repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
widgetti/solara
jupyter
965
Issue with custom_exceptions and astropy
The following demonstrates the issue: ```python python -m venv clean source clean/bin/activate pip install solara[pytest] astropy echo 'import astropy' > test.py pytest test.py ``` the output is: ``` ______________________________________________________________________________ ERROR collecting test.py ______________________________________________________________________________ test.py:1: in <module> import astropy clean/lib/python3.11/site-packages/astropy/__init__.py:176: in <module> log = _init_log() clean/lib/python3.11/site-packages/astropy/logger.py:122: in _init_log log._set_defaults() clean/lib/python3.11/site-packages/astropy/logger.py:499: in _set_defaults if self.exception_logging_enabled(): clean/lib/python3.11/site-packages/astropy/logger.py:321: in exception_logging_enabled return _AstLogIPYExc in get_ipython().custom_exceptions E AttributeError: 'NoneType' object has no attribute 'custom_exceptions' ============================================================================== short test summary info =============================================================================== ERROR test.py - AttributeError: 'NoneType' object has no attribute 'custom_exceptions' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Interrupted: 1 error during collection !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ================================================================================== 1 error in 0.14s ================================================================================== ``` This doesn't happen if we don't install solara into the test environment.
closed
2025-01-10T12:41:37Z
2025-01-29T13:53:15Z
https://github.com/widgetti/solara/issues/965
[]
astrofrog
2
alteryx/featuretools
data-science
1,865
Update to support pandas 1.4.0
The max pandas version has been restricted due to test failures that were introduced with version 1.4.0 of pandas. We should update to support this new version of pandas. Note, this will also require dropping support for Python 3.7, as pandas 1.4.0 no longer supports Python 3.7.
closed
2022-01-24T15:20:17Z
2022-02-09T15:05:11Z
https://github.com/alteryx/featuretools/issues/1865
[]
thehomebrewnerd
2
ipython/ipython
jupyter
14,372
Run magic on module fails with debug flag (`%run -d -m my_module`)
<!-- This is the repository for IPython command line, if you can try to make sure this question/bug/feature belong here and not on one of the Jupyter repositories. If it's a generic Python/Jupyter question, try other forums or discourse.jupyter.org. If you are unsure, it's ok to post here, though, there are few maintainer so you might not get a fast response. --> Decided to port some code to run as a module with a `__main__.py` file, but now when I try to debug it using `%run -d -m my_module`, I get the following error: ``` End of file End of file End of file End of file End of file End of file End of file End of file End of file End of file End of file UsageError: I failed to find a valid line to set a breakpoint after trying up to line: 11. Please set a valid breakpoint manually with the -b option. ``` I changed my `__main__.py` to just be a single print statement and still got the error. I set the breakpoint manually using `%run -d -b my_module/__main__.py:1 -m my_module` and then the code ran but didn't ever break. In general it just seems like `-d` and `-m` don't play well together.
open
2024-03-21T12:18:57Z
2024-10-24T20:28:04Z
https://github.com/ipython/ipython/issues/14372
[]
carschandler
2
davidsandberg/facenet
computer-vision
1,164
TypeError: Cannot create initializer for non-floating point type.
Trying to train with the Cassia Webface dataset. with the following command: `python src/train_tripletloss.py --logs_base_dir ~/logs/facenet/ --models_base_dir ./Models/new/ --data_dir ./Dataset/processed --image_size 160 --lfw_dir ./lfw --optimizer RMSPROP --learning_rate 0.01 --weight_decay 1e-4 --max_nrof_epochs 500 --pretrained_model ./Models/facenet/20180402-114759.pb` Getting the following error: ``` Traceback (most recent call last): File "src/train_tripletloss.py", line 486, in <module> main(parse_arguments(sys.argv[1:])) File "src/train_tripletloss.py", line 134, in main weight_decay=args.weight_decay) File "D:\facenet-master\src\models\inception_resnet_v1.py", line 149, in inference dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse) File "D:\facenet-master\src\models\inception_resnet_v1.py", line 180, in inception_resnet_v1 scope='Conv2d_1a_3x3') File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\framework\python\ops\arg_scope.py", line 182, in func_with_args return func(*args, **current_args) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\layers\python\layers\layers.py", line 1159, in convolution2d conv_dims=2) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\framework\python\ops\arg_scope.py", line 182, in func_with_args return func(*args, **current_args) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\layers\python\layers\layers.py", line 1057, in convolution outputs = layer.apply(inputs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\util\deprecation.py", line 324, in new_func return func(*args, **kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 1700, in apply return self.__call__(inputs, *args, **kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\layers\base.py", line 548, in __call__ outputs = super(Layer, self).__call__(inputs, *args, **kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 824, in __call__ self._maybe_build(inputs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 2146, in _maybe_build self.build(input_shapes) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\layers\convolutional.py", line 165, in build dtype=self.dtype) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\layers\base.py", line 461, in add_weight **kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 529, in add_weight aggregation=aggregation) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\training\tracking\base.py", line 712, in _add_variable_with_custom_getter **kwargs_for_getter) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 1500, in get_variable aggregation=aggregation) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 1243, in get_variable aggregation=aggregation) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 550, in get_variable return custom_getter(**custom_getter_kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\layers\python\layers\layers.py", line 1761, in layer_variable_getter return _model_variable_getter(getter, *args, **kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\layers\python\layers\layers.py", line 1752, in _model_variable_getter aggregation=aggregation) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\framework\python\ops\arg_scope.py", line 182, in func_with_args return func(*args, **current_args) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\framework\python\ops\variables.py", line 351, in model_variable aggregation=aggregation) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\framework\python\ops\arg_scope.py", line 182, in func_with_args return func(*args, **current_args) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\framework\python\ops\variables.py", line 281, in variable aggregation=aggregation) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 519, in _true_getter aggregation=aggregation) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 933, in _get_single_variable aggregation=aggregation) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variables.py", line 258, in __call__ return cls._variable_v1_call(*args, **kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variables.py", line 219, in _variable_v1_call shape=shape) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variables.py", line 197, in <lambda> previous_getter = lambda **kwargs: default_variable_creator(None, **kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 2519, in default_variable_creator shape=shape) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variables.py", line 262, in __call__ return super(VariableMetaclass, cls).__call__(*args, **kwargs) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variables.py", line 1688, in __init__ shape=shape) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variables.py", line 1818, in _init_from_args initial_value(), name="initial_value", dtype=dtype) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 905, in <lambda> partition_info=partition_info) File "C:\Users\MSI\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\contrib\layers\python\layers\initializers.py", line 120, in _initializer raise TypeError('Cannot create initializer for non-floating point type.') TypeError: Cannot create initializer for non-floating point type. ```
closed
2020-07-21T00:21:10Z
2023-11-03T10:31:47Z
https://github.com/davidsandberg/facenet/issues/1164
[]
Asif1405
3
ckan/ckan
api
8,560
Patch releases December 2024
This is an issue to track progress on the patch releases scheduled for **11th December 2024** (2.10.6 and 2.11.1) [Full docs](http://docs.ckan.org/en/latest/contributing/release-process.html) ### Preparing * [x] [Backports](https://github.com/ckan/ckan/labels/Backport%20dev-v2.11) * [x] Security issues * [x] Translations * [x] Rebuild Frontend * [x] Changelog ### Release day * [x] Change version and tag * [x] PyPI * [x] Create GitHub release * [x] Update docs (RTD) * [x] Build Docker images * [x] Build and upload deb packages * [x] Cherry-pick i18n and changelog changes to master * [x] Announce
closed
2024-12-02T14:29:03Z
2024-12-11T12:54:43Z
https://github.com/ckan/ckan/issues/8560
[ "Releases" ]
amercader
1
proplot-dev/proplot
data-visualization
267
Error in some geographic plots
### Description Some basic geographic plots cannot be plotted with proplot 0.7. Originally, I found that some values are not covered by the automatic colorbar levels in geographic plots. Some large values are not colored unless `vmin` and `vmax` are explicitly defined. I couldn't reproduce this error in a simple example but I guess it's related to this issue as we can see from the error message. ### Steps to reproduce ```python import xarray as xr import proplot as pplt ds = xr.tutorial.open_dataset('air_temperature').load() fig, ax = pplt.subplots(proj='cyl') #fig, ax = pplt.subplots(proj='eqearth') # This works ax.format(coast=True) ax.contourf(ds.isel(time=0)['air']) ``` **Actual behavior**: [What actually happened] ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-3-92d29737d5eb> in <module> 6 fig, ax = pplt.subplots(proj='cyl') 7 ax.format(coast=True) ----> 8 ax.contourf(ds.isel(time=0)['air']) ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/ui.py in _iterator(*args, **kwargs) 780 result = [] 781 for func in objs: --> 782 result.append(func(*args, **kwargs)) 783 if len(self) == 1: 784 return result[0] ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/axes/plot.py in <lambda>(self, _func, _method, *args, **kwargs) 4468 method = functools.wraps(method)( 4469 lambda self, *args, _func=func, _method=method, **kwargs: -> 4470 _func(self, *args, _method=_method, **kwargs) 4471 ) 4472 ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/axes/plot.py in default_transform(self, transform, *args, **kwargs) 521 if transform is None: 522 transform = PlateCarree() --> 523 return method(self, *args, transform=transform, **kwargs) 524 525 ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/axes/plot.py in <lambda>(self, _func, _method, *args, **kwargs) 4468 method = functools.wraps(method)( 4469 lambda self, *args, _func=func, _method=method, **kwargs: -> 4470 _func(self, *args, _method=_method, **kwargs) 4471 ) 4472 ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/axes/plot.py in standardize_2d(self, data, autoformat, order, globe, *args, **kwargs) 1270 1271 # Call function -> 1272 return method(self, x, y, *zs, **kwargs) 1273 1274 ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/axes/plot.py in <lambda>(self, _func, _method, *args, **kwargs) 4468 method = functools.wraps(method)( 4469 lambda self, *args, _func=func, _method=method, **kwargs: -> 4470 _func(self, *args, _method=_method, **kwargs) 4471 ) 4472 ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/internals/warnings.py in deprecate_kwargs(*args, **kwargs) 102 'removed in the next major release. Please use {key_new!r} instead.' 103 ) --> 104 return func_orig(*args, **kwargs) 105 return deprecate_kwargs 106 return decorator ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/axes/plot.py in apply_cmap(self, cmap, cmap_kw, norm, norm_kw, extend, levels, N, values, vmin, vmax, locator, locator_kw, symmetric, positive, negative, nozero, discrete, edgefix, labels, labels_kw, fmt, precision, inbounds, colorbar, colorbar_kw, *args, **kwargs) 3478 else: 3479 kw.update(levels=levels, values=values, cmap=cmap, minlength=2 - int(contour)) -> 3480 norm, cmap, levels, ticks = _build_discrete_norm(self, *args, **kw) 3481 3482 # Call function with correct keyword args ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/axes/plot.py in _build_discrete_norm(self, levels, values, cmap, norm, norm_kw, extend, vmin, vmax, minlength, *args, **kwargs) 3158 else: 3159 # Determine levels automatically -> 3160 levels, locator = _auto_levels_locator( 3161 self, *args, N=levels, norm=norm, vmin=vmin, vmax=vmax, extend=extend, **kwargs # noqa: E501 3162 ) ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/proplot/axes/plot.py in _auto_levels_locator(self, N, norm, norm_kw, extend, vmin, vmax, locator, locator_kw, symmetric, positive, negative, nozero, inbounds, centers, counts, *args) 2962 z = ma.masked_invalid(z, copy=False) 2963 if automin: -> 2964 vmin = float(z.min()) 2965 if automax: 2966 vmax = float(z.max()) ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/numpy/ma/core.py in min(self, axis, out, fill_value, keepdims) 5698 # No explicit output 5699 if out is None: -> 5700 result = self.filled(fill_value).min( 5701 axis=axis, out=out, **kwargs).view(type(self)) 5702 if result.ndim: ~/miniconda3/envs/basicf4/lib/python3.8/site-packages/numpy/core/_methods.py in _amin(a, axis, out, keepdims, initial, where) 42 def _amin(a, axis=None, out=None, keepdims=False, 43 initial=_NoValue, where=True): ---> 44 return umr_minimum(a, axis, None, out, keepdims, initial, where) 45 46 def _sum(a, axis=None, dtype=None, out=None, keepdims=False, ValueError: zero-size array to reduction operation minimum which has no identity ``` ### Proplot version matplotlib 3.3.4 proplot 0.7.0
closed
