c75220023740c64b60e860/setup.py#L26 Is there a specific reason to ping this version ? Regards,
closed
2022-01-14T13:54:58Z
2024-03-31T00:57:34Z
https://github.com/kennethreitz/responder/issues/470
[]
waghanza
0
dask/dask
pandas
11,825
P2PShuffle RuntimeError P2P {id} failed during transfer phase when groupby apply to_bag
**Describe the issue**: groupby.apply().to_bag() causes a Runtime error when using P2PShuffle (the default) with a distributed dask client. Expected: - when computing the bag, there is no error Actual: - when computing the bag, Throws AssertionError on: assert isinstance(barrier_task_spec, P2PBarrierTask) ``` File "/home/vscode/.local/lib/python3.12/site-packages/distributed/shuffle/_scheduler_plugin.py", line 196, in _retrieve_spec assert isinstance(barrier_task_spec, P2PBarrierTask) ^^^^^^^^^^^^^^^^^ AssertionError ... File "/home/vscode/.local/lib/python3.12/site-packages/distributed/shuffle/_core.py", line 531, in handle_transfer_errors raise RuntimeError(f"P2P {id} failed during transfer phase") from e ``` To unblock: - adding a persist() before the to_bag() - switch to Task shuffle **Minimal Complete Verifiable Example**: ```python import dask.config import dask.dataframe as dd import pandas as pd from dask.distributed import Client def main(): # ---------------------------------------------------------------- # Set up data # ------------------------------------------------------------ simple_data = pd.DataFrame( { "foo": [ "1", "1", "2", "2", ], "bar": ["1", "2", "3", "4"], } ) # ---------------------------------------------------------------- # Set up Dask # ---------------------------------------------------------------- dask.config.set(scheduler="distributed") # dask.config.set({"dataframe.shuffle.method": "tasks"}) # adding this line will also fix the exception client = Client() simple_ddf = dd.from_pandas(simple_data) # ---------------------------------------------------------------- # groupby() then apply() then to_bag() # ---------------------------------------------------------------- grouped_ddf = simple_ddf.groupby("foo") def worker(grouped_df): print(f"Name: {grouped_df.name}, content:\n {grouped_df}") return object() results_bag = ( grouped_ddf.apply(worker, meta=("result", "object")) # Add persist() to avoid the P2P Shuffle problem (or else use tasks shuffle) # .persist() .to_bag() ) print("Results:", results_bag.compute()) client.close() if __name__ == "__main__": main() ``` **Anything else we need to know?**: **Script Expected behaviour:** . results_bag should compute **Actual Behaviour:** Throws AssertionError on: assert isinstance(barrier_task_spec, P2PBarrierTask) **How to avoid the undesired behaviour:** (1) insert persist() before the to_bag() OR (2) change dask dataframe shuffle to Tasks dask.config.set({"dataframe.shuffle.method": "tasks"}) (edited) """ **Environment**: - Dask version: dask: Version: 2025.1.0 distributed: Version: 2025.1.0 - Python version: Python 3.12.7 - Operating System: Debian GNU/Linux 11 (bullseye) - Install method (conda, pip, source): pip
open
2025-03-12T03:20:19Z
2025-03-12T03:37:21Z
https://github.com/dask/dask/issues/11825
[ "needs triage" ]
IsisChameleon
1
comfyanonymous/ComfyUI
pytorch
7,299
Can't find torch version, can't install natten
### Expected Behavior [notice] A new release of pip available: 22.2.1 -> 25.0.1 [notice] To update, run: python.exe -m pip install --upgrade pip Installing natten for PMRF... Searching for CUDA and Torch versions for installing atten needed by PMRF... ************************************ Error: Can't find torch version, can't install natten PMRF will not work until natten is installed, see https://github.com/SHI-Labs/NATTEN for help in installing natten. ************************************ Prestartup times for custom nodes: 0.0 seconds: E:\workplace\ComfyUI\custom_nodes\ComfyUI-Easy-Use 0.0 seconds: E:\workplace\ComfyUI\custom_nodes\rgthree-comfy 3.2 seconds: E:\workplace\ComfyUI\custom_nodes\ComfyUI-Manager 20.9 seconds: E:\workplace\ComfyUI\custom_nodes\ComfyUI-PMRF Checkpoint files will always be loaded safely. Total VRAM 24576 MB, total RAM 65277 MB pytorch version: 2.6.0+cu126 Set vram state to: NORMAL_VRAM Device: cuda:0 NVIDIA GeForce RTX 3090 : cudaMallocAsync Using pytorch attention ComfyUI version: 0.3.26 ComfyUI frontend version: 1.12.14 ### Actual Behavior Can't find torch version, can't install natten ### Steps to Reproduce Can't find torch version, can't install natten ### Debug Logs ```powershell Can't find torch version, can't install natten ``` ### Other _No response_
closed
2025-03-18T13:53:07Z
2025-03-18T15:03:35Z
https://github.com/comfyanonymous/ComfyUI/issues/7299
[ "User Support" ]
Song367
1
sktime/pytorch-forecasting
pandas
992
Dataloader in TFT tutorial goes beyond last time point of dataset and sets missing values to zero
- PyTorch-Forecasting version: 0.10.1 - PyTorch version: 1.11.0 - Python version: 3.9.12 - Operating System: Ubuntu 20.04.4 LTS Dear developer team, I noticed, that some time series in the tensors produced by the training dataloader in [tutorial on demand forecasting with TFT](https://pytorch-forecasting.readthedocs.io/en/stable/tutorials/stallion.html) have only zeros after a certain time point. Looking at the first time index of each mini-batch time series with `x_to_index(x)` and the corresponding time series I found out, that it only happens when the first time index of the given time series is too close to the maximum time index of the dataset. For instance in the demand forecasting tutorial ``` torch.manual_seed(2) nix, niy = next(iter(train_dataloader)) training.x_to_index(nix)[0:5] ``` produces ``` time_idx agency sku 0 16 Agency_50 SKU_05 1 15 Agency_46 SKU_05 2 48 Agency_38 SKU_02 3 32 Agency_05 SKU_26 4 12 Agency_47 SKU_17 ``` The third time series starts with the time index 48, which is already too much, as the maximum time index is 59 and having ``` max_prediction_length = 6 max_encoder_length = 24 ``` there are no vales for the tail of the encoder sequence. This is confirmed by the third time series of that mini-batch `nix["encoder_cont"][2, :, :5]` takes only the first 5 variables and produces ``` tensor([[0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.5067, 0.4525, 0.1667, 1.1313, 0.6161], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]) ``` Thus, the dataloader goes too far in time taking such time series that are lying in less than `encoder_length` + `decoder_length` samples from the last sample of the training dataset. The same with categorical variables and when creating validation dataloader with `predict = False` in `TimeSeriesDataSet`. Basically, I always observe such behavior except for setting `predict = True` in `TimeSeriesDataSet`. I guess it shouldn't work that way as these are just incorrect time series making the model learn incorrect dependencies regardless of whether it's training or validation. Please correct me if I'm wrong. ### Code to reproduce the problem ``` import os import warnings warnings.filterwarnings("ignore") # avoid printing out absolute paths os.chdir("../../..") import copy from pathlib import Path import warnings import numpy as np import pandas as pd import pytorch_lightning as pl from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor from pytorch_lightning.loggers import TensorBoardLogger import torch from pytorch_forecasting import Baseline, TemporalFusionTransformer, TimeSeriesDataSet from pytorch_forecasting.data import GroupNormalizer from pytorch_forecasting.metrics import SMAPE, PoissonLoss, QuantileLoss from pytorch_forecasting.models.temporal_fusion_transformer.tuning import optimize_hyperparameters from pytorch_forecasting.data.examples import get_stallion_data data = get_stallion_data() # add time index data["time_idx"] = data["date"].dt.year * 12 + data["date"].dt.month data["time_idx"] -= data["time_idx"].min() # add additional features data["month"] = data.date.dt.month.astype(str).astype("category") # categories have be strings data["log_volume"] = np.log(data.volume + 1e-8) data["avg_volume_by_sku"] = data.groupby(["time_idx", "sku"], observed=True).volume.transform("mean") data["avg_volume_by_agency"] = data.groupby(["time_idx", "agency"], observed=True).volume.transform("mean") # we want to encode special days as one variable and thus need to first reverse one-hot encoding special_days = [ "easter_day", "good_friday", "new_year", "christmas", "labor_day", "independence_day", "revolution_day_memorial", "regional_games", "fifa_u_17_world_cup", "football_gold_cup", "beer_capital", "music_fest", ] data[special_days] = data[special_days].apply(lambda x: x.map({0: "-", 1: x.name})).astype("category") max_prediction_length = 6 max_encoder_length = 24 training_cutoff = data["time_idx"].max() - max_prediction_length training = TimeSeriesDataSet( data[lambda x: x.time_idx <= training_cutoff], time_idx="time_idx", target="volume", group_ids=["agency", "sku"], min_encoder_length=max_encoder_length // 2, # keep encoder length long (as it is in the validation set) max_encoder_length=max_encoder_length, min_prediction_length=1, max_prediction_length=max_prediction_length, static_categoricals=["agency", "sku"], static_reals=["avg_population_2017", "avg_yearly_household_income_2017"], time_varying_known_categoricals=["special_days", "month"], variable_groups={"special_days": special_days}, # group of categorical variables can be treated as one variable time_varying_known_reals=["time_idx", "price_regular", "discount_in_percent"], time_varying_unknown_categoricals=[], time_varying_unknown_reals=[ "volume", "log_volume", "industry_volume", "soda_volume", "avg_max_temp", "avg_volume_by_agency", "avg_volume_by_sku", ], target_normalizer=GroupNormalizer( groups=["agency", "sku"], transformation="softplus" ), # use softplus and normalize by group add_relative_time_idx=True, add_target_scales=True, add_encoder_length=True, ) # create validation set (predict=True) which means to predict the last max_prediction_length points in time # for each series validation = TimeSeriesDataSet.from_dataset(training, data, predict=True, stop_randomization=True) # create dataloaders for model batch_size = 128 # set this between 32 to 128 train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0) val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size * 10, num_workers=0) torch.manual_seed(2) nix, niy = next(iter(train_dataloader)) print(training.x_to_index(nix)[0:5]) print(nix["encoder_cont"][2, :, :5]) ``` ### Colab Notebook: https://colab.research.google.com/drive/1ce45UFTurrds5t5fLpFdSYuKnHVGPzfR?usp=sharing
closed
2022-05-20T19:19:42Z
2022-06-15T11:43:54Z
https://github.com/sktime/pytorch-forecasting/issues/992
[]
hd1894
2
amidaware/tacticalrmm
django
1,917
Atualizei o RMM para v0.19.1 e nรฃo consigo mais abrir os agentes.
I updated the SSL certificate and also the RMM version to v0.19.1, but now I can't connect to the machines, the connect button is gone, can anyone help me?
closed
2024-07-19T18:13:11Z
2024-10-18T00:16:52Z
https://github.com/amidaware/tacticalrmm/issues/1917
[]
Cleberson-Brandao
12
JoeanAmier/XHS-Downloader
api
123
explore_data has no column named ๅŠจๅ›พๅœฐๅ€
ๅทฒ็ปๅฐ†ๆ•ดไธช็›ฎๅฝ•ๅˆ ้™คๆމไบ†๏ผŒ้™คไบ†Downloadsๆ–‡ไปถๅคนไปฅๅค–๏ผŒ่ฟ่กŒๆœ€ๆ–ฐ๏ผˆ2.1๏ผ‰็‰ˆๆœฌ็š„ไพๆ—งไผšๆ˜พ็คบไปฅไธ‹้”™่ฏฏ๏ผš OperationalError: table explore_data has no column named ๅŠจๅ›พๅœฐๅ€ ๆ˜ฏไธๆ˜ฏๆ—ง็š„databaseๆ–‡ไปถไผšๅญ˜ๅœจไบ†ไป€ไนˆๅ…ถไป–็š„ๅœฐๆ–น๏ผŸ
closed
2024-07-25T06:23:06Z
2024-07-25T15:08:57Z
https://github.com/JoeanAmier/XHS-Downloader/issues/123
[]
jyu041
2
jpadilla/django-rest-framework-jwt
django
195
Need to receive signals when a token is created
Hi, Would be great to get a signal when a user successfully obtain a token with his username/password.