2021-08-05T21:26:40Z
2021-08-18T20:45:18Z
https://github.com/proplot-dev/proplot/issues/267
[ "bug" ]
kinyatoride
1
coqui-ai/TTS
deep-learning
3,000
[Bug] AttributeError: 'VoiceBpeTokenizer' object has no attribute 'preprocess'
### Describe the bug When I execute the hugging face demo (https://huggingface.co/spaces/Olivier-Truong/XTTS_V1_CPU_working) on my local pc it loads the model fine and it opens a web gui on localhost. However, when I select an audio and type some text and click on the submit button to start the voice cloning process. The demo shows processing for few seconds then gives an attribute error . (I'm trying to run XTTS V1). ### To Reproduce 1. python3 app.py ( The hugging face space app script) 2. Traceback (most recent call last): File "/usr/local/lib/python3.9/dist-packages/gradio/routes.py", line 488, in run_predict output = await app.get_blocks().process_api( File "/usr/local/lib/python3.9/dist-packages/gradio/blocks.py", line 1431, in process_api result = await self.call_function( File "/usr/local/lib/python3.9/dist-packages/gradio/blocks.py", line 1103, in call_function prediction = await anyio.to_thread.run_sync( File "/usr/local/lib/python3.9/dist-packages/anyio/to_thread.py", line 33, in run_sync return await get_asynclib().run_sync_in_worker_thread( File "/usr/local/lib/python3.9/dist-packages/anyio/_backends/_asyncio.py", line 877, in run_sync_in_worker_thread return await future File "/usr/local/lib/python3.9/dist-packages/anyio/_backends/_asyncio.py", line 807, in run result = context.run(func, *args) File "/usr/local/lib/python3.9/dist-packages/gradio/utils.py", line 707, in wrapper response = f(*args, **kwargs) File "/home/test/XTTS_V1_CPU_working/app.py", line 49, in predict tts.tts_to_file( File "/home/test/.local/lib/python3.9/site-packages/TTS/api.py", line 390, in tts_to_file wav = self.tts(text=text, speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs) File "/home/test/.local/lib/python3.9/site-packages/TTS/api.py", line 337, in tts wav = self.synthesizer.tts( File "/home/test/.local/lib/python3.9/site-packages/TTS/utils/synthesizer.py", line 375, in tts outputs = self.tts_model.synthesize( File "/home/test/.local/lib/python3.9/site-packages/TTS/tts/models/xtts.py", line 428, in synthesize return self.inference_with_config(text, config, ref_audio_path=speaker_wav, language=language, **kwargs) File "/home/test/.local/lib/python3.9/site-packages/TTS/tts/models/xtts.py", line 450, in inference_with_config return self.inference(text, ref_audio_path, language, **settings) File "/usr/local/lib/python3.9/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/home/test/.local/lib/python3.9/site-packages/TTS/tts/models/xtts.py", line 529, in inference text_tokens = torch.IntTensor(self.tokenizer.encode(text, lang=language)).unsqueeze(0).to(self.device) File "/home/test/.local/lib/python3.9/site-packages/TTS/tts/layers/xtts/tokenizer.py", line 274, in encode if self.preprocess: AttributeError: 'VoiceBpeTokenizer' object has no attribute 'preprocess' ### Expected behavior _No response_ ### Logs _No response_ ### Environment ```shell Python version = 3.10.3 Tts = 0.17. 5 Pytorch version = latest transformers and numpy versions = latest Ram available is 16gb ram GPU is gtx 1050 ti which has 4gb Vram It's an intel i7 7th gen laptop (I'm running this as CPU only on a kali Linux machine in virtualbox with 14gb ram. Your_TTS runs very well on this same machine. ``` ### Additional context _No response_
closed
2023-09-26T16:29:01Z
2023-09-28T09:55:33Z
https://github.com/coqui-ai/TTS/issues/3000
[ "bug" ]
Lenos500
3
sunscrapers/djoser
rest-api
646
Is there a way to customize HTTP Response Content (More Specifically, Code)?
For Password Reset, `POST http://localhost:8000/auth/users/reset_password/`, 1. First of all, the response header doesn't seem to tell me whether user is already registered or not. Of course the password reset link only gets send to the ones who are registered, but is there some other way to automatically tell if user is registered beforehand? 2. One idea for 1 is to return a customized HTTP response, or at least change the HTTP Code. So far, regardless of whether user is registered, the response code is `204`, the response headers are always the same, and there's no response body. Can we customized this? Thanks! -------- Edit: It looks like, in `djoser/djoser/views.py`, line 236-247: ```py @action(["post"], detail=False) def reset_password(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) user = serializer.get_user() if user: context = {"user": user} to = [get_user_email(user)] settings.EMAIL.password_reset(self.request, context).send(to) return Response(status=status.HTTP_204_NO_CONTENT) ``` The function would return the same response regardless of user exists... is there a way to customize/overwrite this? (Or would it be allowed to add another return statement under the if statement with different status?)
closed
2022-01-08T00:38:44Z
2022-01-12T22:52:44Z
https://github.com/sunscrapers/djoser/issues/646
[]
anonymousDog12
4
gevent/gevent
asyncio
1,434
AttributeError: '_wrefsocket' object has no attribute 'read'
* gevent version: 0.4.15 * Python version: Python 3.6.4 * Operating System: Windows 10 Home x64 ### Description: I'm trying to listen to a socket, created from the socket class in gevent.socket. This works fine with small payloads, yet breaks for large ones, which would at first leave me to believe this is an error on my side. However, the traceback in incredibly bizzare, at least to me. ``` Connection Made! Traceback (most recent call last): File "src\gevent\greenlet.py", line 766, in gevent._greenlet.Greenlet.run File "C:\Users\User\PycharmProjects\zoey\zoey\chain.py", line 112, in collect_frames frame = Frame.load(self.client.socket) File "C:\Users\User\PycharmProjects\zoey\zoey\framing.py", line 70, in load code_header = unpack_from("!B", stream)[0] File "C:\Users\User\PycharmProjects\zoey\zoey\framing.py", line 15, in unpack_from data = stream.read(size) File "C:\Users\User\PycharmProjects\zoey\venv\lib\site-packages\gevent\_socket3.py", line 128, in __getattr__ return getattr(self._sock, name) AttributeError: '_wrefsocket' object has no attribute 'read' 2019-06-30T03:32:08Z <Greenlet at 0x443dd78: <bound method WSConstructor.collect_frames of <zoey.chain.WSConstructor object at 0x03A9F7B0>>> failed with AttributeError ``` ### What I've run: Here is a static URL to the repository with the code I've run. I run the `test.py` file in the root directory. The socket is created in `zoey/client.py` file but is used in the `zoey/framing.py`. https://github.com/Zwork101/Zoey/tree/bc0d5d927e4306b4d54fdf6cb0d868293849bf45 Any help would be greatly appreciated. I tried to look for previous similar issue but couldn't find anything, maybe I didn't look hard enough.
closed
2019-06-30T03:35:56Z
2019-06-30T12:38:43Z
https://github.com/gevent/gevent/issues/1434
[ "Type: Question" ]
Zwork101
2
qubvel-org/segmentation_models.pytorch
computer-vision
138
Related paper?
do you have any research paper written on this library?i want to write a paper where my experiments are based on this library but i don't know how to cite your models?
closed
2020-02-03T07:42:20Z
2020-02-06T15:24:42Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/138
[ "question" ]
mobassir94
1
openapi-generators/openapi-python-client
rest-api
1,030
Duplicate key in Enum when using both lowercase and uppercase strings
**Describe the bug** enums are case-sensitive in OpenAPI spec[[1](https://stackoverflow.com/questions/60772786/case-insensitive-string-parameter-in-schema-of-openapi)] but the openapi generator does not treat them that way. When I try to use both lowercase and uppercase values in enum like so: ``` components: schemas: DocumentType: type: string enum: [txt, TXT] ``` I get this error: ``` Traceback (most recent call last): File "/Users/xxx/.local/bin/openapi-python-client", line 8, in <module> sys.exit(app()) ^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/cli.py", line 175, in update errors = update_existing_client( ^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/__init__.py", line 336, in update_existing_client project = _get_project_for_url_or_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/__init__.py", line 295, in _get_project_for_url_or_path openapi = GeneratorData.from_dict(data_dict, config=config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/parser/openapi.py", line 503, in from_dict schemas = build_schemas(components=openapi.components.schemas, schemas=schemas, config=config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/parser/properties/__init__.py", line 386, in build_schemas schemas = _create_schemas(components=components, schemas=schemas, config=config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/parser/properties/__init__.py", line 307, in _create_schemas schemas_or_err = update_schemas_with_data(ref_path=ref_path, data=data, schemas=schemas, config=config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/parser/properties/schemas.py", line 114, in update_schemas_with_data prop, schemas = property_from_data( ^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/parser/properties/__init__.py", line 178, in property_from_data return EnumProperty.build( ^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/parser/properties/enum_property.py", line 124, in build values = EnumProperty.values_from_list(value_list) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/xxx/.local/pipx/venvs/openapi-python-client/lib/python3.12/site-packages/openapi_python_client/parser/properties/enum_property.py", line 203, in values_from_list raise ValueError(f"Duplicate key {key} in Enum") ValueError: Duplicate key TXT in Enum ``` **OpenAPI Spec File** see above **Desktop (please complete the following information):** - OS: macOS 15.x - Python Version: 3.12 - openapi-python-client version 0.19.1
open
2024-04-18T18:13:02Z
2024-04-18T18:13:02Z
https://github.com/openapi-generators/openapi-python-client/issues/1030
[]
siddhsql
0
pytest-dev/pytest-cov
pytest
14
TypeError: %d format: a number is required, not NoneType
I get this exception. Versions: pytest==2.5.2 pytest-cov==1.7.0 Python 2.7.3 Please tell me, if you need further information to solve this. Thank you ``` Traceback (most recent call last): File "/localhome/foo_vums_dtg/bin/py.test", line 9, in <module> load_entry_point('pytest==2.5.2', 'console_scripts', 'py.test')() File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/config.py", line 20, in main return config.hook.pytest_cmdline_main(config=config) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 377, in __call__ return self._docall(methods, kwargs) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 388, in _docall res = mc.execute() File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 289, in execute res = method(**kwargs) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/main.py", line 112, in pytest_cmdline_main return wrap_session(config, _main) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/main.py", line 105, in wrap_session exitstatus=session.exitstatus) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 377, in __call__ return self._docall(methods, kwargs) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 388, in _docall res = mc.execute() File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 289, in execute res = method(**kwargs) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/terminal.py", line 338, in pytest_sessionfinish self.config.hook.pytest_terminal_summary(terminalreporter=self) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 377, in __call__ return self._docall(methods, kwargs) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 388, in _docall res = mc.execute() File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/_pytest/core.py", line 289, in execute res = method(**kwargs) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/pytest_cov.py", line 130, in pytest_terminal_summary self.cov_controller.summary(terminalreporter._tw) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/cov_core.py", line 166, in summary CovController.summary(self, stream) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/cov_core.py", line 123, in summary self.cov.html_report(ignore_errors=True) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/control.py", line 662, in html_report return reporter.report(morfs) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/html.py", line 113, in report self.report_files(self.html_file, morfs, self.config.html_dir) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/report.py", line 84, in report_files report_fn(cu, self.coverage._analyze(cu)) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/control.py", line 592, in _analyze return Analysis(self, it) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/results.py", line 24, in __init__ self.statements, self.excluded = self.parser.parse_source() File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/parser.py", line 210, in parse_source self._raw_parse() File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/parser.py", line 167, in _raw_parse self.statement_starts.update(self.byte_parser._find_statements()) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/parser.py", line 73, in _get_byte_parser ByteParser(text=self.text, filename=self.filename) File "/localhome/foo_vums_dtg/local/lib/python2.7/site-packages/coverage/parser.py", line 354, in __init__ (filename, synerr.msg, synerr.lineno) TypeError: %d format: a number is required, not NoneType foo_vums_dtg@berry:~$ ```
closed
2014-07-14T09:43:36Z
2014-08-15T12:47:56Z
https://github.com/pytest-dev/pytest-cov/issues/14
[ "invalid" ]
guettli
2
albumentations-team/albumentations
deep-learning
2,059
[Documentation] Doc on mapping from torchaudio to Albumentations
Was told that noone is using Albumentation in the audio community, although all transforms from torchaudio exist in Albumentations, although may have different names. Need document / blog post.
open
2024-11-05T22:47:38Z
2024-11-05T22:54:54Z
https://github.com/albumentations-team/albumentations/issues/2059
[ "good first issue", "documentation" ]
ternaus
0
widgetti/solara
jupyter
1,004
Having problem with `use_change`
I am trying to build a python console on the web using Solara but having problems with implementing `use_change` correctly. Here is my python file: ```python from typing import Callable, List, Tuple, cast import ipyvue import solara import sys import io import code from solara.components.input import use_change class Interpreter(code.InteractiveInterpreter): def __init__(self): super().__init__() self.output_buffer = io.StringIO() def run_code(self, command: str) -> str: """Execute code and capture output including errors.""" if not command.strip(): return "" sys.stdout = self.output_buffer sys.stderr = self.output_buffer try: result = self.runsource(command) output = self.output_buffer.getvalue() return output.strip() if output else "" except Exception as e: error_output = self.output_buffer.getvalue() if error_output: return error_output return f"{type(e).__name__}: {str(e)}" finally: sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ self.output_buffer.truncate(0) self.output_buffer.seek(0) class ConsoleHistory: def __init__(self): self.history: List[Tuple[str, str]] = [] def add_entry(self, command: str, output: str) -> None: self.history.append((f">>> {command}", output)) def clear(self) -> None: self.history.clear() def get_entries(self) -> List[Tuple[str, str]]: return self.history class OutputFormatter: @staticmethod def format_error_output(output: str) -> str: """Clean up error output to display only the relevant error message.""" if not output: return "" error_lines = output.strip().splitlines() if len(error_lines) >= 1: for line in reversed(error_lines): if "line" in line and "File" in line: continue if ": " in line: return line.strip() return output @staticmethod def format_entry(command: str, result: str) -> str: """Format a single console entry for display.""" escaped_result = result.replace("<", "&lt;").replace(">", "&gt;") is_error = any(err in result for err in [ "Error", "Exception", "TypeError", "ValueError", "NameError", "ZeroDivisionError" ]) if result: return f""" <div style="margin: 0px 0 0 0;"> <div style="background-color: #f5f5f5; padding: 6px 8px; border-radius: 4px; font-family: 'Consolas', monospace; font-size: 0.9em;"> <span style="color: #2196F3;">{">>> "}</span><span>{command.removeprefix(">>> ")}</span> </div> <div style="background-color: #ffffff; padding: 6px 8px; border-left: 3px solid {'#ff3860' if is_error else '#2196F3'}; margin-top: 2px; font-family: 'Consolas', monospace; font-size: 0.9em; {'color: #ff3860;' if is_error else ''}"> {escaped_result} </div> </div> """ else: return f""" <div style="margin: 0px 0 0 0;"> <div style="background-color: #f5f5f5; padding: 6px 8px; border-radius: 4px; font-family: 'Consolas', monospace; font-size: 0.9em;"> <span style="color: #2196F3;">{">>> "}</span><span>{command.removeprefix(">>> ")}</span> </div> </div> """ class ConsoleManager: def __init__(self): self.interpreter = Interpreter() self.history = ConsoleHistory() self.formatter = OutputFormatter() def execute_code(self, input_text: str, set_input_text: Callable) -> None: """Execute code and update history with cleaned output.""" if input_text.strip(): output = self.interpreter.run_code(input_text) cleaned_output = self.formatter.format_error_output(output) if "Traceback" in cleaned_output: cleaned_output = cleaned_output.splitlines()[-1] self.history.add_entry(input_text, f"Error ({cleaned_output})") set_input_text("") def clear_console(self) -> None: """Clear the console history.""" self.history.clear() console_manager = ConsoleManager() @solara.component def ConsoleSidebar(): input_text, set_input_text = solara.use_state("") _, set_refresh = solara.use_state(0) with solara.Sidebar(): solara.Markdown("## Console") with solara.Column(style={ "height": "300px", "overflow-y": "auto", "gap": "0px", "box-shadow": "inset 0 0 10px rgba(0,0,0,0.1)", "border": "3px solid #e0e0e0", "border-radius": "6px", "padding": "8px" }): for cmd, result in console_manager.history.get_entries(): solara.Markdown(console_manager.formatter.format_entry(cmd, result)) input_element = solara.v.TextField( v_model=input_text, on_v_model=set_input_text, flat=True, style_="font-family: monospace;", label=">>>", outlined=True, placeholder="Enter Python code...", attributes={"spellcheck": "false"}, ) use_change(input_element, console_manager.execute_code(input_text, set_input_text), update_events=["keyup.enter"]) with solara.Row(): solara.Button( "Run", on_click=lambda: console_manager.execute_code(input_text, set_input_text), size="small" ) solara.Button( "Clear", on_click=lambda: [console_manager.clear_console(), set_refresh(lambda x: x + 1)], size="small" ) @solara.component def Page(): ConsoleSidebar() solara.Markdown("# Main Content") Page() ``` Error Message: ```python Traceback (most recent call last): File "C:\MASTER-FOLDER\GitHub\mesa-task\env\Lib\site-packages\reacton\core.py", line 1900, in _reconsolidate effect() ~~~~~~^^ File "C:\MASTER-FOLDER\GitHub\mesa-task\env\Lib\site-packages\reacton\core.py", line 1131, in __call__ self._cleanup = self.callable() ~~~~~~~~~~~~~^^ File "C:\MASTER-FOLDER\GitHub\mesa-task\env\Lib\site-packages\solara\components\input.py", line 24, in add_events widget = cast(ipyvue.VueWidget, solara.get_widget(el)) ~~~~~~~~~~~~~~~~~^^^^ File "C:\MASTER-FOLDER\GitHub\mesa-task\env\Lib\site-packages\reacton\core.py", line 766, in get_widget raise KeyError(f"Element {el} not found in all known widgets") # for the component {context.widgets}") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ KeyError: "Element ipyvuetify.TextField(v_model = '', on_v_model = <function ...E77A728E0>, flat = True, style_ = 'font-family: monospace;', label = '>>>', outlined = True, placeholder = 'Enter Python code...', attributes = {'spellcheck': 'false'}) not found in all known widgets" ``` Any kind of help is appreciated!
closed
2025-02-15T08:17:58Z
2025-03-17T22:32:15Z
https://github.com/widgetti/solara/issues/1004
[]
Sahil-Chhoker
2
matplotlib/matplotlib
data-science
29,131
[Bug]: Automated test failing
### Bug summary One of the tests in the automated suite has been failing during PRs since this morning: https://github.com/matplotlib/matplotlib/actions/workflows/tests.yml Tests #25844 and on ### Code for reproduction ```Python =========================== short test summary info ============================ FAILED lib/matplotlib/tests/test_backends_interactive.py::test_interactive_backend[toolmanager-MPLBACKEND=wxagg-BACKEND_DEPS=wx] - Failed: Subprocess failed to test intended behavior <frozen _collections_abc>:982: UserWarning: Treat the new Tool classes introduced in v1.5 as experimental for now; the API and rcParam may change in future versions. Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/runner/work/matplotlib/matplotlib/lib/matplotlib/tests/test_backends_interactive.py", line 232, in _test_interactive_impl assert result.getvalue() == result_after.getvalue() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AssertionError ``` ### Actual outcome =========================== short test summary info ============================ FAILED lib/matplotlib/tests/test_backends_interactive.py::test_interactive_backend[toolmanager-MPLBACKEND=wxagg-BACKEND_DEPS=wx] - Failed: Subprocess failed to test intended behavior <frozen _collections_abc>:982: UserWarning: Treat the new Tool classes introduced in v1.5 as experimental for now; the API and rcParam may change in future versions. Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/runner/work/matplotlib/matplotlib/lib/matplotlib/tests/test_backends_interactive.py", line 232, in _test_interactive_impl assert result.getvalue() == result_after.getvalue() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AssertionError ### Expected outcome No hard failures. ### Additional information https://github.com/matplotlib/matplotlib/actions/workflows/tests.yml ### Operating system _No response_ ### Matplotlib Version GitHub Repo / Dev Version ### Matplotlib Backend _No response_ ### Python version _No response_ ### Jupyter version _No response_ ### Installation git checkout
closed
2024-11-13T01:57:33Z
2024-11-13T02:24:39Z
https://github.com/matplotlib/matplotlib/issues/29131
[ "status: duplicate" ]
NGWi
2
d2l-ai/d2l-en
computer-vision
1,722
Batch Normalization with batch size of 1.
In 7.5.1: "Note that if we tried to apply batch normalization with minibatches of size 1, we would not be able to learn anything. That is because after subtracting the means, each hidden unit would take value 0!". I think, a hidden unit wouldn't take value 0, since we compute means and variances axis(channel)-wise and subtract them elementwise. Minimal example: `x = torch.FloatTensor(1, 1, 2, 1) # [[[[50.], [5.]]]]` `means = x.mean(dim=(0, 2, 3)) # [27.5000]` `x - means # [[[[ 22.5000], [-22.5000]]]]`
open
2021-04-14T22:00:40Z
2021-04-14T22:00:40Z
https://github.com/d2l-ai/d2l-en/issues/1722
[]
bsuleymanov
0
deepfakes/faceswap
deep-learning
582
ERROR :Caught exception in child process: 14128
GUI Extract error ### GUI log Loading... 01/08/2019 21:48:29 INFO Log level set to: INFO 01/08/2019 21:48:31 INFO Output Directory: F:\Python\faceswap-master\output 01/08/2019 21:48:31 INFO Input Video: F:\Python\faceswap-master\input\1.mp4 01/08/2019 21:48:31 INFO Loading Detect from Mtcnn plugin... 01/08/2019 21:48:31 INFO Loading Align from Fan plugin... 01/08/2019 21:48:31 INFO NB: Parallel processing disabled.You may get faster extraction speeds by enabling it with the -mp switch 01/08/2019 21:48:31 INFO Starting, this may take a while... 01/08/2019 21:48:32 INFO Initializing MTCNN Detector... **01/08/2019 21:48:32 ERROR Caught exception in child process: 14128** 01/08/2019 21:49:31 INFO Waiting for Detector... Time out in 4 minutes 01/08/2019 21:50:31 INFO Waiting for Detector... Time out in 3 minutes 01/08/2019 21:51:31 INFO Waiting for Detector... Time out in 2 minutes 01/08/2019 21:52:31 INFO Waiting for Detector... Time out in 1 minutes ### crash_report 01/08/2019 21:48:32 Detector.run MainThread mtcnn initialize INFO Initializing MTCNN Detector... 01/08/2019 21:48:32 Detector.run MainThread _base run ERROR Caught exception in child process: 14128 01/08/2019 21:49:31 MainProcess MainThread extract launch_detector INFO Waiting for Detector... Time out in 4 minutes 01/08/2019 21:50:31 MainProcess MainThread extract launch_detector INFO Waiting for Detector... Time out in 3 minutes 01/08/2019 21:51:31 MainProcess MainThread extract launch_detector INFO Waiting for Detector... Time out in 2 minutes 01/08/2019 21:52:31 MainProcess MainThread extract launch_detector INFO Waiting for Detector... Time out in 1 minutes Traceback (most recent call last): File "F:\Python\faceswap-master\lib\cli.py", line 90, in execute_script process.process() File "F:\Python\faceswap-master\scripts\extract.py", line 49, in process self.run_extraction() File "F:\Python\faceswap-master\scripts\extract.py", line 143, in run_extraction self.run_detection(to_process) File "F:\Python\faceswap-master\scripts\extract.py", line 194, in run_detection self.plugins.launch_detector() File "F:\Python\faceswap-master\scripts\extract.py", line 379, in launch_detector raise ValueError("Error initializing Detector") ValueError: Error initializing Detector ============ System Information ============ git_branch: Not Found git_commits: Not Found gpu_cuda: 9.0 gpu_cudnn: 7.4.2 gpu_devices: GPU_0: GeForce GTX 750 gpu_driver: 417.22 gpu_vram: GPU_0: 1024MB os_machine: AMD64 os_platform: Windows-10-10.0.17134-SP0 os_release: 10 py_command: F:\Python\faceswap-master\faceswap.py extract -i F:/Python/faceswap-master/input/1.mp4 -o F:/Python/faceswap-master/output -l 0.6 --serializer json -D mtcnn -A fan -mtms 20 -mtth 0.6 0.7 0.7 -mtsc 0.709 -sz 256 -L INFO py_conda_version: N/A py_implementation: CPython py_version: 3.6.6 py_virtual_env: False sys_cores: 4 sys_processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel sys_ram: Total: 8129MB, Available: 3269MB, Used: 4860MB, Free: 3269MB -------------------------------
closed
2019-01-08T14:19:09Z
2019-01-11T07:49:28Z
https://github.com/deepfakes/faceswap/issues/582
[]
dream80
3
miguelgrinberg/Flask-SocketIO
flask
800
ws http
Excuse me, does flask socket.io support ws protocol?