closed
2016-01-26T16:47:35Z
2020-01-09T20:16:34Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/195
[]
stunaz
3
mwaskom/seaborn
data-visualization
3,570
Boxplot Y-axis Labels Incorrectly Scaled When Font Size Is Altered
**Description:** When updating the y-axis tick labels' font size using Matplotlib and Seaborn, the y-axis labels (i.e. numbers at the y-axis) appear to be incorrectly scaled, showing smaller numerical values than the actual data points if the font size is decreased compared to default. **Steps to Reproduce:** 1. Create a boxplot using Seaborn's sns.boxplot with a specific set of data. 2. Overlay individual data points using Seaborn's sns.swarmplot. 3. Set the y-axis tick labels with a custom font size using ax.set_yticklabels() and a font dictionary. **Expected Behavior:** The numerical values of the y-axis tick labels should accurately reflect the data's scale and not be altered by changes in font size. The numerical values should simply appear in the new font style. **Actual Behavior:** The numerical values of the y-axis tick labels are scaled down, not matching the actual data points, giving the impression that the median is lower than it should be. **Additional Context:** This behavior was observed when attempting to set the font size of the y-axis tick labels for consistency. The issue seems to occur when the ax.set_yticklabels() method is used with a font size defined in the font dictionary. It's unclear whether the problem lies in the font size scaling or the actual rendering of the labels on the y-axis. `# Sample code to reproduce the issue:` `import seaborn as sns` `import matplotlib.pyplot as plt` `# Example data and plotting code that causes the issue` `# ...` `ax.set_xticklabels(ax.get_xticklabels(), fontdict={'size': 5})` `# Suspected problematic line` `ax.set_yticklabels(ax.get_yticklabels(), fontdict={'size': 5})` `plt.show()`
closed
2023-11-23T15:36:56Z
2023-12-02T14:03:44Z
https://github.com/mwaskom/seaborn/issues/3570
[ "mod:categorical", "needs-reprex" ]
richtertill
2
roboflow/supervision
deep-learning
1,647
Remove Images for which there are no annotations
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Description Hi, Any idea how to remove the images where there are no annotations or we need to do it manually in JSON in COCO Format? ### Use case Cleaning COCO ### Additional N/a ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2024-11-02T13:36:04Z
2024-11-04T09:19:01Z
https://github.com/roboflow/supervision/issues/1647
[ "enhancement" ]
shanalikhan
1
pytest-dev/pytest-xdist
pytest
742
2.5.0: pytest is failing
I'm trying to package your module as an rpm package. So I'm using the typical PEP517 based build, install and test cycle used on building packages from non-root account. - `python3 -sBm build -w` - install .whl file in </install/prefix> - "pytest with PYTHONPATH pointing to sitearch and sitelib inside </install/prefix> - during testing I'm disabling few pytest extensions which in other tickets have been identified as causing some issues Here is pytest output: ```console + PYTHONPATH=/home/tkloczko/rpmbuild/BUILDROOT/python-pytest-xdist-2.5.0-2.fc35.x86_64/usr/lib64/python3.8/site-packages:/home/tkloczko/rpmbuild/BUILDROOT/python-pytest-xdist-2.5.0-2.fc35.x86_64/usr/lib/python3.8/site-packages + /usr/bin/pytest -ra -p no:randomly -p no:benchmark -p no:django -p no:twisted --deselect testing/acceptance_test.py::test_issue_594_random_parametrize --deselect testing/test_newhooks.py::TestHooks::test_node_collection_finished =========================================================================== test session starts ============================================================================ platform linux -- Python 3.8.12, pytest-6.2.5, py-1.11.0, pluggy-0.13.1 rootdir: /home/tkloczko/rpmbuild/BUILD/pytest-xdist-2.5.0, configfile: tox.ini, testpaths: testing plugins: xdist-2.5.0, mock-3.6.1, cov-2.12.1, anyio-3.3.4, flaky-3.7.0, console-scripts-1.2.0, asyncio-0.16.0, freezegun-0.4.2, flake8-1.0.7, rerunfailures-9.1.1, yagot-0.5.0, forked-1.4.0, ordering-0.6, Faker-10.0.0, pyfakefs-4.5.3, datadir-1.3.1, regressions-2.2.0, timeout-2.0.2, perf-0.10.1, trio-0.7.0, requests-mock-1.9.3, hypothesis-6.31.5, easy-server-0.8.0 collected 167 items / 2 deselected / 165 selected testing/acceptance_test.py ..........F......x.......xx.......................x......................................... [ 55%] testing/test_dsession.py ........x...x [ 63%] testing/test_looponfail.py ...........x... [ 72%] testing/test_newhooks.py F. [ 73%] testing/test_plugin.py .............. [ 82%] testing/test_remote.py x...Fx...... [ 89%] testing/test_workermanage.py ........x.......s [100%] ================================================================================= FAILURES ================================================================================= _______________________________________________________________ TestDistribution.test_dist_tests_with_crash ________________________________________________________________ self = <acceptance_test.TestDistribution object at 0x7fcf8f6e0070>, pytester = <Pytester PosixPath('/tmp/pytest-of-tkloczko/pytest-10/test_dist_tests_with_crash0')> @pytest.mark.xfail("sys.platform.startswith('java')", run=False) def test_dist_tests_with_crash(self, pytester: pytest.Pytester) -> None: if not hasattr(os, "kill"): pytest.skip("no os.kill") p1 = pytester.makepyfile( """ import pytest def test_fail0(): assert 0 def test_fail1(): raise ValueError() def test_ok(): pass def test_skip(): pytest.skip("hello") def test_crash(): import time import os time.sleep(0.5) os.kill(os.getpid(), 15) """ ) result = pytester.runpytest(p1, "-v", "-d", "-n1") > result.stdout.fnmatch_lines( [ "*Python*", "*PASS**test_ok*", "*node*down*", "*3 failed, 1 passed, 1 skipped*", ] ) E Failed: nomatch: '*Python*' E and: '============================= test session starts ==============================' E fnmatch: '*Python*' E with: 'platform linux -- Python 3.8.12, pytest-6.2.5, py-1.11.0, pluggy-0.13.1 -- /usr/bin/python3' E nomatch: '*PASS**test_ok*' E and: 'cachedir: .pytest_cache' E and: 'benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005 max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000)' E and: 'Using --randomly-seed=244357277' E and: "hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/tkloczko/rpmbuild/BUILD/pytest-xdist-2.5.0/.hypothesis/examples')" E and: 'rootdir: /tmp/pytest-of-tkloczko/pytest-10/test_dist_tests_with_crash0' E and: 'plugins: xdist-2.5.0, mock-3.6.1, cov-2.12.1, anyio-3.3.4, flaky-3.7.0, console-scripts-1.2.0, asyncio-0.16.0, freezegun-0.4.2, flake8-1.0.7, rerunfailures-9.1.1, yagot-0.5.0, forked-1.4.0, ordering-0.6, Faker-10.0.0, benchmark-3.4.1, pyfakefs-4.5.3, datadir-1.3.1, regressions-2.2.0, timeout-2.0.2, randomly-3.10.3, perf-0.10.1, trio-0.7.0, requests-mock-1.9.3, hypothesis-6.31.5, easy-server-0.8.0' E and: 'gw0 I' E and: '' E and: '[gw0] linux Python 3.8.12 cwd: /tmp/pytest-of-tkloczko/pytest-10/test_dist_tests_with_crash0' E and: '' E and: '[gw0] Python 3.8.12 (default, Dec 17 2021, 08:35:49) -- [GCC 11.2.1 20211203 (Red Hat 11.2.1-7)]' E and: 'gw0 [5]' E and: '' E and: 'scheduling tests via LoadScheduling' E and: '' E and: 'test_dist_tests_with_crash.py::test_fail0 ' E and: '[gw0] [ 20%] FAILED test_dist_tests_with_crash.py::test_fail0 ' E and: 'test_dist_tests_with_crash.py::test_fail1 ' E and: '[gw0] [ 40%] FAILED test_dist_tests_with_crash.py::test_fail1 ' E and: 'test_dist_tests_with_crash.py::test_crash ' E and: '[gw0] node down: Not properly terminated' E and: '[gw0] [ 60%] FAILED test_dist_tests_with_crash.py::test_crash ' E and: '' E and: 'replacing crashed worker gw0' E and: '' E and: '[gw1] linux Python 3.8.12 cwd: /tmp/pytest-of-tkloczko/pytest-10/test_dist_tests_with_crash0' E and: '' E and: '[gw1] Python 3.8.12 (default, Dec 17 2021, 08:35:49) -- [GCC 11.2.1 20211203 (Red Hat 11.2.1-7)]' E and: '' E and: 'test_dist_tests_with_crash.py::test_skip ' E and: '[gw1] [ 80%] SKIPPED test_dist_tests_with_crash.py::test_skip ' E and: 'test_dist_tests_with_crash.py::test_ok ' E fnmatch: '*PASS**test_ok*' E with: '[gw1] [100%] PASSED test_dist_tests_with_crash.py::test_ok ' E nomatch: '*node*down*' E and: '' E and: '=================================== FAILURES ===================================' E and: '__________________________________ test_fail0 __________________________________' E and: '[gw0] linux -- Python 3.8.12 /usr/bin/python3' E and: '' E and: ' def test_fail0():' E and: '> assert 0' E and: 'E assert 0' E and: '' E and: 'test_dist_tests_with_crash.py:3: AssertionError' E and: '__________________________________ test_fail1 __________________________________' E and: '[gw0] linux -- Python 3.8.12 /usr/bin/python3' E and: '' E and: ' def test_fail1():' E and: '> raise ValueError()' E and: 'E ValueError' E and: '' E and: 'test_dist_tests_with_crash.py:5: ValueError' E and: '________________________ test_dist_tests_with_crash.py _________________________' E and: '[gw0] linux -- Python 3.8.12 /usr/bin/python3' E and: "worker 'gw0' crashed while running 'test_dist_tests_with_crash.py::test_crash'" E and: '=========================== short test summary info ============================' E and: 'FAILED test_dist_tests_with_crash.py::test_fail0 - assert 0' E and: 'FAILED test_dist_tests_with_crash.py::test_fail1 - ValueError' E and: 'FAILED test_dist_tests_with_crash.py::test_crash' E and: '==================== 3 failed, 1 passed, 1 skipped in 6.52s ====================' E remains unmatched: '*node*down*' /home/tkloczko/rpmbuild/BUILD/pytest-xdist-2.5.0/testing/acceptance_test.py:181: Failed --------------------------------------------------------------------------- Captured stdout call --------------------------------------------------------------------------- ============================= test session starts ============================== platform linux -- Python 3.8.12, pytest-6.2.5, py-1.11.0, pluggy-0.13.1 -- /usr/bin/python3 cachedir: .pytest_cache benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005 max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000) Using --randomly-seed=244357277 hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/tkloczko/rpmbuild/BUILD/pytest-xdist-2.5.0/.hypothesis/examples') rootdir: /tmp/pytest-of-tkloczko/pytest-10/test_dist_tests_with_crash0 plugins: xdist-2.5.0, mock-3.6.1, cov-2.12.1, anyio-3.3.4, flaky-3.7.0, console-scripts-1.2.0, asyncio-0.16.0, freezegun-0.4.2, flake8-1.0.7, rerunfailures-9.1.1, yagot-0.5.0, forked-1.4.0, ordering-0.6, Faker-10.0.0, benchmark-3.4.1, pyfakefs-4.5.3, datadir-1.3.1, regressions-2.2.0, timeout-2.0.2, randomly-3.10.3, perf-0.10.1, trio-0.7.0, requests-mock-1.9.3, hypothesis-6.31.5, easy-server-0.8.0 gw0 I [gw0] linux Python 3.8.12 cwd: /tmp/pytest-of-tkloczko/pytest-10/test_dist_tests_with_crash0 [gw0] Python 3.8.12 (default, Dec 17 2021, 08:35:49) -- [GCC 11.2.1 20211203 (Red Hat 11.2.1-7)] gw0 [5] scheduling tests via LoadScheduling test_dist_tests_with_crash.py::test_fail0 [gw0] [ 20%] FAILED test_dist_tests_with_crash.py::test_fail0 test_dist_tests_with_crash.py::test_fail1 [gw0] [ 40%] FAILED test_dist_tests_with_crash.py::test_fail1 test_dist_tests_with_crash.py::test_crash [gw0] node down: Not properly terminated [gw0] [ 60%] FAILED test_dist_tests_with_crash.py::test_crash replacing crashed worker gw0 [gw1] linux Python 3.8.12 cwd: /tmp/pytest-of-tkloczko/pytest-10/test_dist_tests_with_crash0 [gw1] Python 3.8.12 (default, Dec 17 2021, 08:35:49) -- [GCC 11.2.1 20211203 (Red Hat 11.2.1-7)] test_dist_tests_with_crash.py::test_skip [gw1] [ 80%] SKIPPED test_dist_tests_with_crash.py::test_skip test_dist_tests_with_crash.py::test_ok [gw1] [100%] PASSED test_dist_tests_with_crash.py::test_ok =================================== FAILURES =================================== __________________________________ test_fail0 __________________________________ [gw0] linux -- Python 3.8.12 /usr/bin/python3 def test_fail0(): > assert 0 E assert 0 test_dist_tests_with_crash.py:3: AssertionError __________________________________ test_fail1 __________________________________ [gw0] linux -- Python 3.8.12 /usr/bin/python3 def test_fail1(): > raise ValueError() E ValueError test_dist_tests_with_crash.py:5: ValueError ________________________ test_dist_tests_with_crash.py _________________________ [gw0] linux -- Python 3.8.12 /usr/bin/python3 worker 'gw0' crashed while running 'test_dist_tests_with_crash.py::test_crash' =========================== short test summary info ============================ FAILED test_dist_tests_with_crash.py::test_fail0 - assert 0 FAILED test_dist_tests_with_crash.py::test_fail1 - ValueError FAILED test_dist_tests_with_crash.py::test_crash ==================== 3 failed, 1 passed, 1 skipped in 6.52s ==================== _____________________________________________________________________ TestHooks.test_runtest_logreport _____________________________________________________________________ self = <test_newhooks.TestHooks object at 0x7fcf4875c0d0>, pytester = <Pytester PosixPath('/tmp/pytest-of-tkloczko/pytest-10/test_runtest_logreport0')> def test_runtest_logreport(self, pytester: pytest.Pytester) -> None: """Test that log reports from pytest_runtest_logreport when running with xdist contain "node", "nodeid", "worker_id", and "testrun_uid" attributes. (#8) """ pytester.makeconftest( """ def pytest_runtest_logreport(report): if hasattr(report, 'node'): if report.when == "call": workerid = report.node.workerinput['workerid'] testrunuid = report.node.workerinput['testrunuid'] if workerid != report.worker_id: print("HOOK: Worker id mismatch: %s %s" % (workerid, report.worker_id)) elif testrunuid != report.testrun_uid: print("HOOK: Testrun uid mismatch: %s %s" % (testrunuid, report.testrun_uid)) else: print("HOOK: %s %s %s" % (report.nodeid, report.worker_id, report.testrun_uid)) """ ) res = pytester.runpytest("-n1", "-s") > res.stdout.fnmatch_lines( [ "*HOOK: test_runtest_logreport.py::test_a gw0 *", "*HOOK: test_runtest_logreport.py::test_b gw0 *", "*HOOK: test_runtest_logreport.py::test_c gw0 *", "*3 passed*", ] ) E Failed: nomatch: '*HOOK: test_runtest_logreport.py::test_a gw0 *' E and: '============================= test session starts ==============================' E and: 'platform linux -- Python 3.8.12, pytest-6.2.5, py-1.11.0, pluggy-0.13.1' E and: 'benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005 max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000)' E and: 'Using --randomly-seed=2699028449' E and: 'rootdir: /tmp/pytest-of-tkloczko/pytest-10/test_runtest_logreport0' E and: 'plugins: xdist-2.5.0, mock-3.6.1, cov-2.12.1, anyio-3.3.4, flaky-3.7.0, console-scripts-1.2.0, asyncio-0.16.0, freezegun-0.4.2, flake8-1.0.7, rerunfailures-9.1.1, yagot-0.5.0, forked-1.4.0, ordering-0.6, Faker-10.0.0, benchmark-3.4.1, pyfakefs-4.5.3, datadir-1.3.1, regressions-2.2.0, timeout-2.0.2, randomly-3.10.3, perf-0.10.1, trio-0.7.0, requests-mock-1.9.3, hypothesis-6.31.5, easy-server-0.8.0' E and: 'gw0 I' E and: 'gw0 [3]' E and: '' E and: '.HOOK: test_runtest_logreport.py::test_b gw0 0d69e931b31a4f4a8e735485eb0afc7d' E and: '.HOOK: test_runtest_logreport.py::test_c gw0 0d69e931b31a4f4a8e735485eb0afc7d' E fnmatch: '*HOOK: test_runtest_logreport.py::test_a gw0 *' E with: '.HOOK: test_runtest_logreport.py::test_a gw0 0d69e931b31a4f4a8e735485eb0afc7d' E nomatch: '*HOOK: test_runtest_logreport.py::test_b gw0 *' E and: '' E and: '============================== 3 passed in 3.10s ===============================' E remains unmatched: '*HOOK: test_runtest_logreport.py::test_b gw0 *' /home/tkloczko/rpmbuild/BUILD/pytest-xdist-2.5.0/testing/test_newhooks.py:39: Failed --------------------------------------------------------------------------- Captured stdout call --------------------------------------------------------------------------- ============================= test session starts ============================== platform linux -- Python 3.8.12, pytest-6.2.5, py-1.11.0, pluggy-0.13.1 benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005 max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000) Using --randomly-seed=2699028449 rootdir: /tmp/pytest-of-tkloczko/pytest-10/test_runtest_logreport0 plugins: xdist-2.5.0, mock-3.6.1, cov-2.12.1, anyio-3.3.4, flaky-3.7.0, console-scripts-1.2.0, asyncio-0.16.0, freezegun-0.4.2, flake8-1.0.7, rerunfailures-9.1.1, yagot-0.5.0, forked-1.4.0, ordering-0.6, Faker-10.0.0, benchmark-3.4.1, pyfakefs-4.5.3, datadir-1.3.1, regressions-2.2.0, timeout-2.0.2, randomly-3.10.3, perf-0.10.1, trio-0.7.0, requests-mock-1.9.3, hypothesis-6.31.5, easy-server-0.8.0 gw0 I gw0 [3] .HOOK: test_runtest_logreport.py::test_b gw0 0d69e931b31a4f4a8e735485eb0afc7d .HOOK: test_runtest_logreport.py::test_c gw0 0d69e931b31a4f4a8e735485eb0afc7d .HOOK: test_runtest_logreport.py::test_a gw0 0d69e931b31a4f4a8e735485eb0afc7d ============================== 3 passed in 3.10s =============================== __________________________________________________________________ TestWorkerInteractor.test_runtests_all __________________________________________________________________ self = <test_remote.TestWorkerInteractor object at 0x7fcf44835520>, worker = <test_remote.WorkerSetup object at 0x7fcf44877340> unserialize_report = <function TestWorkerInteractor.unserialize_report.<locals>.unserialize at 0x7fcf43dadf70> def test_runtests_all(self, worker: WorkerSetup, unserialize_report) -> None: worker.pytester.makepyfile( """ def test_func(): pass def test_func2(): pass """ ) worker.setup() ev = worker.popevent() assert ev.name == "workerready" ev = worker.popevent() assert ev.name == "collectionstart" assert not ev.kwargs ev = worker.popevent("collectionfinish") ids = ev.kwargs["ids"] assert len(ids) == 2 worker.sendcommand("runtests_all") worker.sendcommand("shutdown") for func in "::test_func", "::test_func2": for i in range(3): # setup/call/teardown ev = worker.popevent("testreport") assert ev.name == "testreport" rep = unserialize_report(ev.kwargs["data"]) > assert rep.nodeid.endswith(func) E AssertionError: assert False E + where False = <built-in method endswith of str object at 0x7fcf5125d390>('::test_func') E + where <built-in method endswith of str object at 0x7fcf5125d390> = 'test_runtests_all.py::test_func2'.endswith E + where 'test_runtests_all.py::test_func2' = <TestReport 'test_runtests_all.py::test_func2' when='setup' outcome='passed'>.nodeid /home/tkloczko/rpmbuild/BUILD/pytest-xdist-2.5.0/testing/test_remote.py:182: AssertionError --------------------------------------------------------------------------- Captured stdout call --------------------------------------------------------------------------- skipping <EventCall logstart(**{'nodeid': 'test_runtests_all.py::test_func2', 'location': ('test_runtests_all.py', 1, 'test_func2')})> ============================================================================= warnings summary ============================================================================= testing/acceptance_test.py: 74 warnings testing/test_dsession.py: 1 warning testing/test_newhooks.py: 2 warnings testing/test_remote.py: 4 warnings /usr/lib/python3.8/site-packages/pytest_benchmark/logger.py:46: PytestBenchmarkWarning: Benchmarks are automatically disabled because xdist plugin is active.Benchmarks cannot be performed reliably in a parallelized environment. warner(PytestBenchmarkWarning(text)) testing/acceptance_test.py: 80 warnings testing/test_dsession.py: 10 warnings testing/test_looponfail.py: 8 warnings testing/test_newhooks.py: 2 warnings testing/test_plugin.py: 16 warnings testing/test_remote.py: 10 warnings testing/test_workermanage.py: 13 warnings /usr/lib/python3.8/site-packages/pytest_randomly/__init__.py:50: UserWarning: The NumPy module was reloaded (imported a second time). This can in some cases result in small but subtle issues and is discouraged. from numpy import random as np_random -- Docs: https://docs.pytest.org/en/stable/warnings.html ========================================================================= short test summary info ========================================================================== SKIPPED [1] ../../../../../usr/lib/python3.8/site-packages/_pytest/config/__init__.py:1473: no 'gspecs' option found XFAIL testing/acceptance_test.py::TestDistEach::test_simple_diffoutput reason: [NOTRUN] other python versions might not have pytest installed XFAIL testing/acceptance_test.py::test_terminate_on_hangingnode XFAIL testing/acceptance_test.py::test_session_hooks reason: [NOTRUN] works if run outside test suite XFAIL testing/acceptance_test.py::TestNodeFailure::test_each_multiple #20: xdist race condition on node restart XFAIL testing/test_dsession.py::TestDistReporter::test_rsync_printing XFAIL testing/test_dsession.py::test_pytest_issue419 duplicate test ids not supported yet XFAIL testing/test_looponfail.py::TestLooponFailing::test_looponfail_removed_test broken by pytest 3.1+ XFAIL testing/test_remote.py::test_remoteinitconfig #59 XFAIL testing/test_remote.py::TestWorkerInteractor::test_happy_run_events_converted reason: implement a simple test for event production XFAIL testing/test_workermanage.py::TestNodeManager::test_rsync_roots_no_roots reason: [NOTRUN] FAILED testing/acceptance_test.py::TestDistribution::test_dist_tests_with_crash - Failed: nomatch: '*Python*' FAILED testing/test_newhooks.py::TestHooks::test_runtest_logreport - Failed: nomatch: '*HOOK: test_runtest_logreport.py::test_a gw0 *' FAILED testing/test_remote.py::TestWorkerInteractor::test_runtests_all - AssertionError: assert False ======================================= 3 failed, 151 passed, 1 skipped, 2 deselected, 10 xfailed, 220 warnings in 502.36s (0:08:22) ======================================= ```
closed
2021-12-18T17:36:28Z
2022-07-23T13:18:16Z
https://github.com/pytest-dev/pytest-xdist/issues/742
[]
kloczek
6
ading2210/poe-api
graphql
89
bug?
INFO:root:Downloading next_data... Traceback (most recent call last): File "G:\AI\poe\poe\poe-api-main\poe-api-main\examples\send_message.py", line 10, in <module> client = poe.Client(token) File "C:\Users\lin85\AppData\Local\Programs\Python\Python310\lib\site-packages\poe.py", line 129, in __init__ self.setup_connection() File "C:\Users\lin85\AppData\Local\Programs\Python\Python310\lib\site-packages\poe.py", line 134, in setup_connection self.next_data = self.get_next_data(overwrite_vars=True) File "C:\Users\lin85\AppData\Local\Programs\Python\Python310\lib\site-packages\poe.py", line 173, in get_next_data r = request_with_retries(self.session.get, self.home_url) File "C:\Users\lin85\AppData\Local\Programs\Python\Python310\lib\site-packages\poe.py", line 45, in request_with_retries r = method(*args, **kwargs) File "C:\Users\lin85\AppData\Local\Programs\Python\Python310\lib\site-packages\tls_client\sessions.py", line 422, in get return self.execute_request(method="GET", url=url, **kwargs) File "C:\Users\lin85\AppData\Local\Programs\Python\Python310\lib\site-packages\tls_client\sessions.py", line 405, in execute_request raise TLSClientExeption(response_object["body"]) tls_client.exceptions.TLSClientExeption: failed to do request: Get "https://poe.com": dial tcp: connectex: A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond.
open
2023-05-31T07:42:32Z
2023-07-15T18:49:03Z
https://github.com/ading2210/poe-api/issues/89
[ "bug" ]
40740
6
huggingface/datasets
machine-learning
7,399
Synchronize parameters for various datasets
### Describe the bug [IterableDatasetDict](https://huggingface.co/docs/datasets/v3.2.0/en/package_reference/main_classes#datasets.IterableDatasetDict.map) map function is missing the `desc` parameter. You can see the equivalent map function for [Dataset here](https://huggingface.co/docs/datasets/v3.2.0/en/package_reference/main_classes#datasets.Dataset.map). There might be other parameters missing - I haven't checked. ### Steps to reproduce the bug from datasets import Dataset, IterableDataset, IterableDatasetDict ds = IterableDatasetDict({"train": Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3), "validate": Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3)}) for d in ds["train"]: print(d) ds = ds.map(lambda x: {k: v+1 for k, v in x.items()}, desc="increment") for d in ds["train"]: print(d) ### Expected behavior The description parameter should be available for all datasets (or none). ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.1.85+-x86_64-with-glibc2.35 - Python version: 3.11.11 - `huggingface_hub` version: 0.28.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.9.0
open
2025-02-14T09:15:11Z
2025-02-19T11:50:29Z
https://github.com/huggingface/datasets/issues/7399
[]
grofte
2
aeon-toolkit/aeon
scikit-learn
2,110
[ENH] Add PyODAdapter-implementation for CBLOF
### Describe the feature or idea you want to propose The [`PyODAdapter`](https://github.com/aeon-toolkit/aeon/blob/main/aeon/anomaly_detection/_pyodadapter.py) in aeon allows us to use any outlier detector from [PyOD](https://github.com/yzhao062/pyod), which were originally proposed for relational data, also for time series anomaly detection (TSAD). Not all detectors are equally well suited for TSAD, however. We want to represent the frequently used and competitive outlier detection techniques within the `anomaly_detection` module of aeon directly. **Implement the [CBLOF method](https://github.com/yzhao062/pyod/blob/master/pyod/models/cblof.py#L25)** using the `PyODAdapter`. ### Describe your proposed solution - Create a new file in `aeon.anomaly_detection` for the method - Create a new estimator class with `PyODAdapter` as the parent - Expose the algorithm's hyperparameters as constructor arguments, create the PyOD model and pass it to the super-constructor - Document your class - Add tests for certain edge cases if necessary --- Example for IsolationForest: ```python class IsolationForest(PyODAdapter): """documentation ...""" def __init__(n_estimators: int = 100, max_samples: int | str = "auto", ..., window_size: int, stride: int): model = IForest(n_estimators, max_samples, ... super().__init__(model, window_size, stride) @classmethod def get_test_params(cls, parameter_set="default"): """...""" return {"n_estimators": 10, ...} ``` ### Describe alternatives you've considered, if relevant _No response_ ### Additional context _No response_
closed
2024-09-27T13:27:08Z
2024-10-28T19:17:41Z
https://github.com/aeon-toolkit/aeon/issues/2110
[ "enhancement", "interfacing algorithms", "anomaly detection" ]
SebastianSchmidl
3
public-apis/public-apis
api
3,486
AA KENYA QUIZ WEBSITE
Thanks for looking to open an issue for this project. If you are opening an issue to suggest adding a new entry, please consider opening a pull request instead!
closed
2023-04-03T06:20:50Z
2023-05-26T18:46:31Z
https://github.com/public-apis/public-apis/issues/3486
[]
markchweya
0
horovod/horovod
pytorch
3,268
Unable to load most recent checkpoint for Pytorch and Pytorch lightning Estimator
**Environment:** 1. Framework: PyTorch 2. Framework version: 1.8.1 3. Horovod version: 0.23.0 4. MPI version: 5. CUDA version: 6. NCCL version: 7. Python version: 3.8 8. Spark / PySpark version: 3.1.2 9. Ray version: 10. OS and version: 11. GCC version: 12. CMake version: **Bug report:** In case of pytorch lightning estimator, the _read_checkpoint() API does not return the latest checkpoint stored in the run path. Reason: Pytorch lightning estimator calls store.get_checkpoints() which looks for a folder named 'checkpoint' in run path while there is no folder named checkpoint, instead there is a temp folder generated via tempfile.TemporaryDirectory() In case of pytorch estimator, the checkpoint stored in run path is not overwritten if multiple iterations are done using the same run path, which leads to _load_checkpoint() API returning the stale checkpoint.
closed
2021-11-10T11:34:06Z
2021-11-23T07:12:35Z
https://github.com/horovod/horovod/issues/3268
[ "bug" ]
kamalsharma2
3
PokemonGoF/PokemonGo-Bot
automation
5,653
Edit Type codes for renaming Pokemon
### Short Description Option to edit the type codes of Pokemon according to personal preference ### Possible solution Something like this in the NicknamePokemon Task: { "type": "NicknamePokemon", "config": { "enabled": true, "nickname_above_iv": 0.8, "nickname_above_cp": 1500, "nickname_template": "{iv_pct}-{attack_code}", "nickname_wait_min": 3, "nickname_wait_max": 5, "type_codes":[ Bug: 'Bu' Dark: 'Da' Dragon: 'Dr' Electric: 'Ele' Fairy: 'Fy' Fighting: 'Fg' Fire: 'Fi' Flying: 'Fl' Ghost: 'Gh' Grass: 'Gr' Ground: 'Go' Ice: 'I' Normal: 'No' Poison: 'Po' Psychic: 'Py' Rock: 'Ro' Steel: 'St' Water: 'Wa' ] } }, ### How it would help others Easier to remember your own preferences, rather than keep checking the list specified in the documentation. Additional request: Please let me know the file (and line number if possible) which I can edit to manually change the codes for now.
open
2016-09-24T11:34:22Z
2016-09-27T19:09:04Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/5653
[ "Feature Request" ]
abhinavagrawal1995
6
gee-community/geemap
streamlit
460
style_callback for Map.add_geojson()?