closed
2018-09-25T07:25:08Z
2018-09-30T02:19:29Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/800
[ "question" ]
zhangatao
9
mljar/mercury
data-visualization
466
importError DLL (cryptography) when running demos
I have python v3.9. I installed Mercury (using pip) on Windows10, on a dedicated env. When running demo examples, I have an importError (cryptography python module) message. Could you please help what's wrong ? ![image](https://github.com/user-attachments/assets/b69c260f-e046-487f-a886-524ba4c386da)
open
2024-09-15T12:43:24Z
2024-10-15T14:04:38Z
https://github.com/mljar/mercury/issues/466
[]
yvanblanchard
4
davidsandberg/facenet
tensorflow
532
how to update the model to recognize the 3D face like Apple faceid
how to update the model to recognize the 3D face like Apple faceid? thanks
closed
2017-11-16T03:09:21Z
2018-04-01T21:10:46Z
https://github.com/davidsandberg/facenet/issues/532
[]
xiaochongs
0
miguelgrinberg/Flask-Migrate
flask
233
stuck: cannot migrate, upgrade or downgrade etc
After making a minor change to my models (added last_seen column), running flask db migrate was not working. After some googling I found a couple people who said deleting the alembic_version table from their db helped, so I tried that. It didn't work, and now when I try to run **flask db migrate** I receive the following: INFO [alembic.runtime.migration] Context impl PostgresqlImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. ERROR [alembic.env] Target database is not up to date. When I try **flask db upgrade** I receiving the following error: sqlalchemy.exc.ProgrammingError: (psycopg2.ProgrammingError) relation "user" already exists [SQL: '\nCREATE TABLE "user" (\n\tid SERIAL NOT NULL, \n\tusername VARCHAR(40), \n\temail VARCHAR(120), \n\tpassword_hash VARCHAR(128), \n\tPRIMARY KEY (id)\n)\n\n'] (Background on this error at: http://sqlalche.me/e/f405) I've also tried upgrading / downgrading to specific versions , but also receive errors. When I try to run **flask db current** I receive no info like so: $ flask db current ....../__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) INFO [alembic.runtime.migration] Context impl PostgresqlImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. My guess is that it has to do with the fact that I dropped the alembic_version table. I couuuuuuld drop my db and start fresh as I'm in development, but if there is another fix that would be ideal . Cheers,
closed
2018-10-11T05:42:05Z
2022-05-16T18:22:07Z
https://github.com/miguelgrinberg/Flask-Migrate/issues/233
[]
aherzfeld
4
lanpa/tensorboardX
numpy
113
RuntimeError: getTracingState: Assertion `var_state == state` failed.
Hi @lanpa , thanks for this amazing tool. I'm trying to use add_graph in my own project, where I met some problems. My version is pytorch==0.3.1 and tensorboard==1.6.0. Here is the error message: ```python --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-13-8cbfabcfa5a0> in <module>() 1 from tensorboardX import SummaryWriter 2 writer = SummaryWriter() ----> 3 writer.add_graph(model, (inputs,), verbose=True) ~/anaconda3/lib/python3.6/site-packages/tensorboardX/writer.py in add_graph(self, model, input_to_model, verbose) 398 print('add_graph() only supports PyTorch v0.2.') 399 return --> 400 self.file_writer.add_graph(graph(model, input_to_model, verbose)) 401 402 def add_embedding(self, mat, metadata=None, label_img=None, global_step=None, tag='default'): ~/anaconda3/lib/python3.6/site-packages/tensorboardX/graph.py in graph(model, args, verbose) 50 import torch 51 with torch.onnx.set_training(model, False): ---> 52 trace, _ = torch.jit.trace(model, args) 53 if LooseVersion(torch.__version__) >= LooseVersion("0.4"): 54 torch.onnx._optimize_trace(trace, False) ~/anaconda3/lib/python3.6/site-packages/torch/jit/__init__.py in trace(f, args, kwargs, nderivs) 239 if not isinstance(args, tuple): 240 args = (args,) --> 241 return TracedModule(f, nderivs=nderivs)(*args, **kwargs) 242 243 ~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs) 353 hook(self, input) 354 if torch.jit._tracing: --> 355 result = self._slow_forward(*input, **kwargs) 356 else: 357 result = self.forward(*input, **kwargs) ~/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py in _slow_forward(self, *input, **kwargs) 331 def _slow_forward(self, *input, **kwargs): 332 input_vars = tuple(torch.autograd.function._iter_variables(input)) --> 333 tracing_state = torch.jit.get_tracing_state(input_vars) 334 if not tracing_state: 335 return self.forward(*input, **kwargs) ~/anaconda3/lib/python3.6/site-packages/torch/jit/__init__.py in get_tracing_state(args) 41 if not torch._C._is_tracing(args): 42 return None ---> 43 return torch._C._get_tracing_state(args) 44 45 RuntimeError: /opt/conda/conda-bld/pytorch_1518243271935/work/torch/csrc/jit/tracer.h:105: getTracingState: Assertion `var_state == state` failed. ```
closed
2018-03-25T08:56:34Z
2018-05-08T17:16:32Z
https://github.com/lanpa/tensorboardX/issues/113
[ "onnx" ]
Xeaver
1
plotly/dash-bio
dash
385
Sequence Viewer app doesn't save selection/coverage data due to dcc.Loading component
To fix: Remove the wrapping `dcc.Loading` from the `SequenceViewer` component in `app_sequence_viewer.py`.
closed
2019-07-03T15:53:41Z
2019-07-12T14:12:25Z
https://github.com/plotly/dash-bio/issues/385
[]
shammamah-zz
0
miguelgrinberg/microblog
flask
214
Chapter 4: Database (v0.4) - How to convert SQL result into JSON format variable?
Hi Miguel, I copied the Chapter 4 zip file and added some code in `/microblog-0.4/app/routes.py` file. https://github.com/miguelgrinberg/microblog/archive/v0.4.zip How can I convert my SQL result **userz99** `User.query.all()` into a JSON format variable? **routes.py** ``` from flask import render_template, flash, redirect, url_for from app import app from app.forms import LoginForm from app.models import User import json @app.route('/') @app.route('/index') def index(): user = {'username': 'Miguel'} posts = [ { 'author': {'username': 'John'}, 'body': 'Beautiful day in Portland!' }, { 'author': {'username': 'Susan'}, 'body': 'The Avengers movie was so cool!' } ] #............................................................................... userz99 = User.query.all() print("\n * userz99") print(userz99) print("") #............................................................................... return render_template('index.html', title='Home', user=user, posts=posts) ```
closed
2020-03-06T19:50:47Z
2020-03-30T13:22:38Z
https://github.com/miguelgrinberg/microblog/issues/214
[ "question" ]
mrbiggleswirth
5
OpenBB-finance/OpenBB
python
6,903
[🕹️] Copilot for Terminal Code Side-QUuest
### What side quest or challenge are you solving? Copilot for Terminal ### Points 300 - 750 ### Description Create a custom copilot that integrates a new language model (e.g., Cohere, Llama3.2, etc.) into OpenBB's Terminal. ### Provide proof that you've completed the task ...
closed
2024-10-28T15:21:45Z
2024-10-30T20:54:33Z
https://github.com/OpenBB-finance/OpenBB/issues/6903
[]
FloatinggOnion
7
OFA-Sys/Chinese-CLIP
computer-vision
75
No module named 'torch._C._distributed_rpc'; 'torch._C' is not a packageModuleNotFoundError
请问微调代码可以在Windows操作系统上实现么?我在Windows操作系统上调试的时候出现torch的问题,这是因为linux和Windows上torch有差别的原因么?
closed
2023-03-26T07:15:45Z
2023-06-04T09:20:06Z
https://github.com/OFA-Sys/Chinese-CLIP/issues/75
[]
yourfathermyson
1
tartiflette/tartiflette
graphql
284
GraphiQL JS error with tartiflette 1.0RC1
I've been testing the tartiflette RC1 (https://github.com/tartiflette/tartiflette/pull/272) with tartiflette-aiohttp and noticed that GraphiQL crashes with this error: ``` GraphQLError: Syntax Error: Expected <EOF>, found Name "longer" at syntaxError (https://cdn.jsdelivr.net/npm/graphiql@0.12.0/graphiql.js:23522:10) at expect (https://cdn.jsdelivr.net/npm/graphiql@0.12.0/graphiql.js:28513:32) at parseValue (https://cdn.jsdelivr.net/npm/graphiql@0.12.0/graphiql.js:27279:3) at buildInputValue (https://cdn.jsdelivr.net/npm/graphiql@0.12.0/graphiql.js:33676:118) at https://cdn.jsdelivr.net/npm/graphiql@0.12.0/graphiql.js:25955:31 at Array.reduce (<anonymous>) at keyValMap (https://cdn.jsdelivr.net/npm/graphiql@0.12.0/graphiql.js:25954:15) at buildInputValueDefMap (https://cdn.jsdelivr.net/npm/graphiql@0.12.0/graphiql.js:33669:36) at buildDirective (https://cdn.jsdelivr.net/npm/graphiql@0.12.0/graphiql.js:33696:13) at Array.map (<anonymous>) ```
closed
2019-09-03T08:09:16Z
2019-09-11T14:51:26Z
https://github.com/tartiflette/tartiflette/issues/284
[ "bug" ]
aljinovic
2
timkpaine/lantern
plotly
170
can use other library for emails?
https://github.com/lavr/python-emails
closed
2018-07-25T19:09:10Z
2018-08-07T14:13:40Z
https://github.com/timkpaine/lantern/issues/170
[ "feature", "question" ]
timkpaine
1
donnemartin/data-science-ipython-notebooks
scikit-learn
11
Add simplified Spark installation instructions from the repo: https://github.com/donnemartin/dev-setup
Mac users can benefit from a much simplified installation method thanks to Homebrew.
closed
2015-07-21T11:39:23Z
2015-08-20T10:47:44Z
https://github.com/donnemartin/data-science-ipython-notebooks/issues/11
[ "enhancement" ]
donnemartin
1
google-deepmind/graph_nets
tensorflow
144
Performance issue in /graph_nets/tests (by P3)
Hello! I've found a performance issue in /graph_nets/tests/utils_tf_test.py: `with tf.Session() as sess`[(here)](https://github.com/deepmind/graph_nets/blob/64771dff0d74ca8e77b1f1dcd5a7d26634356d61/graph_nets/tests/utils_tf_test.py#L587) is repeatedly called in the loop `for graph_dict in self.graphs_dicts_in`[(here)](https://github.com/deepmind/graph_nets/blob/64771dff0d74ca8e77b1f1dcd5a7d26634356d61/graph_nets/tests/utils_tf_test.py#L582). `tf.Session` being defined repeatedly could lead to incremental overhead. If you define `tf.Session` out of the loop and pass `tf.Session` as a parameter to the loop, your program would be much more efficient. Here is [the Stack Overflow post](https://stackoverflow.com/questions/48051647/tensorflow-how-to-perform-image-categorisation-on-multiple-images) to support it. Looking forward to your reply. Btw, I am very glad to create a PR to fix it if you are too busy.
closed
2021-08-25T10:27:10Z
2021-12-14T11:06:36Z
https://github.com/google-deepmind/graph_nets/issues/144
[]
DLPerf
2
gradio-app/gradio
python
10,066
login to server failed: tls: failed to verify certificate: x509: certificate has expired or is not yet valid
### Describe the bug Since yesterday, I have been facing the issue of gradio not launching properly. It keeps printing this error and displays unexpected ui. `Running Gradio in a Colab notebook requires sharing enabled. Automatically setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly). `Colab notebook detected. To show errors in colab notebook, set debug=True in launch()` ` ![Screenshot from 2024-11-28 17-48-48](https://github.com/user-attachments/assets/e4ac885b-d7f8-42b3-b69b-3967cc0e5bc9) Could not create share link. Please check your internet connection or our status page: https://status.gradio.app/. 2024/11/28 12:45:01 [W] [service.go:132] login to server failed: tls: failed to verify certificate: x509: certificate has expired or is not yet valid: current time 2024-11-28T12:45:01Z is after 2024-11-28T06:24:31Z Running on [https://localhost:7860/](https://obk54oqrggb-496ff2e9c6d22116-7860-colab.googleusercontent.com/)` ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr with gr.Blocks() as demo: gr.Markdown("# Hello World") demo.launch() ``` ### Screenshot ![Screenshot from 2024-11-28 17-48-48](https://github.com/user-attachments/assets/6cfaa92c-56b0-49ff-80cd-c5401d83d352) ### Logs _No response_ ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.7.0 gradio_client version: 1.5.0 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 3.7.1 audioop-lts is not installed. fastapi: 0.115.5 ffmpy: 0.4.0 gradio-client==1.5.0 is not installed. httpx: 0.27.2 huggingface-hub: 0.26.2 jinja2: 3.1.4 markupsafe: 2.1.5 numpy: 1.26.4 orjson: 3.10.11 packaging: 24.2 pandas: 2.2.2 pillow: 11.0.0 pydantic: 2.9.2 pydub: 0.25.1 python-multipart==0.0.12 is not installed. pyyaml: 6.0.2 ruff: 0.8.0 safehttpx: 0.1.1 semantic-version: 2.10.0 starlette: 0.41.3 tomlkit==0.12.0 is not installed. typer: 0.13.0 typing-extensions: 4.12.2 urllib3: 2.2.3 uvicorn: 0.32.1 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.10.0 httpx: 0.27.2 huggingface-hub: 0.26.2 packaging: 24.2 typing-extensions: 4.12.2 websockets: 12.0 ``` ### Severity Blocking usage of gradio
closed
2024-11-28T12:52:56Z
2024-11-28T14:14:39Z
https://github.com/gradio-app/gradio/issues/10066
[ "bug" ]
hasanshahid5678
2
betodealmeida/shillelagh
sqlalchemy
194
Don't log warning for "Couldn't load adapter" if adapter isn't specified
Currently I get a bunch of warnings like: ``` Couldn't load adapter datasetteapi = shillelagh.adapters.api.datasette:DatasetteAPI ``` even though I am explicitly passing in a list of adapters and not specifying that adapter. These warnings should be printed only if the adapter is in the `adapters` list / there is no list: https://github.com/betodealmeida/shillelagh/blob/a427de0b2d1ac27402d70b8a2ae69468f1f3dcad/src/shillelagh/backends/apsw/db.py#L510-L511
closed
2022-03-10T19:06:13Z
2022-03-10T23:27:26Z
https://github.com/betodealmeida/shillelagh/issues/194
[ "bug", "help wanted", "good first issue" ]
cancan101
1
python-gino/gino
asyncio
350
Rollback nested transactions
* Gino 0.7.5: * Python 3.6: * asyncpg version: * asyncpg 0.17.0: * PostgreSQL version: I have TestCase in this test case, I want rollback all after each test. For it, I use manual transaction in setUpAsync ``` self.conn = await db.acquire() self.trans = await self.conn.transaction() ``` and then release rollback transaction in tearDownAsync ``` await self.trans.rollback() await self.conn.release() ``` But when I'm trying on first step ``` User.create(name='name') ``` And on the another peace of code ``` User.query.where(name == 'name') ``` This query returns None. I think it because ORM always create new connection. If I don't run transaction, All is ok. Can I use global rollback and ORM together?
closed
2018-09-27T14:58:35Z
2018-10-23T09:20:33Z
https://github.com/python-gino/gino/issues/350
[ "question" ]
Deniallugo
3
vimalloc/flask-jwt-extended
flask
44
Accessing get_jwt_identity() in another decorator.
Hey, really like the library. Very useful! I want to use the identity from the JWT in another decorator. Currently I have (details left out, but you get the gist): ``` @app.Route('/api/,,,'. methods=['GET'] @jwt_required @service_supported(str(get_jwt_identity()), "SERVICE") def method1(): pass ``` In this case the get_jwt_identity() returns {}. When placed inside method1(), I get the correct result. Any ideas?
closed
2017-05-20T12:46:49Z
2017-05-20T17:41:23Z
https://github.com/vimalloc/flask-jwt-extended/issues/44
[]
genie137
2
freqtrade/freqtrade
python
11,012
Use same data with multiple bots
* Operating system: Kubuntu * Python Version: 3.12.3 (`python -V`) * CCXT version: 4.3.68 * * Freqtrade Version: 2024.8-dev ## Your question I have multiple bots running on one PC and the config file is identical but the strategies are different but they use the same time frames My question is: Can bot 2 use the same data bot 1 used it instead of getting it again from the exchange and the same goes for the other instances? This will reduce bandwidth consumption and lower the pressure on the network because some times there are more than 5 bots running at the same time and there is probability for more. Thank you very much.
closed
2024-12-01T23:10:47Z
2024-12-02T15:01:32Z
https://github.com/freqtrade/freqtrade/issues/11012
[ "Question" ]
Mohammad699
7
TencentARC/GFPGAN
deep-learning
277
新训练数据的eye_mouth_landmarks要如何生成
FFHQ中带眼镜的数据较少,想加入一部分戴眼镜的图片来训练,那该图片对应的eye_mouth_landmarks要如何生成?
open
2022-09-30T09:29:02Z
2022-10-08T07:21:29Z
https://github.com/TencentARC/GFPGAN/issues/277
[]
nnmaitian
1
lexiforest/curl_cffi
web-scraping
77
Content-type header
There's a bug on the `content-type` header that it doesn't override if you add it on your headers but it duplicates instead unlike, for example, the `user-agent` header. I don't know on other content-types but I only tested it in `requests.AsyncSession` with `content-type:application/json`
closed
2023-07-08T11:34:08Z
2023-11-02T11:40:48Z
https://github.com/lexiforest/curl_cffi/issues/77
[]
mafuyuuu1
9
plotly/dash
plotly
2,718
[BUG] use Patch to append children,but init ui disappear
![test1](https://github.com/plotly/dash/assets/54770415/fa8f8909-e294-4547-bc5e-8c25917994fc) the example code: ```py from dash import Dash, html, Input, Output, Patch, callback def init_ui(): ui = html.Div([ "init ui" ]) return ui def add_ui(): ui = html.Div([ "add ui" ]) return ui app = Dash(__name__) app.layout = html.Div([ html.Button("Add element", id="dynamic-add-filter-btn", n_clicks=0), html.Div(id='dynamic-dropdown-container-div', children=[]), ]) @callback( Output('dynamic-dropdown-container-div', 'children'), Input('dynamic-add-filter-btn', 'n_clicks') ) def display_dropdowns(n_clicks): patched_children = Patch() if n_clicks ==0: return init_ui() else: new_element = add_ui() patched_children.append(new_element) return patched_children if __name__ == '__main__': app.run(debug=True) ```
closed
2023-12-24T13:08:35Z
2023-12-25T09:49:45Z
https://github.com/plotly/dash/issues/2718
[]
Liripo
2
Gerapy/Gerapy
django
101
配置生成新任务
通过,最新git clone下载gerapy,但是貌似不能实现通过配置创建新的任务。
closed
2019-03-12T05:42:44Z
2019-11-20T19:46:24Z
https://github.com/Gerapy/Gerapy/issues/101
[]
whyfunction
1
rio-labs/rio
data-visualization
189
Verify That `project-files` in `rio.toml` Works as Intended
`rio.toml` allows specifying which files are part of the project, and which ones aren't. This is used for change detection / reloading. I've frequently seen Rio not reload even when it should, though I don't have a specific case available. Play around with this and see if it works as intended. For example, does it reload when an asset changes?
open
2024-12-06T21:18:46Z
2024-12-06T21:18:47Z
https://github.com/rio-labs/rio/issues/189
[ "bug" ]
mad-moo
0
healthchecks/healthchecks
django
350
TimeZone
Morning, Maybe I'm being slightly dense but my timezone is now an hour out and it's causing my notifications to continually trigger. I'm in the London BST timezone using docker to run the Healthchecks container. How can I update my timezone or setup my system to not trigger the alerts when the timezones from container to running check do not line up? Thanks in advance :)
closed
2020-04-01T07:17:24Z
2020-04-06T09:18:20Z
https://github.com/healthchecks/healthchecks/issues/350
[]
Rustymage
9
mwaskom/seaborn
pandas
3,627
Performance Issue: Seaborn Lineplot Execution Time Discrepancy with and without Timezones
**Issue Description:** Hello. I encountered a notable performance difference when using Seaborn's `lineplot` function to visualize time series data, particularly when comparing plots with and without timezones. **Code and Observation:** ```python import seaborn as sns data = np.random.randn(n) # Prepare DataFrames dates_no_tz = pd.date_range('2019-01-01', periods=n, freq='T') dates_with_tz = pd.date_range('2019-01-01', periods=n, freq='T', tz='UTC') df_no_tz = pd.DataFrame({'Time': dates_no_tz, 'Value': data}) df_with_tz = pd.DataFrame({'Time': dates_with_tz, 'Value': data}) # Plot Time Series without timezone using Seaborn %time sns.lineplot(x='Time', y='Value', data=df_no_tz).set_title('No Timezone') # Plot Time Series with timezone using Seaborn %time sns.lineplot(x='Time', y='Value', data=df_with_tz).set_title('With UTC Timezone') CPU times: user 782 ms, sys: 101 ms, total: 884 ms Wall time: 898 ms CPU times: user 6.93 s, sys: 437 ms, total: 7.37 s Wall time: 6.89 s ``` This represents approximately a 10-fold performance difference. Would you kindly consider conducting an analysis? Thank you! **Additional Info** matplotlib == 3.8.0 seaborn == 0.12.2 pandas == 2.1.4
closed
2024-01-30T06:45:52Z
2024-02-10T19:38:29Z
https://github.com/mwaskom/seaborn/issues/3627
[]
HarryCollins2
5
junyanz/pytorch-CycleGAN-and-pix2pix
pytorch
1,228
Information about output on visdom?