### Description It would be great for https://geemap.org/geemap/#geemap.geemap.Map.add_geojson to support a `style_callback` parameter like https://ipyleaflet.readthedocs.io/en/latest/api_reference/geo_json.html does. Else I don't see any way for defining "dynamic styling".
closed
2021-05-06T21:18:11Z
2021-05-07T04:21:58Z
https://github.com/gee-community/geemap/issues/460
[ "Feature Request" ]
deeplook
1
koxudaxi/fastapi-code-generator
pydantic
269
$ref parameter prevents code generation
I am trying to use $ref parameters in my openapi yaml, however as soon as I insert a $ref entry no code is generated (the folder is but it contains no files) and no error is thrown. I took the code from #24, so my minimum working example is: openapi.yaml ``` openapi: "3.0.0" paths: /foo: parameters: - $ref: "#/components/parameters/MyParam" components: parameters: MyParam: name: foo schema: type: string ``` But the same happens with my actual openapi definition. As soon as I add a $ref parameter, no code is generated. command: `fastapi-codegen -i openapi.yaml -o app` I am using fastapi-code-generator version 0.3.5 Can someone help? Thanks!
open
2022-08-11T10:25:08Z
2022-08-13T19:43:10Z
https://github.com/koxudaxi/fastapi-code-generator/issues/269
[]
aktentasche
1
microsoft/qlib
deep-learning
1,686
ๅ› ๅญ่ฎก็ฎ—ๅคšๅคดๆ”ถ็›Š็އๆ—ถ็–‘ไผผๆœ‰่ฏฏ
ๅฆ‚้ข˜๏ผŒqlib.contrib.eva.alpha.pyไธญ็š„calc_long_short_returnๅ‡ฝๆ•ฐ่ฟ”ๅ›žไบ†ไธคไธช็ป“ๆžœ๏ผŒๅˆ†ๅˆซไธบ(r_long - r_short) / 2ๅ’Œr_avg๏ผŒ็œ‹่ฎก็ฎ—่ฟ‡็จ‹ๅบ”่ฏฅๅˆ†ๅˆซๆ˜ฏๅคš็ฉบๆ”ถ็›Š็އๅ’Œๆ‰€ๆœ‰่‚ก็ฅจ็š„็ญ‰ๆƒๆ”ถ็›Š็އใ€‚ ไฝ†ๅœจqlib.workflow.record_temp.pyไธญSigAnaRecord._generate()ๅœจ่ฐƒ็”จcalc_long_short_return()ๅ‡ฝๆ•ฐๆ—ถๅฐ†่ฟ”ๅ›ž็ป“ๆžœๅˆ†ๅˆซๅ‘ฝๅไธบlong_short_rๅ’Œlong_avg_r๏ผŒๅนถๅœจไธ‹ๆ–น่พ“ๅ‡บๆ—ถ็›ดๆŽฅๅฐ†long_avg_rไฝœไธบๅคšๅคด็ป„ๅˆๆ”ถ็›Š็އใ€‚ ่ฟ™ไผšๅฏผ่‡ดๆœ€็ปˆ็œ‹ๅˆฐ็š„ๅคšๅคดๆ”ถ็›Š็އๅ…ถๅฎžๆ˜ฏๆ‰€ๆœ‰ๆ ทๆœฌ่‚ก็ญ‰ๆƒ็š„ๅนณๅ‡ๆ”ถ็›Š็އใ€‚ ๆ€€็–‘ๆ˜ฏ่‡ชๅทฑๅ“ช้‡Œๆฒก็†่งฃๅˆฐไฝ๏ผŒๆฑ‚็ญ”็–‘ใ€‚ qlib.workflow.record_temp.py SigAnaRecord._generate()ไธญ็š„็‰‡ๆฎต๏ผš ![image](https://github.com/microsoft/qlib/assets/44362081/43058517-dd1c-455a-b398-502b67191bf0) qlib.contrib.eva.alpha.pyไธญ็š„calc_long_short_returnไธญ็š„็‰‡ๆฎต๏ผš ![image](https://github.com/microsoft/qlib/assets/44362081/696393de-6f62-4fa6-84f8-fc35577afc12)
open
2023-10-27T05:11:49Z
2024-08-07T02:40:59Z
https://github.com/microsoft/qlib/issues/1686
[ "bug" ]
wangxk15
1
AutoGPTQ/AutoGPTQ
nlp
588
[question]
ๅฆ‚ๆžœๆˆ‘ๆƒณๅพ—ๅˆฐไธ€ไธชๅž‚็›ด้ข†ๅŸŸ็š„chat้‡ๅŒ–ๆจกๅž‹๏ผŒๆ˜ฏ็”จc4็š„ๆ•ฐๆฎ้›†ๆž„้€ ๅฅฝ่ฟ˜ๆ˜ฏ็”จๅž‚็›ด้ข†ๅŸŸ็š„ๆ•ฐๆฎ้›†ๅฅฝ๏ผŸๅฆ‚ไฝ•่‡ชๅทฑๆž„ๅปบ้‡ๅŒ–ๆ•ฐๆฎ้›†๏ผŒ่ฆๅฐ†promptๅŽ็š„่พ“ๅ…ฅๅ’Œ่พ“ๅ‡บ้ƒฝๆ”พ่ฟ›ๅŽปๅ—๏ผŸ
closed
2024-03-13T02:03:36Z
2024-03-13T02:04:02Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/588
[ "bug" ]
bihui9968
0
airtai/faststream
asyncio
1,765
Bug: incorrect parsing of path parameters with nested routers
**Describe the bug** When using nested routers with path parameters, the values are parsed incorrectly. Specifically, when passing a valid enum value in the subject, only the last character of the path parameter is taken. **How to reproduce** ```python from enum import StrEnum from typing import Annotated, Any from faststream import FastStream, Path from faststream.nats import NatsBroker, NatsRouter class MyEnum(StrEnum): FIRST = "first" SECOND = "second" THIRD = "third" broker = NatsBroker() root_router = NatsRouter(prefix="root_router.") nested_router = NatsRouter() @nested_router.subscriber("{my_enum}.nested_router") async def do_nothing(message: Any, my_enum: Annotated[MyEnum, Path()]): ... root_router.include_router(nested_router) broker.include_router(nested_router) app = FastStream(broker) @app.after_startup async def run(): await broker.publish("", f"root_router.{MyEnum.THIRD}.nested_router") ``` **Expected behavior** The my_enum path parameter should be correctly parsed, matching the full enum value (e.g., โ€œthirdโ€). **Observed behavior** ``` pydantic_core._pydantic_core.ValidationError: 1 validation error for do_nothing my_enum Input should be 'first', 'second' or 'third' [type=enum, input_value='d', input_type=str] For further information visit https://errors.pydantic.dev/2.8/v/enum ```
closed
2024-09-05T16:16:19Z
2024-09-13T19:22:58Z
https://github.com/airtai/faststream/issues/1765
[ "bug", "good first issue", "NATS" ]
ulbwa
0
huggingface/datasets
tensorflow
7,287
Support for identifier-based automated split construction
### Feature request As far as I understand, automated construction of splits for hub datasets is currently based on either file names or directory structure ([as described here](https://huggingface.co/docs/datasets/en/repository_structure)) It would seem to be pretty useful to also allow splits to be based on identifiers of individual examples This could be configured like {"split_name": {"column_name": [column values in split]}} (This in turn requires unique 'index' columns, which could be explicitly supported or just assumed to be defined appropriately by the user). I guess a potential downside would be that shards would end up spanning different splits - is this something that can be handled somehow? Would this only affect streaming from hub? ### Motivation The main motivation would be that all data files could be stored in a single directory, and multiple sets of splits could be generated from the same data. This is often useful for large datasets with multiple distinct sets of splits. This could all be configured via the README.md yaml configs ### Your contribution May be able to contribute if it seems like a good idea
open
2024-11-10T07:45:19Z
2024-11-19T14:37:02Z
https://github.com/huggingface/datasets/issues/7287
[ "enhancement" ]
alex-hh
3
FactoryBoy/factory_boy
sqlalchemy
170
Multi-db no longer supported.
In `DjangoModelFactory`, the factory will eventually make a call to `_setup_next_sequence` regardless of whether we are `build`ing or `create`ing. This means the strategy of building an instance, then settings it's destination via `save(using='other_db')` is no longer valid. When using `factory.BUILD_STRATEGY`, it should not be hitting the database at all. I can mitigate this issue by overriding the `_setup_next_sequence()` method. ``` @classmethod def _setup_next_sequence(cls): return 1 ```
closed
2014-10-06T21:27:40Z
2015-03-27T01:30:41Z
https://github.com/FactoryBoy/factory_boy/issues/170
[]
ashchristopher
3
CorentinJ/Real-Time-Voice-Cloning
tensorflow
297
too many issues and impossible to install on windows :(
there are too many issues and nothing works :(
closed
2020-03-10T17:46:32Z
2020-07-04T22:19:41Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/297
[]
daciansolgen3
8
torchbox/wagtail-grapple
graphql
311
Critical Typo in registering custom Rendition model
https://github.com/torchbox/wagtail-grapple/blob/2e7cb3e23f81c3c65e1fddc811aeaed99cd7743c/grapple/actions.py#L135-L142 Line 140 should call **register_image_rendition_model()** not register_image_model() Fixing this typo will **breake** the server duo to "python-BaseException KeyError: '\_\_module\_\_'" so this issue actually references two issues And a note for contributors: I Love and appreciate what you have done here in this project ๐Ÿ‘Œโค
open
2023-02-08T10:33:31Z
2023-02-09T12:40:11Z
https://github.com/torchbox/wagtail-grapple/issues/311
[]
engAmirEng
3
ray-project/ray
machine-learning
50,946
Release test long_running_many_ppo.aws failed
Release test **long_running_many_ppo.aws** failed. See https://buildkite.com/ray-project/release/builds/34295#01954657-d47e-48b5-9d21-322726f53c62 for more details. Managed by OSS Test Policy
closed
2025-02-27T08:16:09Z
2025-02-28T06:08:37Z
https://github.com/ray-project/ray/issues/50946
[ "bug", "P0", "triage", "release-test", "unstable-release-test", "ray-test-bot", "stability", "ml" ]
can-anyscale
1
facebookresearch/fairseq
pytorch
5,248
mms data preparation doesn't work with latest nightly torchaudio build
I used this tutorial: https://github.com/facebookresearch/fairseq/tree/main/examples/mms/data_prep To setup a forced alignment system with mms, however, when I reinstalled my conda environment today, (10th of July 2023), it didn't run anymore, as the torchaudio nightly build is incompatible with the code in the example. The nightly build requires an extra dimension for the emissions variable (probably a batch dimension). Reverting the code to 27th of Juny 2023 (using `pip install --pre torchaudio==2.1.0.dev20230627+cu118 --index-url https://download.pytorch.org/whl/nightly/cu118` instead of `pip install --pre torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118` ) fixed the issue for me. But would be nice if the tutorial and code could be updated to work with the new batch in the nightly build. ``` def get_alignments( audio_waveform, tokens, model, dictionary, use_star, sample_rate ): # Generate emissions # emissions, stride = generate_emissions(model, audio_file) emissions, stride = generate_emissions_waveform(model, audio_waveform, sample_rate) T, N = emissions.size() if use_star: emissions = torch.cat([emissions, torch.zeros(T, 1).to(DEVICE)], dim=1) # Force Alignment if tokens: token_indices = [dictionary[c] for c in " ".join(tokens).split(" ") if c in dictionary] else: print(f"Empty transcript!!!!! for audio file {audio_waveform}") token_indices = [] blank = dictionary["<blank>"] targets = torch.tensor(token_indices, dtype=torch.int32).to(DEVICE) input_lengths = torch.tensor(emissions.shape[0]) target_lengths = torch.tensor(targets.shape[0]) path, scores = F.forced_align( emissions, targets, input_lengths, target_lengths, blank=blank ) path = path.to("cpu").tolist() segments, scores_segments = merge_repeats_scores(path, scores, {v: k for k, v in dictionary.items()}) return segments, stride, scores_segments ```
closed
2023-07-10T09:57:45Z
2023-09-07T18:26:16Z
https://github.com/facebookresearch/fairseq/issues/5248
[ "bug", "needs triage" ]
GBurg
3
localstack/localstack
python
11,517
bug: ApiGateway ChunkedEncodingError while receiveing response from spring boot rest controller
### Is there an existing issue for this? - [x] I have searched the existing issues ### Current Behavior Using a STEP FUNCTION to call asynchronously an api gateway, the step is failing with the following error : Exception=FailureEventException, Error=ApiGateway.ChunkedEncodingError. The issue seems to be related to the received response from the spring boot rest api : > WARN --- [_and_notify)] urllib3.response : Received response with both Content-Length and Transfer-Encoding set. This is expressly forbidden by RFC 7230 sec 3.3.2. Ignoring Content-Length and attempting to process response as Transfer-Encoding: chunked. Note that this actually working in AWS. Here is the full logs : > 2024-09-14T09:56:39.166 ERROR --- [d-417 (eval)] l.s.s.a.c.eval_component : Exception=FailureEventException, Error=ApiGateway.ChunkedEncodingError, Details={"taskFailedEventDetails": {"error": "ApiGateway.ChunkedEncodingError", "cause": "('Connection broken: InvalidChunkLength(got length b\\'{xxxxxxxxxxxxxxxxxxxxxxxxxxxxx}\\', 0 bytes read)', InvalidChunkLength(got length b'{xxxxxxxxxxxxxxxxxxxxxxxxxxxxx}', 0 bytes read))", "resource": "invoke.waitForTaskToken", "resourceType": "apigateway"}} at '(StateTaskServiceApiGateway| {'comment': None, 'input_path': (InputPath| {'input_path_src': '$'}, 'output_path': (OutputPath| {'output_path': '$'}, 'state_entered_event_type': <HistoryEventType.TaskStateEntered: 'TaskStateEntered'>, 'state_exited_event_type': <HistoryEventType.TaskStateExited: 'TaskStateExited'>, 'result_path': (ResultPath| {'result_path_src': '$'}, 'result_selector': None, 'retry': None, 'catch': None, 'timeout': (TimeoutSeconds| {'timeout_seconds': 99999999, 'is_default': None}, 'heartbeat': None, 'parameters': (Parameters| {'payload_tmpl': (PayloadTmpl| {'payload_bindings': [(PayloadBindingValue| {'field': 'ApiEndpoint', 'value': (PayloadValueStr| {'val': 'http://localhost:4566/restapis/local-api-gateway'}}, (PayloadBindingValue| {'field': 'Headers', 'value': (PayloadTmpl| {'payload_bindings': [(PayloadBindingValue| {'field': 'Accept', 'value': (PayloadArr| {'payload_values': [(PayloadValueStr| {'val': 'application/json'}]}}, (PayloadBindingValue| {'field': 'Content-Type', 'value': (PayloadArr| {'payload_values': [(PayloadValueStr| {'val': 