Hello, I am a beginner of cycleGAN I deploy my own dataset on cycleGAN At runtime I found that there are 8 pictures on visdom I would like to ask what rec_A, idt_B and rec_b, idt_A mean respectively ? This is the instruction I used python train.py --dataroot ./datasets/fishboat --name fishboat_cyclegan --model cycle_gan Thank you for your attention and answers
closed
2021-01-20T12:29:23Z
2021-01-27T05:42:43Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1228
[]
yenai3726
2
graphql-python/graphql-core
graphql
106
GraphQLError double wrapping returning result
I found out something confusing and wanted to know if maybe this could be a bug or if I'm missing something and this is an expected behavior. This is my `example.py` file. It only has one resolver that raises an error. ```python from graphql import (GraphQLSchema, GraphQLObjectType, GraphQLField, GraphQLString, graphql_sync, ) def resolve_fail(*args, **kwargs): raise ValueError("Some error") schema = GraphQLSchema( query=GraphQLObjectType( name='RootQueryType', fields={ 'hello': GraphQLField( GraphQLString, resolve=resolve_fail) })) query = '{ hello }' result = graphql_sync(schema, query) ``` I'm aware that `result.errors[0]` is a `GraphQLError` exception. But, I was expecting `result.errors[0].original_error` to be `ValueError`. However, I can see that `result.errors[0].original_error` is a `GraphQLError` and `result.errors[0].original_error.original_error` is `ValueError`. **Is this ok?** ```bash >>> print(type(result.errors[0])) <class 'graphql.error.graphql_error.GraphQLError'> >>> print(type(result.errors[0].original_error)) <class 'graphql.error.graphql_error.GraphQLError'> >>> print(type(result.errors[0].original_error.original_error)) <class 'ValueError'> ```
closed
2020-09-04T15:14:41Z
2021-02-08T19:44:59Z
https://github.com/graphql-python/graphql-core/issues/106
[ "bug" ]
Checho3388
6
HIT-SCIR/ltp
nlp
678
添加词之后出现的报错
对于ltp4.2.0,在使用add_words之后特殊情况下的报错。直觉上是添加了word(如‘abc')之后,输入类似”xabc“这样的词会出现这样的问题: 输入 ``` ltp.add_words(['800000股']) ltp.pipeline(['3800000股'], tasks=["cws", "pos"]) ``` 报错信息为KeyError ``` Traceback (most recent call last) Cell In[57], line 1 ----> 1 ltp.pipeline(['3800000股'], tasks=["cws", "pos"]) File D:\software\anaconda\envs\EDEE\lib\site-packages\ltp\nerual.py:24, in no_grad.<locals>.wrapper(*args, **kwargs) 22 def wrapper(*args, **kwargs): 23 with torch.no_grad(): ---> 24 return func(*args, **kwargs) File D:\software\anaconda\envs\EDEE\lib\site-packages\ltp\nerual.py:185, in LTP.pipeline(self, inputs, tasks, raw_format, return_dict) 183 cache[cache_key] = (hidden_state, attention_mask) 184 result = self.model.task_heads[task](hidden_state, attention_mask) --> 185 store[task] = self.post[task](result, hidden, store, inputs, tokenized) 187 if not raw_format: 188 if is_split_into_words: File D:\software\anaconda\envs\EDEE\lib\site-packages\ltp\nerual.py:24, in no_grad.<locals>.wrapper(*args, **kwargs) 22 def wrapper(*args, **kwargs): 23 with torch.no_grad(): ---> 24 return func(*args, **kwargs) File D:\software\anaconda\envs\EDEE\lib\site-packages\ltp\nerual.py:293, in LTP._cws_post(self, result, hidden, store, inputs, tokenized) 291 for i, e in enumerate(word_end): 292 if i == 0: --> 293 entities[-1].append((0, length2index[e])) 294 else: 295 entities[-1].append((length2index[word_end[i - 1]] + 1, length2index[e])) KeyError: 1 ```
open
2023-11-15T03:32:37Z
2023-11-15T03:32:37Z
https://github.com/HIT-SCIR/ltp/issues/678
[]
Jing-XING
0
shibing624/text2vec
nlp
155
是否支持ollama
- [ ] I checked to make sure that this is not a duplicate issue ### Describe the solution you'd like 目前部署不支持ollama ,部署难点比较大
open
2024-10-11T05:18:22Z
2024-10-12T06:42:43Z
https://github.com/shibing624/text2vec/issues/155
[ "enhancement" ]
smileyboy2019
1
huggingface/datasets
deep-learning
7,142
Specifying datatype when adding a column to a dataset.
### Feature request There should be a way to specify the datatype of a column in `datasets.add_column()`. ### Motivation To specify a custom datatype, we have to use `datasets.add_column()` followed by `datasets.cast_column()` which is slow for large datasets. Another workaround is to pass a `numpy.array()` of desired type to the `datasets.add_column()` function. IMO this functionality should be natively supported. https://discuss.huggingface.co/t/add-column-with-a-particular-type-in-datasets/95674 ### Your contribution I can submit a PR for this.
closed
2024-09-08T07:34:24Z
2024-09-17T03:46:32Z
https://github.com/huggingface/datasets/issues/7142
[ "enhancement" ]
varadhbhatnagar
1
python-gitlab/python-gitlab
api
3,001
Support for Related Issues in Python-GitLab Merge Requests API
## Description of the problem, including code/CLI snippet According to the documentation on the [Merge requests API | GitLab](https://docs.gitlab.com/ee/api/merge_requests.html#list-issues-related-to-the-merge-request), it supports finding related issues through merge requests. However, I confirmed that the [Merge requests - python-gitlab v4.11.1](https://python-gitlab.readthedocs.io/en/v4.11.1/gl_objects/merge_requests.html) documentation does not support this feature. Is there any expectation for support in the future? ## Specifications - python-gitlab version: 4.11.1 - API version you are using (v3/v4): v4 - Gitlab server version (or gitlab.com): 17.3
closed
2024-09-30T03:58:16Z
2024-09-30T05:21:46Z
https://github.com/python-gitlab/python-gitlab/issues/3001
[]
kkc-tonywu
1
CorentinJ/Real-Time-Voice-Cloning
pytorch
644
ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed.
I have installed all of the requirements. I have installed the vs community extensions but I don't know what the issue is here. Tenserflow is 1.15. Traceback (most recent call last): File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "demo_cli.py", line 4, in <module> from synthesizer.inference import Synthesizer File "C:\Users\iRazur\Desktop\Real-Time-Voice-Cloning-master\Real-Time-Voice-Cloning-master\synthesizer\inference.py", line 1, in <module> from synthesizer.tacotron2 import Tacotron2 File "C:\Users\iRazur\Desktop\Real-Time-Voice-Cloning-master\Real-Time-Voice-Cloning-master\synthesizer\tacotron2.py", line 3, in <module> from synthesizer.models import create_model File "C:\Users\iRazur\Desktop\Real-Time-Voice-Cloning-master\Real-Time-Voice-Cloning-master\synthesizer\models\__init__.py", line 1, in <module> from .tacotron import Tacotron File "C:\Users\iRazur\Desktop\Real-Time-Voice-Cloning-master\Real-Time-Voice-Cloning-master\synthesizer\models\tacotron.py", line 1, in <module> import tensorflow as tf File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow\__init__.py", line 99, in <module> from tensorflow_core import * File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\__init__.py", line 28, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow\__init__.py", line 50, in __getattr__ module = self._load() File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow\__init__.py", line 44, in _load module = _importlib.import_module(self.__name__) File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\iRazur\miniconda3\envs\voice-clone\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed. Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.
closed
2021-01-31T16:53:14Z
2021-02-14T16:44:10Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/644
[]
Fly-sudo
3
uxlfoundation/scikit-learn-intelex
scikit-learn
2,321
Deprecation warnings when using patch_sklearn()
<!-- ~ Copyright 2020 Intel Corporation ~ ~ Licensed under the Apache License, Version 2.0 (the "License"); ~ you may not use this file except in compliance with the License. ~ You may obtain a copy of the License at ~ ~ http://www.apache.org/licenses/LICENSE-2.0 ~ ~ Unless required by applicable law or agreed to in writing, software ~ distributed under the License is distributed on an "AS IS" BASIS, ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ~ See the License for the specific language governing permissions and ~ limitations under the License. --> --- name: "Bug_report" about: Create a report to help us improve title: 'Deprecation warnings when using patch_sklearn()' labels: bug assignees: '' --- **Describe the bug** When enabling Intel optimizations via `patch_sklearn()` from scikit-learn-intelex, several `FutureWarning` messages are printed indicating that `'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8`. These warnings do not appear when the patch is commented out, suggesting an unintended side effect of the extension. **To Reproduce** Steps to reproduce the behavior: 1. Install the following packages: - scikit-learn 1.6.1 - scikit-learn-intelex 2025.1.0 2. Create a Python script with the following code (indented for clarity): import platform import sys from sklearnex import patch_sklearn patch_sklearn() # Enable Intel optimizations for scikit-learn from sklearn.svm import SVC from sklearn.datasets import make_classification # Create data and train an SVC model X, y = make_classification(n_samples=100, n_features=10, random_state=42) clf = SVC() clf.fit(X, y) # Print system details print("### System Info ###") print(f"Python Version: {sys.version}") print(f"Platform: {platform.platform()}") print(f"Processor: {platform.processor()}") 3. Run the script. 4. Observe that the output includes the Intel extension banner and multiple `FutureWarning` messages regarding the `force_all_finite` parameter. 5. Comment out the `patch_sklearn()` call and re-run the script to see that the warnings are not present. **Expected behavior** Enabling scikit-learn-intelex via `patch_sklearn()` should not trigger deprecation warnings from scikit-learn. The extension should seamlessly integrate Intel optimizations without surfacing warnings related to parameter renaming. **Output/Screenshots** With `patch_sklearn()` enabled: Intel(R) Extension for Scikit-learn* enabled (https://github.com/intel/scikit-learn-intelex) c:\Users\david\anaconda3\envs\mfs_1\Lib\site-packages\sklearn\utils\deprecation.py:151: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8. warnings.warn( ... (similar warnings repeated) ### System Info ### Python Version: 3.13.2 | packaged by conda-forge | (main, Feb 17 2025, 13:52:56) [MSC v.1942 64 bit (AMD64)] Platform: Windows-11-10.0.22000-SP0 Processor: Intel64 Family 6 Model 151 Stepping 2, GenuineIntel With `patch_sklearn()` commented out: No warnings are produced, only the system information is printed. **Environment:** - OS: Windows 11 (Version: Windows-11-10.0.22000-SP0) - Python: 3.13.2 (packaged by conda-forge) - scikit-learn: 1.6.1 - scikit-learn-intelex: 2025.1.0 - Processor: Intel64 Family 6 Model 151 Stepping 2, GenuineIntel
open
2025-02-19T08:28:49Z
2025-02-21T09:06:40Z
https://github.com/uxlfoundation/scikit-learn-intelex/issues/2321
[]
DavidCohen2
1
PaddlePaddle/PaddleHub
nlp
2,313
Enable Private Vulnerability Reporting in GitHub
In your repository, we have found a bug that may require your attention. We do not want to disclose the details. Therefore, we request you to enable private vulnerability reporting in your repository. ### Sponsorship and Support: This work is done by the security researchers from OpenRefactory and is supported by the [Open Source Security Foundation (OpenSSF)](https://openssf.org/): [Project Alpha-Omega](https://alpha-omega.dev/). Alpha-Omega is a project partnering with open source software project maintainers to systematically find new, as-yet-undiscovered vulnerabilities in open source code - and get them fixed - to improve global software supply chain security. The bug is found by running the iCR tool by [OpenRefactory, Inc.](https://openrefactory.com/) and then manually triaging the results.
closed
2023-11-16T10:48:54Z
2024-03-04T03:48:02Z
https://github.com/PaddlePaddle/PaddleHub/issues/2313
[]
ZuhairORZaki
0
serengil/deepface
machine-learning
755
Automatic download of shape_predictor_5_landmarks.dat file wouldn't work -> My solution
Apparently, the code that automatically downloads the shape_predictor_5_landmarks.dat file wouldn't work. It was always stuck at `"shape_predictor_5_landmarks.dat" is going to be downloaded`. I executed the corresponding code separately and it said something about "content-type" but I could not figure out what it's about. Finally, I manually downloaded the file and put them in the `.deepface/weights`-folder in the main user folder on my Macbook and it worked. 👍
closed
2023-05-15T17:56:43Z
2023-05-15T18:00:49Z
https://github.com/serengil/deepface/issues/755
[ "dependencies" ]
moerv9
1
automl/auto-sklearn
scikit-learn
1,197
[Request] Allow portfolio and selector models to be set through hyperparameters in ASKL2
As per the title, it will be useful for ASKL2 to have a configurable `portfolio` and `policy selector`. It's beneficial for research (avoiding 'cheating' through meta-learning in a benchmark) or for customization. Issue opened on the request of @mfeurer
open
2021-07-30T13:37:21Z
2022-10-11T15:55:16Z
https://github.com/automl/auto-sklearn/issues/1197
[ "enhancement" ]
PGijsbers
4
aleju/imgaug
machine-learning
52
Unexpected determinism
Hi, I've got the following code: ``` def augment(im, y): im_arr = np.array(im) # See documentation for details regarding transformations: https://github.com/aleju/imgaug fliplr_rate = 0.5 angle = 10 additive, contrast_norm = (45, 0.1) gaussian_noise, dropout = (0.05, 0.01) shear, shift = (2, 20) aug_img_only = iaa.Sequential([ iaa.Sometimes(0.5, iaa.OneOf([ iaa.Add((-additive, additive)), iaa.ContrastNormalization((1 - contrast_norm, 1 + contrast_norm)) ])), iaa.Sometimes(0.5, iaa.OneOf([ iaa.AdditiveGaussianNoise(scale=gaussian_noise * 255, per_channel=True), iaa.Dropout(dropout) ])) ]) aug_img_mask = iaa.Sequential([ iaa.Fliplr(fliplr_rate), iaa.Affine(rotate=(-angle, angle)), iaa.Sometimes(0.5, iaa.Affine( shear=(-shear, shear), translate_px={'x': (-shift, shift), 'y': (-shift, shift)}) ) ]) aug_img_only.reseed() aug_img_only_det, aug_img_mask_det = aug_img_only.to_deterministic(), aug_img_mask.to_deterministic() im_arr = aug_img_only_det.augment_images([im_arr])[0] im_arr = aug_img_mask_det.augment_images([im_arr])[0] y = aug_img_mask_det.augment_images([y])[0] im = Image.fromarray(im_arr) return im, y ``` I've got a ML system which has input images and known masks of areas of interest, which I later want to predict. I want to augment the images and the masks in the same way for some transformations, and apply other transformations (such as dropout, etc.) only to the original image. Here, in the code, `im` is the original image in PIL object format, `im_arr` is the original image transformed to numpy array, and `y` is the mask numpy array. Now, everytime I run this code, for example, 5 times, with the same picture and mask, I get the same 5 augmentations. Meaning, that the first picture comes out the same every time, so does the second and so on. Just to clarify, here is the code I use to run it: ``` for i in range(5): im = Image.open('image.jpg') y = np.load('mask.npy') im, y = augment(im, y) ``` Why would this behavior happen? I reinstantiate the augmenters every time the function is called (as can be seen in the code), and only after the reinstantiation do I call to_deterministic(). What am I missing? Thanks in advance!
closed
2017-08-06T15:52:04Z
2017-08-07T09:02:39Z
https://github.com/aleju/imgaug/issues/52
[]
itai-icx
4
Ehco1996/django-sspanel
django
364
添加isuee template
closed
2020-08-02T12:11:05Z
2020-08-02T23:24:19Z
https://github.com/Ehco1996/django-sspanel/issues/364
[]
Ehco1996
0
AirtestProject/Airtest
automation
855
更新后获取ios元素定位特别慢
code11.4 airtest1.2.6 ,ios手机获取元素巨慢,一直处于重新连接中,这种是我版本不匹配吗?之前用的xcode9和ios-tagent没更新前不会出现这猴子那个情况 ![image](https://user-images.githubusercontent.com/44047125/105149614-ad635400-5b3e-11eb-96c9-3aae79739da7.png)
closed
2021-01-20T08:44:58Z
2021-02-21T03:52:42Z
https://github.com/AirtestProject/Airtest/issues/855
[]
zuiqingfengyang
2
yezz123/authx
pydantic
254
MongoDBBackend has no attribute client
### First Check - [X] I added a very descriptive title to this issue. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to AuthX but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to AuthX but to [FastAPI](https://github.com/tiangolo/fastapi). ### Example Code ```python from authx import Authentication, MongoDBBackend import motor.motor_asyncio import asyncio auth = Authentication( backend=MongoDBBackend( client=motor.motor_asyncio.AsyncIOMotorClient( 'mongodb://localhost:27017', io_loop=asyncio.get_event_loop() ), database='authx', collection='users' ) ) ``` ### Description This should ideally create an auth object that can be used to include routers. Instead this gives an error ``` backend=MongoDBBackend( TypeError: __init__() got an unexpected keyword argument 'client' ``` ### Operating System Windows ### Operating System Details _No response_ ### FastAPI Version 0.77.1 ### Python Version Python 3.9.0 ### Additional Context This problem is arising as the MongoDBBackend class is not excepting any other parameters other than the database_name ``` class MongoDBBackend(BaseDBBackend): """ Setup Database for authx using MongoDB & Motor """ def __init__(self, database_name: str = "test") -> None: self._database_name = database_name def set_client(self, client: AsyncIOMotorClient) -> None: self._client = client self.init() def init(self) -> None: self._db: AsyncIOMotorDatabase = self._client[self._database_name] self._users: AsyncIOMotorCollection = self._db["users"] self._email_confirmations: AsyncIOMotorCollection = self._db[ "email_confirmations" ] self._counters: AsyncIOMotorCollection = self._db["counters"] self._settings: AsyncIOMotorCollection = self._db["settings"] ```
closed
2022-07-09T05:44:40Z
2022-09-09T15:50:43Z
https://github.com/yezz123/authx/issues/254
[ "bug", "question" ]
YogeshUpdhyay
1
plotly/plotly.py
plotly
4,475
Shape labels missing/not showing
I have used Plotly 5.18.0 to create this Gantt chart to which I have added two rectangle shapes: ![image](https://github.com/plotly/plotly.py/assets/42718519/c1f349cd-6202-4088-9a0e-fd805e87aef5) Both rectangles come with labels that are not being displayed, no matter how hard I try. `fig["layout"]["shapes"]` looks like this: ```python [{'fillcolor': 'LightSalmon', 'label': {'text': 'G/g', 'textposition': 'top left'}, 'layer': 'below', 'line': {'width': 0}, 'opacity': 0.5, 'type': 'rect', 'x0': -7.0, 'x1': 1.0, 'y0': -0.5, 'y1': 9.5}, {'label': {'font': {'color': 'black', 'size': 20}, 'text': 'Keys of G or g', 'textposition': 'top left'}, 'showlegend': True, 'type': 'rect', 'x0': -4, 'x1': -2, 'y0': 3, 'y1': 1}] ``` I've spent a lot of time playing around with the options from [the manual](https://plotly.com/python/shapes/) but Plotly is not treating me to displaying any desired label. Am I doing something wrong or is it a bug? On a side note, since it might point to the solution of the problem, the small black rectangle is set to `showlegend=True` but it does not appear in the legend. <details><summary>Code to reproduce</summary> <p> ```python import plotly.graph_objects as go figure = {'data': [{'fill': 'toself', 'fillcolor': 'rgb(103, 232, 249)', 'hoverinfo': 'name', 'legendgroup': 'rgb(103, 232, 249)', 'mode': 'none', 'name': '2', 'x': [-1.0, -0.0, -0.0, -1.0, -1.0, -7.0, -6.0, -6.0, -7.0, -7.0, -2.0, -1.0, -1.0, -2.0, -2.0, -4.0, -3.0, -3.0, -4.0, -4.0, -6.0, -5.0, -5.0, -6.0], 'y': [5.8, 5.8, 6.2, 6.2, None, 5.8, 5.8, 6.2, 6.2, None, 5.8, 5.8, 6.2, 6.2, None, 5.8, 5.8, 6.2, 6.2, None, 5.8, 5.8, 6.2, 6.2], 'type': 'scatter'}, {'fill': 'toself', 'fillcolor': 'rgb(120, 113, 108)', 'hoverinfo': 'name', 'legendgroup': 'rgb(120, 113, 108)', 'mode': 'none', 'name': 'b7 (7)', 'x': [-7.0, -6.0, -6.0, -7.0], 'y': [1.8, 1.8, 2.2, 2.2], 'type': 'scatter'}, {'fill': 'toself', 'fillcolor': 'rgb(134, 25, 143)', 'hoverinfo': 'name', 'legendgroup': 'rgb(134, 25, 143)', 'mode': 'none', 'name': 'b3 (3)', 'x': [-3.0, -2.5, -2.5, -3.0, -3.0, -5.0, -4.0, -4.0, -5.0, -5.0, -2.5, -2.0, -2.0, -2.5], 'y': [0.8, 0.8, 1.2, 1.2, None, 0.8, 0.8, 1.2, 1.2, None, 0.8, 0.8, 1.2, 1.2], 'type': 'scatter'}, {'fill': 'toself', 'fillcolor': 'rgb(192, 38, 211)', 'hoverinfo': 'name', 'legendgroup': 'rgb(192, 38, 211)', 'mode': 'none', 'name': '3 (#3)', 'x': [-0.0, 1.0, 1.0, -0.0], 'y': [7.8, 7.8, 8.2, 8.2], 'type': 'scatter'}, {'fill': 'toself', 'fillcolor': 'rgb(239, 68, 68)', 'hoverinfo': 'name', 'legendgroup': 'rgb(239, 68, 68)', 'mode': 'none', 'name': '4', 'x': [-2.0, -1.0, -1.0, -2.0, -2.0, -2.5, -2.0, -2.0, -2.5], 'y': [2.8, 2.8, 3.2, 3.2, None, 2.8, 2.8, 3.2, 3.2], 'type': 'scatter'}, {'fill': 'toself', 'fillcolor': 'rgb(250, 204, 21)', 'hoverinfo': 'name', 'legendgroup': 'rgb(250, 204, 21)', 'mode': 'none', 'name': 'b6 (6)', 'x': [-3.0, -2.5, -2.5, -3.0, -3.0, -2.5, -2.0, -2.0, -2.5, -2.5, -2.0, -1.0, -1.0, -2.0], 'y': [-0.2, -0.2, 0.2, 0.2, None, -0.2, -0.2, 0.2, 0.2, None, -0.2, -0.2, 0.2, 0.2], 'type': 'scatter'}, {'fill': 'toself', 'fillcolor': 'rgb(34, 197, 94)', 'hoverinfo': 'name', 'legendgroup': 'rgb(34, 197, 94)', 'mode': 'none', 'name': '1', 'x': [0.0, 0.0, 0.0, 0.0, 0.0, -5.0, -4.0, -4.0, -5.0, -5.0, -0.0, 1.0, 