'application/json'}]}}, (PayloadBindingPathContextObj| {'field': 'TaskToken', 'path_context_obj': '$.Task.Token'}, (PayloadBindingPathContextObj| {'field': 'workflowName', 'path_context_obj': '$.StateMachine.Name'}, (PayloadBindingPathContextObj| {'field': 'executionName', 'path_context_obj': '$.Execution.Name'}, (PayloadBindingPathContextObj| {'field': 'stepName', 'path_context_obj': '$.State.Name'}]}}, (PayloadBindingValue| {'field': 'Method', 'value': (PayloadValueStr| {'val': 'POST'}}, (PayloadBindingValue| {'field': 'Stage', 'value': (PayloadValueStr| {'val': 'test'}}, (PayloadBindingValue| {'field': 'Path', 'value': (PayloadValueStr| {'val': 'compute-data-calc'}}, (PayloadBindingValue| {'field': 'RequestBody', 'value': (PayloadTmpl| {'payload_bindings': [(PayloadBindingValue| {'field': 'activityName', 'value': (PayloadValueStr| {'val': 'calculSoldes'}}, (PayloadBindingValue| {'field': 'xxxxxxx', 'value': (PayloadValueStr| {'val': 'xxxxxxx'}}, (PayloadBindingValue| {'field': 'xxxxxxx', 'value': (PayloadTmpl| {'payload_bindings': [(PayloadBindingPath| {'field': 'xxxxxxx', 'path': 'xxxxxxx'}, (PayloadBindingValue| {'field': 'other', 'value': (PayloadTmpl| {'payload_bindings': [(PayloadBindingValue| {'field': 'xxxxxxx', 'value': (PayloadValueStr| {'val': 'xxxxxxx'}}]}}]}}]}}, (PayloadBindingValue| {'field': 'AuthType', 'value': (PayloadValueStr| {'val': 'IAM_ROLE'}}]}}, '_supported_integration_patterns': {'waitForTaskToken'}, 'name': 'Compute', 'state_type': <StateType.Task: 16>, 'continue_with': <localstack.services.stepfunctions.asl.component.state.state_continue_with.ContinueWithNext object at 0x7f58036557d0>, 'resource': (ServiceResource| {'_region': '', '_account': '', 'resource_arn': 'arn:aws:states:::apigateway:invoke.waitForTaskToken', 'partition': 'aws', 'service_name': 'apigateway', 'api_name': 'apigateway', 'api_action': 'invoke', 'condition': 'waitForTaskToken'}}' In the above logs i replaced the real json data response with "xxxxxxxxxxxxxxxxxxxxxxxxxxxxx". I tested the same code in AWS and it's working correctly. Is there any fix or workarround ? The step function used : > "Compute": { > "Type": "Task", > "Resource": "arn:aws:states:::apigateway:invoke.waitForTaskToken", > "Parameters": { > "ApiEndpoint": "http://localhost:4566/restapis/local-api-gateway", > "Headers": { > "Accept": [ > "application/json" > ], > "Content-Type": [ > "application/json" > ], > "TaskToken.$": "$$.Task.Token", > "workflowName.$": "$$.StateMachine.Name", > "executionName.$": "$$.Execution.Name", > "stepName.$": "$$.State.Name" > }, > "Method": "POST", > "Stage": "test", > "Path": "...", > "RequestBody": { > .... > }, > "AuthType": "IAM_ROLE" > }, > "End": true > } ### Expected Behavior The step function should be successful without any error when the api gateway receives the response from the spring boot rest api. ### How are you starting LocalStack? With a docker-compose file ### Steps To Reproduce #### Docker compose : ``` services: localstack: container_name: localstack image: localstack/localstack:3.7.2 ports: - '4566:4566' # LocalStack Gateway - '4510-4559:4510-4559' # external services port range environment: - AWS_DEFAULT_REGION=eu-west-3 - AWS_ACCESS_KEY_ID=<HIDDEN> - AWS_SECRET_ACCESS_KEY=<HIDDEN> - DEBUG=${DEBUG-1} - DISABLE_CORS_CHECKS=1 - DOCKER_HOST=unix:///var/run/docker.sock - LS_LOG=WARN # Localstack DEBUG Level - SERVICES=s3,sqs,apigateway,stepfunctions,events,cloudformation volumes: - localstack:/var/lib/localstack - '/var/run/docker.sock:/var/run/docker.sock' - ./localstack/start-localstack.sh:/etc/localstack/init/ready.d/start-localstack.sh - ./localstack/statemachines:/tmp/statemachines volumes: localstack: ``` #### Start local stack : docker compose up -d #### Start Step Function Start execution from the local stack UI ### Environment ```markdown - OS: WSL2 Debian - LocalStack version: 3.7.2 ``` ### Anything else? _No response_
closed
2024-09-14T10:44:30Z
2025-02-25T19:02:30Z
https://github.com/localstack/localstack/issues/11517
[ "type: bug", "status: response required", "aws:apigateway", "aws:stepfunctions", "status: resolved/stale" ]
mbench777
3
pytest-dev/pytest-qt
pytest
400
Allow PyQt5 versions < 5.11
Thank you for your amazing work. I'm currently using a modified version of `pytest-qt` which allows usage with `PyQt 5.9.2` So far I haven't had any issues. Where does the restriction for `5.11` come from? Is it arbitrary because you didn't test any lower version number with your package or is there an actual known problem with lower version numbers? If it is arbitrary, I would like to help getting 5.9 "greenlighted".
closed
2021-12-09T14:00:12Z
2021-12-09T20:02:05Z
https://github.com/pytest-dev/pytest-qt/issues/400
[]
cafhach
6
deepfakes/faceswap
deep-learning
1,381
just installed new graphic card and it stopped working
it worked on my last graphic card "rtx 2027" and i just bought this one and exchanged it "ASUS TUF Gaming Radeonโ„ข RX 7900 XT OC Edition 20GB GDDR6" and it stopped working . it returns this error : > C:\Users\Nassar>"C:\Users\Nassar\Miniconda3\scripts\activate.bat" && conda activate "faceswap" && python "C:\Users\Nassar\faceswap/faceswap.py" gui > Setting Faceswap backend to NVIDIA > Traceback (most recent call last): > File "C:\Users\Nassar\faceswap\lib\gpu_stats\nvidia.py", line 47, in _initialize > pynvml.nvmlInit() > File "C:\Users\Nassar\MiniConda3\envs\faceswap\lib\site-packages\pynvml.py", line 1945, in nvmlInit > nvmlInitWithFlags(0) > File "C:\Users\Nassar\MiniConda3\envs\faceswap\lib\site-packages\pynvml.py", line 1935, in nvmlInitWithFlags > _nvmlCheckReturn(ret) > File "C:\Users\Nassar\MiniConda3\envs\faceswap\lib\site-packages\pynvml.py", line 897, in _nvmlCheckReturn > raise NVMLError(ret) > pynvml.NVMLError_NoPermission: Insufficient Permissions > > The above exception was the direct cause of the following exception: > > Traceback (most recent call last): > File "C:\Users\Nassar\faceswap\faceswap.py", line 12, in <module> > from lib.cli import args as cli_args # pylint:disable=wrong-import-position > File "C:\Users\Nassar\faceswap\lib\cli\args.py", line 23, in <module> > _GPUS = GPUStats().cli_devices > File "C:\Users\Nassar\faceswap\lib\gpu_stats\_base.py", line 95, in __init__ > self._initialize() > File "C:\Users\Nassar\faceswap\lib\gpu_stats\nvidia.py", line 55, in _initialize > raise FaceswapError(msg) from err > lib.utils.FaceswapError: There was an error reading from the Nvidia Machine Learning Library. The most likely cause is incorrectly installed drivers. If this is the case, Please remove and reinstall your Nvidia drivers before reporting. Original Error: Insufficient Permissions Note: i am using windows 10
closed
2024-04-05T08:32:14Z
2024-04-05T11:19:25Z
https://github.com/deepfakes/faceswap/issues/1381
[]
eassa
1
amisadmin/fastapi-amis-admin
fastapi
149
Setup id at runtime?
educate event system in amis, but this require id, I do: ```python class TriggerAdminPage(admin.ModelAdmin): . . . async def get_form_item( self, request: Request, modelfield: ModelField, action: CrudEnum ) -> Union[FormItem, SchemaNode, None]: item = await super().get_form_item(request, modelfield, action) if item.name == Trigger.event.key: # noqa item.id = item.name # just field name ``` but why just not assign a name at runtime? are there any reasons?
closed
2023-12-12T22:06:35Z
2023-12-20T12:59:34Z
https://github.com/amisadmin/fastapi-amis-admin/issues/149
[]
MatsiukMykola
6
cupy/cupy
numpy
8,987
GPU-Accelerated Numerical Solvers
### Description Iโ€™m currently developing a numerical solver package for a specific class of PDEs. My initial approach used SciPyโ€™s ODE solvers, but runtime has become a bottleneck for 2D/3D problems with fine discretizations. Since I have access to many GPUs, Iโ€™m very interested in leveraging GPU acceleration. I came across a couple of related discussions ([#7452](https://github.com/cupy/cupy/issues/7452), [#7019](https://github.com/cupy/cupy/issues/7019)) but havenโ€™t seen a definitive path forward. Specifically, Iโ€™m wondering: - Is a solver interface similar to `scipy.integrate.solve_ivp` feasible in CuPy? - If so, is this approach recommended for building a GPU-based PDE solver? - Are there any existing examples or best practices you could point me toward to get started? Any guidance or suggestions would be greatly appreciated. ### Additional Information _No response_
open
2025-02-25T14:54:32Z
2025-02-25T14:56:18Z
https://github.com/cupy/cupy/issues/8987
[ "cat:feature" ]
Hrrsmjd
0
flasgger/flasgger
rest-api
535
How to pass header with marshmallow schema
I am using marshmallow schema to generate documents. but i am not able to uderstand how to pass header along with schema. Please help.
open
2022-05-26T09:39:35Z
2022-05-26T09:39:35Z
https://github.com/flasgger/flasgger/issues/535
[]
kamrapooja
0
TheKevJames/coveralls-python
pytest
572
Implement retries
**Is your feature request related to a problem? Please describe.** Frequently enough to be frustrating, running `coveralls` fails in GitHub Actions due to an HTTP error. Retrying the Action run resolves this, but this can be painful for very long-running workflows. **Describe the solution you'd like** When API calls fail with transient HTTP error (e.g., bad gateway), they should be able to be retried (perhaps optionally, based on a CLI parameter) ideally with some kind of backoff. **Describe alternatives you've considered** - implement retrying in the Action itself. Though, I'd rather not implement it in bash. - GitHub Actions doesn't implement any retry functionality itself like other CI providers, but retries might work in providers like GitLab. - To minimize the impact of the problem, I could use the artifact upload/download actions to move coverage reports from jobs to one place where they are transmitted. That way, when it fails, I just need to re-download the artifact and try the upload again, instead of running all the tests again. But it would be much better if the CLI could implement it. **Additional context** For example: [this action run](https://github.com/spyoungtech/ahk/actions/runs/12780747803/job/35627541065) (which takes 9+ minutes to run!) ends with an error: ``` Traceback (most recent call last): File "C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\site-packages\coveralls\cli.py", line 98, in main result = coverallz.wear() File "C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\site-packages\coveralls\api.py", line 275, in wear return self.submit_report(json_string) File "C:\hostedtoolcache\windows\Python\3.9.13\x64\lib\site-packages\coveralls\api.py", line 301, in submit_report raise CoverallsException( coveralls.exception.CoverallsException: Could not submit coverage: 504 Server Error: Gateway Time-out for url: https://coveralls.io/api/v1/jobs ```
open
2025-02-01T02:31:39Z
2025-02-01T02:35:26Z
https://github.com/TheKevJames/coveralls-python/issues/572
[ "feature", "in-review" ]
spyoungtech
0
ray-project/ray
deep-learning
50,710
[Serve] Serve no longer retries deployments after 3 failures
### What happened + What you expected to happen 1. Previously, a Ray Serve deployment that hit a retryable error would back-off and retry until successful. With the latest release, it will transition the deployment into DEPLOY_FAILED after 3 tries. 2. A cluster with a large number of ray serve deployments has a high probability of having one of them hit 3 retryable errors (Model Download failures, Nodes restarting, etc.) If I'm deploying a single cluster I can retry manually, but it's a pain if I'm trying to automate multiple deployments. (The actual case where I saw this first was with Nodes restarting while waiting on a large model file download.) This change seems to have been a deliberate decision in https://github.com/ray-project/ray/pull/49224. The "3" is hardcoded in https://github.com/ray-project/ray/blob/094fde63cdce99bfe7ddca30d5a04c0759c86ffd/python/ray/serve/_private/deployment_state.py#L1394. I liked the old behavior, but I'd settle for having the hardcoded constant be configurable. ### Versions / Dependencies Ray 2.42.1 ### Reproduction script See https://github.com/ray-project/ray/pull/49224 ### Issue Severity Medium: It is a significant difficulty but I can work around it.
closed
2025-02-19T03:09:46Z
2025-03-24T16:21:01Z
https://github.com/ray-project/ray/issues/50710
[ "bug", "P1", "serve" ]
chmeyers
3
Lightning-AI/pytorch-lightning
machine-learning
19,828
TensorBoardLogger has the wrong epoch numbers much more than the fact
### Bug description I used the following code to log the metrics, but I found that the epoch recorded in the tensorboard logger is much more than it should have: def training_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = torch.sqrt(self.loss_fn(y_hat,y)) self.log("train_loss", loss, logger=True, prog_bar=True, on_epoch=True) return loss def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = torch.sqrt(self.loss_fn(y_hat,y)) self.log("valid_loss", loss, logger=True, prog_bar=True, on_epoch=True) return loss pl.Train(..., logger=TensorBoardLogger(save_dir='store',version=log_path), ....) In the configure, I set max_epoch=10000, but in the logger, I got epoches more than 650k: ![d9dc51214ca78a81ba849ff967f459f](https://github.com/Lightning-AI/pytorch-lightning/assets/80281876/68971f90-9ff3-41eb-a688-564cdabcf1f7) ![image](https://github.com/Lightning-AI/pytorch-lightning/assets/80281876/436f5029-5820-4df7-8106-d708193b7f46) ### What version are you seeing the problem on? v2.1 ### How to reproduce the bug ```python def training_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = torch.sqrt(self.loss_fn(y_hat,y)) self.log("train_loss", loss, logger=True, prog_bar=True, on_epoch=True) return loss def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = torch.sqrt(self.loss_fn(y_hat,y)) self.log("valid_loss", loss, logger=True, prog_bar=True, on_epoch=True) return loss pl.Train(..., logger=TensorBoardLogger(save_dir='store',version=log_path), ....) # u can use any path you like ``` ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` #- Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow): #- PyTorch Lightning Version (e.g., 1.5.0): 2.1.3 #- Lightning App Version (e.g., 0.5.2): #- PyTorch Version (e.g., 2.0): #- Python version (e.g., 3.9): 2.1.2 #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): pip #- Running environment of LightningApp (e.g. local, cloud): ``` </details> ### More info _No response_
open
2024-04-30T17:13:10Z
2024-05-19T06:46:33Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19828
[ "bug", "needs triage", "ver: 2.1.x" ]
AlbireoBai
2
Evil0ctal/Douyin_TikTok_Download_API
api
374
[BUG] msToken ๆ€Žไนˆ็”Ÿๆˆ
ๅฏๅŠจๅŽ `โ— Douyin_TikTok_Download_API.service - Douyin_TikTok_Download_API deamon Loaded: loaded (/etc/systemd/system/Douyin_TikTok_Download_API.service; enabled; vendor preset: disabled) Active: active (running) since Sat 2024-04-27 10:39:50 UTC; 8s ago Main PID: 5067 (python3) Tasks: 1 (limit: 23204) Memory: 46.4M CGroup: /system.slice/Douyin_TikTok_Download_API.service โ””โ”€5067 /usr/local/bin/python3 start.py Apr 27 10:39:50 CentOS systemd[1]: Started Douyin_TikTok_Download_API deamon. Apr 27 10:39:59 CentOS python3[5067]: ERROR msToken API้”™่ฏฏ๏ผšEOF occurred in violation of protocol (_ssl.c:1000) Apr 27 10:39:59 CentOS python3[5067]: INFO ็”Ÿๆˆ่™šๅ‡็š„msToken` tokenๆ€Žไนˆ็”Ÿๆˆ๏ผŒๆ˜ฏๅœจcrawlers/douyin/web/config.yaml ้‡Œไฟฎๆ”นๅ—
closed
2024-04-27T10:52:27Z
2024-04-29T21:30:36Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/374
[ "BUG" ]
markvlenvision
4
FujiwaraChoki/MoneyPrinter
automation
160
[BUG] Invalid data found when processing input, songs
**Describe the bug** I get the error of Invalid data found when processing input **To Reproduce** Steps to reproduce the behavior: 1) i have uploaded a zip file to filebin 2) inserted the link in the frontend 3) run 4) after video saved in temp/output.mp4 it gives the error **Expected behavior** FInish the run **Screenshots** ![link](https://github.com/FujiwaraChoki/MoneyPrinter/assets/30214059/d684eda4-a34f-40b7-ace6-0376999adbac) ![Screenshot 2024-02-10 192338](https://github.com/FujiwaraChoki/MoneyPrinter/assets/30214059/7c255f0d-9a68-4a41-8390-281a9bc5aac4) ![Songss](https://github.com/FujiwaraChoki/MoneyPrinter/assets/30214059/ba7a48d3-162c-4e85-a145-f48339099778) **Additional context** The zip file contains only a file.mp3
closed
2024-02-10T18:27:29Z
2024-02-10T19:01:43Z
https://github.com/FujiwaraChoki/MoneyPrinter/issues/160
[]
neker97
1
flaskbb/flaskbb
flask
595
FileNotFoundError: python3.8/site-packages/portal/migrations
When I execute `make install`, it turned out: ``` FileNotFoundError: [Errno 2] No such file or directory: '/Users/me/anaconda3/lib/python3.8/site-packages/portal/migrations' make: *** [install] Error 1 ```
closed
2021-07-21T06:00:59Z
2021-08-20T14:31:46Z
https://github.com/flaskbb/flaskbb/issues/595
[]
mikolaje
3
google-deepmind/sonnet
tensorflow
29
Mac install fails
I am trying to install sonnet on Mac but I get the following error: sonnet/sonnet/python/BUILD:131:1 C++ compilation of rule '@protobuf//:protobuf' failed: cc_wrapper.sh failed: error executing command (exec env - \ PATH=/Library/Frameworks/Python.framework/Versions/3.6/bin:/Users/swarsh/torch/install/bin:/Library/Frameworks/Python.framework/Versions/2.7/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/X11/bin \ TMPDIR=/var/folders/q9/1zzwnrpx5f31kw21mwzdqxjh0000gn/T/ \ external/local_config_cc/cc_wrapper.sh -U_FORTIFY_SOURCE -fstack-protector -Wall -Wthread-safety -Wself-assign -Wunused-but-set-parameter -Wno-free-nonheap-object -fno-omit-frame-pointer -g0 -O2 '-D_FORTIFY_SOURCE=1' -DNDEBUG -ffunction-sections -fdata-sections -g0 '-std=c++0x' -MD -MF bazel-out/host/bin/external/protobuf/_objs/protobuf/external/protobuf/src/google/protobuf/struct.pb.d '-frandom-seed=bazel-out/host/bin/external/protobuf/_objs/protobuf/external/protobuf/src/google/protobuf/struct.pb.o' -iquote external/protobuf -iquote bazel-out/host/genfiles/external/protobuf -iquote external/bazel_tools -iquote bazel-out/host/genfiles/external/bazel_tools -isystem external/protobuf/src -isystem bazel-out/host/genfiles/external/protobuf/src -isystem external/bazel_tools/tools/cpp/gcc3 -DHAVE_PTHREAD -Wall -Wwrite-strings -Woverloaded-virtual -Wno-sign-compare -Wno-unused-function -fno-canonical-system-headers -Wno-builtin-macro-redefined '-D__DATE__="redacted"' '-D__TIMESTAMP__="redacted"' '-D__TIME__="redacted"' -c external/protobuf/src/google/protobuf/struct.pb.cc -o bazel-out/host/bin/external/protobuf/_objs/protobuf/external/protobuf/src/google/protobuf/struct.pb.o) external/local_config_cc/cc_wrapper.sh: line 56: -U_FORTIFY_SOURCE: command not found
closed
2017-04-26T23:40:28Z
2017-09-04T13:16:04Z
https://github.com/google-deepmind/sonnet/issues/29
[]
ghost
2
jupyter-book/jupyter-book
jupyter
1,544
Add example for the seealso directive
There is no reference of the useful `{seealso}` directive in [jupyterbook.org](https://jupyterbook.org). See [jupyterbook.org/search.html?q=seealso](https://jupyterbook.org/search.html?q=seealso).
open
2021-11-17T10:05:32Z
2021-11-17T10:06:03Z
https://github.com/jupyter-book/jupyter-book/issues/1544
[]
NikosAlexandris
0
plotly/dash-bio
dash
705
Problem with the color_list functionality of dash.clustergram
Bug reported on community Forum in [this post](https://community.plotly.com/t/clustergrams-color-list-not-working/65525): It appears that the color_list functionality of dash.clustergram is not working. The color dictionary is supposed to update the cluster trace colors, however, while the color_list dictionary can be defined, it is not used and only default colors are displayed. This is also the case for the plotly gallery example ([Clustergram | Dash for Python Documentation | Plotly 1](https://dash.plotly.com/dash-bio/clustergram)) as minimal example: ``` import pandas as pd from dash import dcc import dash_bio as dashbio df = pd.read_csv('https://git.io/clustergram_brain_cancer.csv').set_index('ID_REF') columns = list(df.columns.values) rows = list(df.index) clustergram = dashbio.Clustergram( data=df.loc[rows].values, row_labels=rows, column_labels=columns, color_threshold={ 'row': 250, 'col': 700 }, height=800, width=700, color_list={ 'row': ['#636EFA', '#00CC96', '#19D3F3'], 'col': ['#AB63FA', '#EF553B'], 'bg': '#506784' }, line_width=2 ) dcc.Graph(figure=clustergram) clustergram ``` Plotly staff member, Emilie Burton, looked into it and confirmed this is a bug as well.
open
2022-08-01T13:52:43Z
2022-08-01T13:52:43Z
https://github.com/plotly/dash-bio/issues/705
[]
Coding-with-Adam
0
jupyter/nbgrader
jupyter
929
Slow _filter_existing_notebooks impacts each submission
On a deployment with ~600 students, _filter_existing_notebooks takes about 30s. This hits us when manual grading. A single submission is loaded (/formgrader/submissions/:submission_id) and that invokes api.get_notebook_submission_indices which calls the filter which walks the filesystem and filters out non-existing files. So when the grader presses Next, the next submission is loaded which causes another 30s filesystem walk. ### Operating system ### `nbgrader --version` 0.6.0.dev ### `jupyterhub --version` (if used with JupyterHub) 0.8.1 ### `jupyter notebook --version` 5.4.0 ### Expected behavior Indexes are cached or are built asynchronously? ### Actual behavior Indexes are gathered for each submission load. ### Steps to reproduce the behavior Manual grading in big course, visit assignment. Then visit first submission.
closed
2018-02-16T21:20:36Z
2018-05-03T21:36:07Z
https://github.com/jupyter/nbgrader/issues/929
[ "bug" ]
ryanlovett
6
noirbizarre/flask-restplus
flask
36
Add @api.response decorator
Add an @api.response decorator shortcut. Example: ``` python @api.route('/somewhere/') class MyResource(Resource): @api.response(403, 'Not Authorized') @api.response(somemodel, headers={}, default=True) def get(self, id): return {} ''' ```
closed
2015-03-25T15:02:33Z
2015-04-02T15:38:39Z
https://github.com/noirbizarre/flask-restplus/issues/36
[ "enhancement" ]
noirbizarre
0
howie6879/owllook
asyncio
18
docker Internal Server Error
็”จdockerๅˆ›ๅปบๆ‰ง่กŒไน‹ๅŽ๏ผŒhttp://127.0.0.1:8001/ ๆŠฅ้”™Internal Server Error๏ผŒ่ฟ™ๆ˜ฏไป€ไนˆๅŽŸๅ› ๏ผŒๅˆšๆŽฅ่งฆpythonใ€‚
closed
2018-02-10T04:04:20Z
2018-06-10T11:10:54Z
https://github.com/howie6879/owllook/issues/18
[]
vinwang
5
MagicStack/asyncpg
asyncio
1,017
Why asyncpg connection pool works slower than just connections?
<!-- Thank you for reporting an issue/feature request. If this is a feature request, please disregard this template. If this is a bug report, please answer to the questions below. It will be much easier for us to fix the issue if a test case that reproduces the problem is provided, with clear instructions on how to run it. Thank you! --> * **asyncpg version**: 0.26.0 * **PostgreSQL version**: latest * **Do you use a PostgreSQL SaaS? If so, which? Can you reproduce the issue with a local PostgreSQL install?**: db up in docker container * **Python version**: 3.10 * **Do you use pgbouncer?**: No * **Did you install asyncpg with pip?**: Yes <!-- Enter your issue details below this comment. --> Hi! I have two postgres cliets and both of them use **asyncpg**. First creates new connection for each request, second use pool of connections. Fist: ```python class PostgresConnection(object): def __init__(self, conn) -> None: self.conn: asyncpg.Connection = conn @classmethod async def get_connection(cls) -> asyncpg.Connection: conn = await asyncpg.connect( user='', password='', database='' host='', port=, ) return cls(conn) async def execute(self, query: str) -> None: return await self.conn.execute(query) async def fetch_all(self, query: str) -> list[asyncpg.Record | None]: return await self.conn.fetch(query) ``` Second: ```python class PostgresConnection: def __init__( self, DSN: str = DSN, ): self.DSN = DSN self.con = None self._cursor = None self._connection_pool = None async def create_pool(self) -> None: self._connection_pool = await asyncpg.create_pool( dsn=self.DSN, ) async def get_pool(self) -> Pool: if not self._connection_pool: await self.create_pool() return self._connection_pool async def fetch_all(self, query: str) -> list[dict | None]: pool = await self.get_pool() async with pool.acquire() as conn: return [dict(row) for row in await conn.fetch(query)] ``` And i maked simple test: make 100 times 'SELECT * FROM user' **fist: 5sec** ```python conn = await PostgresClient.get_connection() for i in range(1_00): await conn.fetch_all('SELECT * FROM "user"') ``` **second: 10sec** ```python pg_conn = PostgresConnection() for i in range(1_00): await pg_conn.fetch_all('SELECT * FROM "user"') ``` In one of the tests i used max size of pool = 100 and check how many connections was used โ€” it was 16/17 (i checked ID of connections which pool returns). But i think thats not important in my case and i just did something wrong. Why connection pool works 2x times slower? Hi! I have two postgres cliets and both of them use **asyncpg**. First creates new connection for each request, second use pool of connections. Fist: ```python class PostgresConnection(object): def __init__(self, conn) -> None: self.conn: asyncpg.Connection = conn @classmethod async def get_connection(cls) -> asyncpg.Connection: conn = await asyncpg.connect( user='', password='', database='' host='', port=, ) return cls(conn) async def execute(self, query: str) -> None: return await self.conn.execute(query) async def fetch_all(self, query: str) -> list[asyncpg.Record | None]: return await self.conn.fetch(query) ``` Second: ```python class PostgresConnection: def __init__( self, DSN: str = DSN, ): self.DSN = DSN self.con = None self._cursor = None self._connection_pool = None async def create_pool(self) -> None: self._connection_pool = await asyncpg.create_pool( dsn=self.DSN, ) async def get_pool(self) -> Pool: if not self._connection_pool: await self.create_pool() return self._connection_pool async def fetch_all(self, query: str) -> list[dict | None]: pool = await self.get_pool() async with pool.acquire() as conn: return [dict(row) for row in await conn.fetch(query)] ``` And i maked simple test: make 100 times 'SELECT * FROM user' **fist: 5sec** ```python conn = await PostgresClient.get_connection() for i in range(1_00): await conn.fetch_all('SELECT * FROM "user"') ``` **second: 10sec** ```python pg_conn = PostgresConnection() for i in range(1_00): await pg_conn.fetch_all('SELECT * FROM "user"') ``` In one of the tests i used max size of pool = 100 and check how many connections was used โ€” it was 16/17 (i checked ID of connections which pool returns). But i think thats not important in my case and i just did something wrong. Why connection pool works 2x times slower? Is the problem on db side ?
closed
2023-03-21T11:16:17Z
2023-03-23T14:01:41Z
https://github.com/MagicStack/asyncpg/issues/1017
[]
Maksim-Burtsev
1
man-group/arctic
pandas
245
Retrieve data stored into Arctic using Julia
Hello, I stored some tick data using Python / Arctic. I wonder if / how I could retrieve data using [Julia](http://julialang.org/) Any help will be great Kind regards
closed
2016-09-28T19:26:53Z
2019-01-04T10:11:30Z
https://github.com/man-group/arctic/issues/245
[ "wontfix" ]
femtotrader
5
elliotgao2/gain
asyncio
1
Handle error when aiohttp response get wrong.
Handle error when aiohttp response get wrong.
closed
2017-06-02T09:55:55Z
2017-06-05T01:41:30Z
https://github.com/elliotgao2/gain/issues/1
[]
elliotgao2
1
pytest-dev/pytest-mock
pytest
420
[3.13.0] New logged calls in MagicMock mock_calls attribute
Hi! Just had some tests fail from which I was looking through mock.mock_calls. Have no seen this documented in the [changelogs](https://pytest-mock.readthedocs.io/en/latest/changelog.html). ![image (3)](https://github.com/pytest-dev/pytest-mock/assets/55769808/28b1714b-2cb6-4a18-b8ff-5b4dea20f231) ![image](https://github.com/pytest-dev/pytest-mock/assets/55769808/17313cc2-19b4-4332-accb-333ad2001e85) Was this an intended change? FYI I have found a workaround for the project's tests, just wanted to notify the repo here directly. Thanks! Xavier
closed
2024-03-21T19:56:29Z
2024-03-21T22:19:01Z
https://github.com/pytest-dev/pytest-mock/issues/420
[]
ofx53
7
jumpserver/jumpserver
django
14,656
[Question] how to connect to a https website asset and how to setup it correctly in jumpserver?
### Product Version 4.4.1 ### Product Edition - [X] Community Edition - [ ] Enterprise Edition - [ ] Enterprise Trial Edition ### Installation Method - [X] Online Installation (One-click command installation) - [ ] Offline Package Installation - [ ] All-in-One - [ ] 1Panel - [ ] Kubernetes - [ ] Source Code ### Environment Information Everything installed and working well for SSH ### ๐Ÿค” Question Description Did not work for Websites. Every time a HTTP asset is created it is not possible to connect to a website GUI: No available accounts Connect method No available connect method Additional Website is only port 80 (http) and not port 443 (https) ### Expected Behavior need to connect to https websites ### Additional Information did not find any solution or instruction. Even when translating existing docs with google there is no solution for how to connect to a https website asset.
open
2024-12-14T17:02:14Z
2025-03-03T09:45:41Z
https://github.com/jumpserver/jumpserver/issues/14656
[ "โณ Pending feedback", "๐Ÿค” Question" ]
blocksberghexhex
6
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,139
[Bug]: calling `%PYTHON%` in webui.bat stops the execution of the rest of the script.
### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? The first line where `%PYTHON%` is called stops the execution of the rest of the script. This happens with any usage of `%PYTHON%`. ![image](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/30209145/ae3ae79d-60f7-47f0-a75a-7c803d9205a8) You can test this by putting `echo` before and after the `%PYTHON%` call ![image](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/30209145/14fcfdcb-fa87-4b7a-9b4d-832c7969c095) You can test this further by running `PYTHON --version` and doing the same test ![image](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/30209145/42c43aea-cab7-4f1c-b6fb-c5ea48480de1) ### Steps to reproduce the problem 1. Install Python 3.10.6 via pyenv-win. 2. Get the latest version of webui, latest is commit feee37d on master branch. 3. Set version 3.10.6 as the local version (`pyenv local 3.10.6`). 4. Try to launch webui 5. (optional) run the tests I did above. ### What should have happened? WebUI should have launched as expected. ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo not available ### Console logs ```Shell none ``` ### Additional information Python 3.10.6 is installed via pyenv-win.
open
2024-07-03T13:43:39Z
2024-07-12T23:09:41Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16139
[ "bug-report" ]
RalkeyOfficial
1
tensorlayer/TensorLayer
tensorflow
670
Failed: TensorLayer (c5b6ceea)
*Sent by Read the Docs (readthedocs@readthedocs.org). Created by [fire](https://fire.fundersclub.com/).* --- | TensorLayer build #7285697 --- | ![](https://media.readthedocs.org/images/email-header.png) --- | Build Failed for TensorLayer (latest) --- You can find out more about this failure here: [TensorLayer build #7285697](https://readthedocs.org/projects/tensorlayer/builds/7285697/) \- failed If you have questions, a good place to start is the FAQ: <https://docs.readthedocs.io/en/latest/faq.html> You can unsubscribe from these emails in your [Notification Settings](https://readthedocs.org/dashboard/tensorlayer/notifications/) Keep documenting, Read the Docs | Read the Docs <https://readthedocs.org> --- ![](http://email.readthedocs.org/o/eJwNzMEOgyAMANCvGcemQkE48DEC7TRxkhR12d_P47u8ll201iWzZYtTxID24ew8BEcB_OQSvgi_XNDDYL1ZBygv7Vy59Tqg69usmafAFJZKFJEJZXYSkpcSyQtKY6P55GN03Zcf6xPKpgxyHe356n4VqP3zB7o4KvA)
closed
2018-06-02T22:37:38Z
2018-06-03T11:31:59Z
https://github.com/tensorlayer/TensorLayer/issues/670
[]
fire-bot
2
seleniumbase/SeleniumBase
web-scraping
2,794
Can not bypass detection when using a VPN connection (NordVPN)
Reopening Issue 2793, as I am not sure the testing instructions were clear. I experience this issue ONLY when connected to a VPN (Nord vpn). This is the modified code as per comment. ```python url = 'https://rateyourmusic.com/artist/pink-floyd/' with SB(uc=True) as sb: sb.driver.uc_open_with_reconnect(url, 8) if sb.is_element_visible('iframe[src*="challenge"]'): sb.driver.uc_switch_to_frame('iframe[src*="challenge"]') confirm_input = sb.driver.find_element(By.CSS_SELECTOR, 'input') confirm_input.uc_click() sb.sleep(2) ``` What happens is that the verification box excepts the user action (does not happen on direct connection). After clicking the checkbox input (manually or as instructed by the driver) the verification proceeds for a seconds (green spinning wheel). This fails and leads to initial state. Please could we make sure is tested with a VPN subscription, or is anyone that can do this? P.S I am able to pass the verification process after clicking the checkbox with selenium-driverless Many thanks!
closed
2024-05-21T17:59:22Z
2024-05-21T19:19:46Z
https://github.com/seleniumbase/SeleniumBase/issues/2794
[ "duplicate", "UC Mode / CDP Mode" ]
bjornkarlsson
1
bloomberg/pytest-memray
pytest
119
pytest-memray breaks anyio
Hola @pablogsal, I am facing the same issue: the async tests are skipped if we pass `--memray` argument to pytest. ## Steps to reproduce the issue: Use the following test file: `test_async.py` ```python import pytest @pytest.fixture def anyio_backend(): return 'asyncio' @pytest.mark.anyio async def test_async(): assert True ``` Install required dependencies: ```shell python -m pip install pytest anyio pytest-memray ``` The test runs as expected if `--memray` is not passed: ```shell python -m pytest -vv -x test_async.py ``` Output: ``` plugins: memray-1.6.0, anyio-4.0.0 collected 1 item test_async.py::test_async PASSED ``` However, the test is skipped if we pass `--memray`: ```shell python -m pytest --memray -vv -x test_async.py ``` Output: ``` plugins: memray-1.6.0, anyio-4.0.0 collected 1 item test_async.py::test_async SKIPPED (async def function and no async plugin installed (see warnings)) [100%] ============================================================================================ warnings summary ============================================================================================= test_async.py::test_async <MY_PROJECT_PATH>/.venv/lib/python3.9/site-packages/_pytest/python.py:151: PytestUnhandledCoroutineWarning: async def functions are not natively supported and have been skipped. You need to install a suitable plugin for your async framework, for example: - anyio - pytest-asyncio - pytest-tornasync - pytest-trio - pytest-twisted warnings.warn(PytestUnhandledCoroutineWarning(msg.format(nodeid))) -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html ``` _Originally posted by @albertvillanova in https://github.com/bloomberg/pytest-memray/discussions/101#discussioncomment-9738673_
closed
2024-06-12T00:06:36Z
2024-08-05T06:25:51Z
https://github.com/bloomberg/pytest-memray/issues/119
[]
godlygeek
6
kubeflow/katib
scikit-learn
1,636
Grid Algorithm fails for int parameters
/kind bug Grid fails with `Chocolate db is exhausted, increase Search Space or decrease maxTrialCount!` error when running this example: ```yaml apiVersion: "kubeflow.org/v1beta1" kind: Experiment metadata: namespace: kubeflow-user-example-com name: grid-example spec: objective: type: maximize goal: 0.99 objectiveMetricName: Validation-accuracy additionalMetricNames: - Train-accuracy algorithm: algorithmName: grid parallelTrialCount: 6 maxTrialCount: 12 maxFailedTrialCount: 3 parameters: - name: num-layers parameterType: int feasibleSpace: min: "3" max: "6" - name: optimizer parameterType: categorical feasibleSpace: list: - sgd - adam - ftrl trialTemplate: primaryContainerName: training-container trialParameters: - name: numberLayers description: Number of training model layers reference: num-layers - name: optimizer description: Training model optimizer (sdg, adam or ftrl) reference: optimizer trialSpec: apiVersion: batch/v1 kind: Job spec: template: metadata: annotations: sidecar.istio.io/inject: "false" spec: containers: - name: training-container image: docker.io/kubeflowkatib/mxnet-mnist:v1beta1-45c5727 command: - "python3" - "/opt/mxnet-mnist/mnist.py" - "--batch-size=64" - "--num-layers=${trialParameters.numberLayers}" - "--optimizer=${trialParameters.optimizer}" - "--num-epochs=1" restartPolicy: Never ``` We should verify how [quantized_uniform](https://github.com/kubeflow/katib/blob/master/pkg/suggestion/v1beta1/chocolate/base_service.py#L62-L67) distribution works in Chocolate. For some reason, not all parameters are generated. cc @johnugeorge
closed
2021-08-24T15:37:05Z
2021-11-12T02:22:53Z
https://github.com/kubeflow/katib/issues/1636
[ "kind/bug" ]
andreyvelich
1
aminalaee/sqladmin
sqlalchemy
711
Use relative URLs instead of absolute URLs
### Checklist - [ ] The bug is reproducible against the latest release or `master`. - [X] There are no similar issues or pull requests to fix it yet. ### Describe the bug @aminalaee, I had configured the package with application correctly in http it working file but in production it showing the below error Mixed Content: The page at '' was loaded over HTTPS, but requested an insecure stylesheet ''. This request has been blocked; the content must be served over HTTPS. ### Steps to reproduce the bug _No response_ ### Expected behavior _No response_ ### Actual behavior _No response_ ### Debugging material _No response_ ### Environment Production ### Additional context _No response_
closed
2024-02-12T10:58:36Z
2024-02-20T20:44:53Z
https://github.com/aminalaee/sqladmin/issues/711
[]
tariqjamal057
3
fastapi/sqlmodel
pydantic
431
Decorator that sets all `SQLModel` fields to `Optional`
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options ๐Ÿ‘† ### Example Code ```python import sqlmodel class HeroBase(sqlmodel.SQLModel): name: str = sqlmodel.Field(index=True) secret_name: str age: Optional[int] = sqlmodel.Field(default=None, index=True) team_id: Optional[int] = sqlmodel.Field( default=None, foreign_key="team.id" ) class HeroUpdate(sqlmodel.SQLModel): name: Optional[str] = None secret_name: Optional[str] = None age: Optional[int] = None team_id: Optional[int] = None ``` ### Description It feels bad to define every field manually to `Optional`. (Also prompt to error) ### Wanted Solution It would be better to have some kind of decorator or something that allows to to this at runtime ### Wanted Code ```python import sqlmodel class HeroBase(sqlmodel.SQLModel): name: str = sqlmodel.Field(index=True) secret_name: str age: Optional[int] = sqlmodel.Field(default=None, index=True) team_id: Optional[int] = sqlmodel.Field( default=None, foreign_key="team.id" ) @sqlmodel.all_fields_to_optional class HeroUpdate(HeroBase): pass ``` ### Alternatives _No response_ ### Operating System Linux ### Operating System Details _No response_ ### SQLModel Version 0.0.8 ### Python Version Python 3.10.6 ### Additional Context _No response_
closed
2022-09-01T19:27:45Z
2022-11-28T13:21:52Z
https://github.com/fastapi/sqlmodel/issues/431
[ "feature" ]
Tomperez98
5
benbusby/whoogle-search
flask
1,102
[Request] Please remove my instance from the instance list - search.rubberverse.xyz
Hello! Well, coming with more or so sad news. I'm no longer hosting the Whoogle instance anymore. That said, please unlist search.rubberverse.xyz from the public instance list, thank you and good luck on your project!
closed
2023-12-01T17:19:52Z
2023-12-05T22:24:25Z
https://github.com/benbusby/whoogle-search/issues/1102
[]
MrRubberDucky
0
huggingface/datasets
machine-learning
6,948
to_tf_dataset: Visible devices cannot be modified after being initialized
### Describe the bug When trying to use to_tf_dataset with a custom data_loader collate_fn when I use parallelism I am met with the following error as many times as number of workers there were in ``num_workers``. File "/opt/miniconda/envs/env/lib/python3.11/site-packages/multiprocess/process.py", line 314, in _bootstrap self.run() File "/opt/miniconda/envs/env/lib/python3.11/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/opt/miniconda/envs/env/lib/python3.11/site-packages/datasets/utils/tf_utils.py", line 438, in worker_loop tf.config.set_visible_devices([], "GPU") # Make sure workers don't try to allocate GPU memory ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/miniconda/envs/env/lib/python3.11/site-packages/tensorflow/python/framework/config.py", line 566, in set_visible_devices context.context().set_visible_devices(devices, device_type) File "/opt/miniconda/envs/env/lib/python3.11/site-packages/tensorflow/python/eager/context.py", line 1737, in set_visible_devices raise RuntimeError( RuntimeError: Visible devices cannot be modified after being initialized ### Steps to reproduce the bug 1. Download a dataset using HuggingFace load_dataset 2. Define a function that transforms the data in some way to be used in the collate_fn argument 3. Provide a ``batch_size`` and ``num_workers`` value in the ``to_tf_dataset`` function 4. Either retrieve directly or use tfds benchmark to test the dataset ``` python from datasets import load_datasets import tensorflow_datasets as tfds from keras_cv.layers import Resizing def data_loader(examples): x = Resizing(examples[0]['image'], 256, 256, crop_to_aspect_ratio=True) return {X[0]: x} ds = load_datasets("logasja/FDF", split="test") ds = ds.to_tf_dataset(collate_fn=data_loader, batch_size=16, num_workers=2) tfds.benchmark(ds) ``` ### Expected behavior Use multiple processes to apply transformations from the collate_fn to the tf dataset on the CPU. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-6.5.0-1023-oracle-x86_64-with-glibc2.35 - Python version: 3.11.8 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0
open
2024-06-03T18:10:57Z
2024-06-03T18:10:57Z
https://github.com/huggingface/datasets/issues/6948
[]
logasja
0
xinntao/Real-ESRGAN
pytorch
669
Segfaults when executed out of directory
Weirdest bug I've ever seen, have to assume there's some funky shit going on in the executables.. Run the command from the directory: ./realesrgan-ncnn-vulkan -i ~/Downloads/MON263.png -o ~/Downloads/MON263x2.png -s 2 Runs absolutely fine, scales image in under 2 seconds. Run it outside of the directory: ./realesrgan-ncnn-vulkan-20220424-macos/realesrgan-ncnn-vulkan -i ~/Downloads/MON263.png -o ~/Downloads/MON263x2.png -s 2 zsh: segmentation fault ./realesrgan-ncnn-vulkan-20220424-macos/realesrgan-ncnn-vulkan -i -o -s 2 Segfaults. WTF is going on.
open
2023-08-06T10:44:51Z
2023-08-06T10:44:51Z
https://github.com/xinntao/Real-ESRGAN/issues/669
[]
kirkbushell
0
D4Vinci/Scrapling
web-scraping
54
Pass in args to `async_fetch` and `fetch`
### Have you searched if there an existing issue for this? - [x] I have searched the existing issues ### Python version (python --version) 3.12 ### Scrapling version (scrapling.__version__) 0.2.94 ### Dependencies version (pip3 freeze) ``` โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ โ”‚ name โ”‚ version โ”‚ location โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ aiohappyeyeballs โ”‚ 2.4.6 โ”‚ โ”‚ โ”‚ aiohttp โ”‚ 3.11.12 โ”‚ โ”‚ โ”‚ aiosignal โ”‚ 1.3.2 โ”‚ โ”‚ โ”‚ annotated-types โ”‚ 0.7.0 โ”‚ โ”‚ โ”‚ anyio โ”‚ 4.8.0 โ”‚ โ”‚ โ”‚ attrs โ”‚ 25.1.0 โ”‚ โ”‚ โ”‚ browserforge โ”‚ 1.2.3 โ”‚ โ”‚ โ”‚ camoufox โ”‚ 0.4.11 โ”‚ โ”‚ โ”‚ certifi โ”‚ 2024.12.14 โ”‚ โ”‚ โ”‚ charset-normalizer โ”‚ 3.4.1 โ”‚ โ”‚ โ”‚ click โ”‚ 8.1.8 โ”‚ โ”‚ โ”‚ cssselect โ”‚ 1.2.0 โ”‚ โ”‚ โ”‚ distro โ”‚ 1.9.0 โ”‚ โ”‚ โ”‚ fastapi โ”‚ 0.115.6 โ”‚ โ”‚ โ”‚ filelock โ”‚ 3.17.0 โ”‚ โ”‚ โ”‚ freezegun โ”‚ 1.5.1 โ”‚ โ”‚ โ”‚ frozenlist โ”‚ 1.5.0 โ”‚ โ”‚ โ”‚ greenlet โ”‚ 3.1.1 โ”‚ โ”‚ โ”‚ h11 โ”‚ 0.14.0 โ”‚ โ”‚ โ”‚ httpcore โ”‚ 1.0.7 โ”‚ โ”‚ โ”‚ httpx โ”‚ 0.28.1 โ”‚ โ”‚ โ”‚ idna โ”‚ 3.10 โ”‚ โ”‚ โ”‚ iniconfig โ”‚ 2.0.0 โ”‚ โ”‚ โ”‚ jiter โ”‚ 0.8.2 โ”‚ โ”‚ โ”‚ joblib โ”‚ 1.4.2 โ”‚ โ”‚ โ”‚ jsonpatch โ”‚ 1.33 โ”‚ โ”‚ โ”‚ jsonpointer โ”‚ 3.0.0 โ”‚ โ”‚ โ”‚ langchain โ”‚ 0.3.19 โ”‚ โ”‚ โ”‚ langchain-core โ”‚ 0.3.37 โ”‚ โ”‚ โ”‚ langchain-openai โ”‚ 0.3.6 โ”‚ โ”‚ โ”‚ langchain-text-splitters โ”‚ 0.3.6 โ”‚ โ”‚ โ”‚ langserve โ”‚ 0.3.1 โ”‚ โ”‚ โ”‚ langsmith โ”‚ 0.3.10 โ”‚ โ”‚ โ”‚ language-tags โ”‚ 1.2.0 โ”‚ โ”‚ โ”‚ lxml โ”‚ 5.3.1 โ”‚ โ”‚ โ”‚ multidict โ”‚ 6.1.0 โ”‚ โ”‚ โ”‚ mypy โ”‚ 1.14.1 โ”‚ โ”‚ โ”‚ mypy-extensions โ”‚ 1.0.0 โ”‚ โ”‚ โ”‚ nltk โ”‚ 3.9.1 โ”‚ โ”‚ โ”‚ numpy โ”‚ 2.2.3 โ”‚ โ”‚ โ”‚ openai โ”‚ 1.64.0 โ”‚ โ”‚ โ”‚ orjson โ”‚ 3.10.15 โ”‚ โ”‚ โ”‚ packaging โ”‚ 24.2 โ”‚ โ”‚ โ”‚ platformdirs โ”‚ 4.3.6 โ”‚ โ”‚ โ”‚ playwright โ”‚ 1.50.0 โ”‚ โ”‚ โ”‚ pluggy โ”‚ 1.5.0 โ”‚ โ”‚ โ”‚ propcache โ”‚ 0.3.0 โ”‚ โ”‚ โ”‚ pydantic โ”‚ 2.10.5 โ”‚ โ”‚ โ”‚ pydantic-partial โ”‚ 0.7.0 โ”‚ โ”‚ โ”‚ pydantic_core โ”‚ 2.27.2 โ”‚ โ”‚ โ”‚ pyee โ”‚ 12.0.0 โ”‚ โ”‚ โ”‚ PyJWT โ”‚ 2.10.1 โ”‚ โ”‚ โ”‚ PySocks โ”‚ 1.7.1 โ”‚ โ”‚ โ”‚ pytest โ”‚ 8.3.4 โ”‚ โ”‚ โ”‚ pytest-asyncio โ”‚ 0.25.2 โ”‚ โ”‚ โ”‚ python-dateutil โ”‚ 2.9.0.post0 โ”‚ โ”‚ โ”‚ python-dotenv โ”‚ 1.0.1 โ”‚ โ”‚ โ”‚ python-multipart โ”‚ 0.0.20 โ”‚ โ”‚ โ”‚ pytz โ”‚ 2025.1 โ”‚ โ”‚ โ”‚ PyYAML โ”‚ 6.0.2 โ”‚ โ”‚ โ”‚ rebrowser_playwright โ”‚ 1.49.1 โ”‚ โ”‚ โ”‚ regex โ”‚ 2024.11.6 โ”‚ โ”‚ โ”‚ requests โ”‚ 2.32.3 โ”‚ โ”‚ โ”‚ requests-file โ”‚ 2.1.0 โ”‚ โ”‚ โ”‚ requests-toolbelt โ”‚ 1.0.0 โ”‚ โ”‚ โ”‚ scrapling โ”‚ 0.2.94 โ”‚ โ”‚ โ”‚ screeninfo โ”‚ 0.8.1 โ”‚ โ”‚ โ”‚ six โ”‚ 1.17.0 โ”‚ โ”‚ โ”‚ sniffio โ”‚ 1.3.1 โ”‚ โ”‚ โ”‚ SQLAlchemy โ”‚ 2.0.38 โ”‚ โ”‚ โ”‚ sqlalchemy-stubs โ”‚ 0.4 โ”‚ โ”‚ โ”‚ sse-starlette โ”‚ 1.8.2 โ”‚ โ”‚ โ”‚ starlette โ”‚ 0.41.3 โ”‚ โ”‚ โ”‚ stripe โ”‚ 11.6.0 โ”‚ โ”‚ โ”‚ tenacity โ”‚ 9.0.0 โ”‚ โ”‚ โ”‚ tiktoken โ”‚ 0.9.0 โ”‚ โ”‚ โ”‚ tldextract โ”‚ 5.1.3 โ”‚ โ”‚ โ”‚ tqdm โ”‚ 4.67.1 โ”‚ โ”‚ โ”‚ typing_extensions โ”‚ 4.12.2 โ”‚ โ”‚ โ”‚ ua-parser โ”‚ 1.0.1 โ”‚ โ”‚ โ”‚ ua-parser-builtins โ”‚ 0.18.0.post1 โ”‚ โ”‚ โ”‚ urllib3 โ”‚ 2.3.0 โ”‚ โ”‚ โ”‚ uvicorn โ”‚ 0.34.0 โ”‚ โ”‚ โ”‚ w3lib โ”‚ 2.3.1 โ”‚ โ”‚ โ”‚ yarl โ”‚ 1.18.3 โ”‚ โ”‚ โ”‚ zstandard โ”‚ 0.23.0 โ”‚ โ”‚ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ ``` ### What's your operating system? Windows 11 ### Are you using a separate virtual environment? Yes ### Expected behavior I need to be able to pass in a list of args in the `async_fetch` and `fetch` of the `StealthyFetcher` Even being able to pass in a list of `args` for the call to `with AsyncCamoufox() as browser` would be nice, so you could pass `with AsyncCamoufox(...rest of arguments, args=args)` Ex: ``` async def async_fetch( self, url: str, **kwargs # Catch any additional keyword arguments ) -> Response: """Opens up the browser and does your request based on your chosen options. :param url: Target URL. :param kwargs: Additional keyword arguments for flexible configuration. :return: A `Response` object that is the same as `Adaptor` object except it has these added attributes: `status`, `reason`, `cookies`, `headers`, and `request_headers`. """ # Default value for 'addons' if not provided in kwargs addons = [] if self.disable_ads else [DefaultAddons.UBO] # Store the final response final_response = None async def handle_response(finished_response): nonlocal final_response if finished_response.request.resource_type == "document" and finished_response.request.is_navigation_request(): final_response = finished_response camoufox_options = { 'geoip': self.geoip, 'proxy': self.proxy, 'enable_cache': True, 'addons': self.addons, 'exclude_addons': addons, 'headless': self.headless, 'humanize': self.humanize, 'i_know_what_im_doing': True, # To turn warnings off with user configurations 'allow_webgl': self.allow_webgl, 'block_webrtc': self.block_webrtc, 'block_images': self.block_images, 'os': None if self.os_randomize else get_os_name(), } camoufox_options.update(kwargs) async with AsyncCamoufox(**camoufox_options) as browser: ``` ### Actual behavior Can not pass in extra args. ### Steps To Reproduce _No response_
open
2025-03-24T00:10:23Z
2025-03-24T15:15:09Z
https://github.com/D4Vinci/Scrapling/issues/54
[ "enhancement" ]
jaypyles
2
skforecast/skforecast
scikit-learn
137
Bayesian Optimization
I am trying to tune the model using scikit-optimize. But a bunch of errors are coming up. I think it is a good idea to implement bayesian search for this library too.
closed
2022-04-07T09:26:52Z
2022-09-24T09:25:25Z
https://github.com/skforecast/skforecast/issues/137
[ "question" ]
CalenDario13
11
sqlalchemy/alembic
sqlalchemy
1,315
Alembic doesn't detect adding unique constraints
**Describe the bug** Alembic doesn't detect adding unique constraints. Hint, I'm not using default schema. **Expected behavior** if I add `unique=True` for single-columns or `UniqueConstraint("col1", "col2")` into `__table_args__` it should generate the unique constraints into migration-file **To Reproduce** I'm using tiangolo sqlmodel and in my database-model I wanted to add unique-constraints, so one is kind of a business-key and the other is for mapping tables - both aren't recognized by alembic. The one for the business-key is in a base-table (because all non-mapping-tables inherit from this class) and looks like this: ```python class BusinessKeyModel(PydanticBase): businessKey: Optional[str] = Field( alias="businessKey", max_length=255, description=DescriptionConstants.BUSINESS_KEY, nullable=True, unique=True # <-- added this before generating new migration ) class BaseTableModel(SQLModel, BusinessKeyModel): ... class User(GUIDModel, BaseTableModel): guid: Optional[UUID] = Field( ..., primary_key=True, description=DescriptionConstants.GUID, sa_column=Column( "guid", UNIQUEIDENTIFIER, nullable=False, primary_key=True, server_default=text("newsequentialid()"), ), ) ``` so when I now add `unique=True` to the BusinessKeyModel.businessKey and try to generate a new migration with alembic, (with autogenerate) it doesn't detect the changes. Same goes for my mapping-tables, after I added `UniqueConstraint` into my `__table_args__` I think it should detect the changes: ```python class UserRoleMappingBase(BaseMappingModel, GUIDModel): userId: UUID roleId: UUID class UserRoleMapping(UserRoleMappingBase, table=True): __table_args__ = ( UniqueConstraint("userId", "roleId"), # <-- added this before generating new migration {"schema": "dbx_v2"} ) ``` **Versions.** - OS: Mac Ventura 13... - Python: 3.9 - Alembic: 1.10.2 - SQLAlchemy: 1.4.41 - Database: SQL Server - DBAPI: **Have a nice day!** Have a nice day too :)
closed
2023-09-22T08:04:23Z
2023-09-22T08:32:29Z
https://github.com/sqlalchemy/alembic/issues/1315
[ "Microsoft SQL Server" ]
matthiasburger
1
deepset-ai/haystack
machine-learning
8,093
docs: clean up docstrings of AnswerBuilder
closed
2024-07-26T12:35:58Z
2024-07-30T09:06:41Z
https://github.com/deepset-ai/haystack/issues/8093
[]
dfokina
0
ivy-llc/ivy
numpy
28,187
Fix Ivy Failing Test: paddle - creation.ones_like
closed
2024-02-05T13:18:51Z
2024-02-10T12:25:57Z
https://github.com/ivy-llc/ivy/issues/28187
[ "Sub Task" ]
MuhammadNizamani
1
kennethreitz/responder
flask
28
GraphiQL integration
I've noticed some TODO-s mentioning GraphiQL in the code. Does it make sense to integrate it at this point, or is it too soon? I would be up for taking a crack at it, if @kennethreitz gives me a thumbs up.
closed
2018-10-13T13:43:54Z
2018-10-17T09:35:02Z
https://github.com/kennethreitz/responder/issues/28
[ "feature" ]
artemgordinskiy
4