1.0, -0.0, -0.0, -2.5, -2.0, -2.0, -2.5, -2.5, -2.0, -1.0, -1.0, -2.0, -2.0, -3.0, -2.5, -2.5, -3.0], 'y': [6.8, 6.8, 7.2, 7.2, None, 3.8, 3.8, 4.2, 4.2, None, 3.8, 3.8, 4.2, 4.2, None, 3.8, 3.8, 4.2, 4.2, None, 3.8, 3.8, 4.2, 4.2, None, 3.8, 3.8, 4.2, 4.2], 'type': 'scatter'}, {'fill': 'toself', 'fillcolor': 'rgb(37, 99, 235)', 'hoverinfo': 'name', 'legendgroup': 'rgb(37, 99, 235)', 'mode': 'none', 'name': '7 (#7)', 'x': [-4.0, -3.0, -3.0, -4.0, -4.0, -6.0, -5.0, -5.0, -6.0, -6.0, -1.0, -0.0, -0.0, -1.0], 'y': [8.8, 8.8, 9.2, 9.2, None, 8.8, 8.8, 9.2, 9.2, None, 8.8, 8.8, 9.2, 9.2], 'type': 'scatter'}, {'fill': 'toself', 'fillcolor': 'rgb(76, 29, 149)', 'hoverinfo': 'name', 'legendgroup': 'rgb(76, 29, 149)', 'mode': 'none', 'name': '5', 'x': [-6.0, -5.0, -5.0, -6.0, -6.0, -5.0, -4.0, -4.0, -5.0, -5.0, -0.0, 1.0, 1.0, -0.0, -0.0, -1.0, -0.0, -0.0, -1.0, -1.0, -7.0, -6.0, -6.0, -7.0, -7.0, -4.0, -3.0, -3.0, -4.0], 'y': [4.8, 4.8, 5.2, 5.2, None, 4.8, 4.8, 5.2, 5.2, None, 4.8, 4.8, 5.2, 5.2, None, 4.8, 4.8, 5.2, 5.2, None, 4.8, 4.8, 5.2, 5.2, None, 4.8, 4.8, 5.2, 5.2], 'type': 'scatter'}, {'legendgroup': 'rgb(103, 232, 249)', 'marker': {'color': 'rgb(103, 232, 249)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['V', 'V', 'v', 'v', 'ii%65', 'ii%65', 'V', 'V', 'V', 'V'], 'x': [-1.0, -0.0, -7.0, -6.0, -2.0, -1.0, -4.0, -3.0, -6.0, -5.0], 'y': [6, 6, 6, 6, 6, 6, 6, 6, 6, 6], 'type': 'scatter'}, {'legendgroup': 'rgb(120, 113, 108)', 'marker': {'color': 'rgb(120, 113, 108)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['v', 'v'], 'x': [-7.0, -6.0], 'y': [2, 2], 'type': 'scatter'}, {'legendgroup': 'rgb(134, 25, 143)', 'marker': {'color': 'rgb(134, 25, 143)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['VI', 'VI', 'i', 'i', 'iv65', 'iv65'], 'x': [-3.0, -2.5, -5.0, -4.0, -2.5, -2.0], 'y': [1, 1, 1, 1, 1, 1], 'type': 'scatter'}, {'legendgroup': 'rgb(192, 38, 211)', 'marker': {'color': 'rgb(192, 38, 211)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['I', 'I'], 'x': [-0.0, 1.0], 'y': [8, 8], 'type': 'scatter'}, {'legendgroup': 'rgb(239, 68, 68)', 'marker': {'color': 'rgb(239, 68, 68)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['ii%65', 'ii%65', 'iv65', 'iv65'], 'x': [-2.0, -1.0, -2.5, -2.0], 'y': [3, 3, 3, 3], 'type': 'scatter'}, {'legendgroup': 'rgb(250, 204, 21)', 'marker': {'color': 'rgb(250, 204, 21)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['VI', 'VI', 'iv65', 'iv65', 'ii%65', 'ii%65'], 'x': [-3.0, -2.5, -2.5, -2.0, -2.0, -1.0], 'y': [0, 0, 0, 0, 0, 0], 'type': 'scatter'}, {'legendgroup': 'rgb(34, 197, 94)', 'marker': {'color': 'rgb(34, 197, 94)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['<NA>', '<NA>', 'i', 'i', 'I', 'I', 'iv65', 'iv65', 'ii%65', 'ii%65', 'VI', 'VI'], 'x': [0.0, 0.0, -5.0, -4.0, -0.0, 1.0, -2.5, -2.0, -2.0, -1.0, -3.0, -2.5], 'y': [7, 7, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4], 'type': 'scatter'}, {'legendgroup': 'rgb(37, 99, 235)', 'marker': {'color': 'rgb(37, 99, 235)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['V', 'V', 'V', 'V', 'V', 'V'], 'x': [-4.0, -3.0, -6.0, -5.0, -1.0, -0.0], 'y': [9, 9, 9, 9, 9, 9], 'type': 'scatter'}, {'legendgroup': 'rgb(76, 29, 149)', 'marker': {'color': 'rgb(76, 29, 149)', 'opacity': 0, 'size': 1}, 'mode': 'markers', 'name': '', 'showlegend': False, 'text': ['V', 'V', 'i', 'i', 'I', 'I', 'V', 'V', 'v', 'v', 'V', 'V'], 'x': [-6.0, -5.0, -5.0, -4.0, -0.0, 1.0, -1.0, -0.0, -7.0, -6.0, -4.0, -3.0], 'y': [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], 'type': 'scatter'}], 'layout': {'height': 600, 'hovermode': 'x unified', 'showlegend': True, 'title': {'text': 'Gantt chart'}, 'xaxis': {'rangeselector': {'buttons': [{'count': 7, 'label': '1w', 'step': 'day', 'stepmode': 'backward'}, {'count': 1, 'label': '1m', 'step': 'month', 'stepmode': 'backward'}, {'count': 6, 'label': '6m', 'step': 'month', 'stepmode': 'backward'}, {'count': 1, 'label': 'YTD', 'step': 'year', 'stepmode': 'todate'}, {'count': 1, 'label': '1y', 'step': 'year', 'stepmode': 'backward'}, {'step': 'all'}]}, 'showgrid': True, 'zeroline': False}, 'yaxis': {'autorange': False, 'range': [-1, 11], 'showgrid': True, 'ticktext': ['Eb', 'Bb', 'F', 'C', 'G', 'D', 'A', 'E', 'B', 'F#'], 'tickvals': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'zeroline': False}, 'template': {'data': {'histogram2dcontour': [{'type': 'histogram2dcontour', 'colorbar': {'outlinewidth': 0, 'ticks': ''}, 'colorscale': [[0.0, '#0d0887'], [0.1111111111111111, '#46039f'], [0.2222222222222222, '#7201a8'], [0.3333333333333333, '#9c179e'], [0.4444444444444444, '#bd3786'], [0.5555555555555556, '#d8576b'], [0.6666666666666666, '#ed7953'], [0.7777777777777778, '#fb9f3a'], [0.8888888888888888, '#fdca26'], [1.0, '#f0f921']]}], 'choropleth': [{'type': 'choropleth', 'colorbar': {'outlinewidth': 0, 'ticks': ''}}], 'histogram2d': [{'type': 'histogram2d', 'colorbar': {'outlinewidth': 0, 'ticks': ''}, 'colorscale': [[0.0, '#0d0887'], [0.1111111111111111, '#46039f'], [0.2222222222222222, '#7201a8'], [0.3333333333333333, '#9c179e'], [0.4444444444444444, '#bd3786'], [0.5555555555555556, '#d8576b'], [0.6666666666666666, '#ed7953'], [0.7777777777777778, '#fb9f3a'], [0.8888888888888888, '#fdca26'], [1.0, '#f0f921']]}], 'heatmap': [{'type': 'heatmap', 'colorbar': {'outlinewidth': 0, 'ticks': ''}, 'colorscale': [[0.0, '#0d0887'], [0.1111111111111111, '#46039f'], [0.2222222222222222, '#7201a8'], [0.3333333333333333, '#9c179e'], [0.4444444444444444, '#bd3786'], [0.5555555555555556, '#d8576b'], [0.6666666666666666, '#ed7953'], [0.7777777777777778, '#fb9f3a'], [0.8888888888888888, '#fdca26'], [1.0, '#f0f921']]}], 'heatmapgl': [{'type': 'heatmapgl', 'colorbar': {'outlinewidth': 0, 'ticks': ''}, 'colorscale': [[0.0, '#0d0887'], [0.1111111111111111, '#46039f'], [0.2222222222222222, '#7201a8'], [0.3333333333333333, '#9c179e'], [0.4444444444444444, '#bd3786'], [0.5555555555555556, '#d8576b'], [0.6666666666666666, '#ed7953'], [0.7777777777777778, '#fb9f3a'], [0.8888888888888888, '#fdca26'], [1.0, '#f0f921']]}], 'contourcarpet': [{'type': 'contourcarpet', 'colorbar': {'outlinewidth': 0, 'ticks': ''}}], 'contour': [{'type': 'contour', 'colorbar': {'outlinewidth': 0, 'ticks': ''}, 'colorscale': [[0.0, '#0d0887'], [0.1111111111111111, '#46039f'], [0.2222222222222222, '#7201a8'], [0.3333333333333333, '#9c179e'], [0.4444444444444444, '#bd3786'], [0.5555555555555556, '#d8576b'], [0.6666666666666666, '#ed7953'], [0.7777777777777778, '#fb9f3a'], [0.8888888888888888, '#fdca26'], [1.0, '#f0f921']]}], 'surface': [{'type': 'surface', 'colorbar': {'outlinewidth': 0, 'ticks': ''}, 'colorscale': [[0.0, '#0d0887'], [0.1111111111111111, '#46039f'], [0.2222222222222222, '#7201a8'], [0.3333333333333333, '#9c179e'], [0.4444444444444444, '#bd3786'], [0.5555555555555556, '#d8576b'], [0.6666666666666666, '#ed7953'], [0.7777777777777778, '#fb9f3a'], [0.8888888888888888, '#fdca26'], [1.0, '#f0f921']]}], 'mesh3d': [{'type': 'mesh3d', 'colorbar': {'outlinewidth': 0, 'ticks': ''}}], 'scatter': [{'fillpattern': {'fillmode': 'overlay', 'size': 10, 'solidity': 0.2}, 'type': 'scatter'}], 'parcoords': [{'type': 'parcoords', 'line': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'scatterpolargl': [{'type': 'scatterpolargl', 'marker': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'bar': [{'error_x': {'color': '#2a3f5f'}, 'error_y': {'color': '#2a3f5f'}, 'marker': {'line': {'color': '#E5ECF6', 'width': 0.5}, 'pattern': {'fillmode': 'overlay', 'size': 10, 'solidity': 0.2}}, 'type': 'bar'}], 'scattergeo': [{'type': 'scattergeo', 'marker': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'scatterpolar': [{'type': 'scatterpolar', 'marker': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'histogram': [{'marker': {'pattern': {'fillmode': 'overlay', 'size': 10, 'solidity': 0.2}}, 'type': 'histogram'}], 'scattergl': [{'type': 'scattergl', 'marker': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'scatter3d': [{'type': 'scatter3d', 'line': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}, 'marker': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'scattermapbox': [{'type': 'scattermapbox', 'marker': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'scatterternary': [{'type': 'scatterternary', 'marker': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'scattercarpet': [{'type': 'scattercarpet', 'marker': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}}], 'carpet': [{'aaxis': {'endlinecolor': '#2a3f5f', 'gridcolor': 'white', 'linecolor': 'white', 'minorgridcolor': 'white', 'startlinecolor': '#2a3f5f'}, 'baxis': {'endlinecolor': '#2a3f5f', 'gridcolor': 'white', 'linecolor': 'white', 'minorgridcolor': 'white', 'startlinecolor': '#2a3f5f'}, 'type': 'carpet'}], 'table': [{'cells': {'fill': {'color': '#EBF0F8'}, 'line': {'color': 'white'}}, 'header': {'fill': {'color': '#C8D4E3'}, 'line': {'color': 'white'}}, 'type': 'table'}], 'barpolar': [{'marker': {'line': {'color': '#E5ECF6', 'width': 0.5}, 'pattern': {'fillmode': 'overlay', 'size': 10, 'solidity': 0.2}}, 'type': 'barpolar'}], 'pie': [{'automargin': True, 'type': 'pie'}]}, 'layout': {'autotypenumbers': 'strict', 'colorway': ['#636efa', '#EF553B', '#00cc96', '#ab63fa', '#FFA15A', '#19d3f3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52'], 'font': {'color': '#2a3f5f'}, 'hovermode': 'closest', 'hoverlabel': {'align': 'left'}, 'paper_bgcolor': 'white', 'plot_bgcolor': '#E5ECF6', 'polar': {'bgcolor': '#E5ECF6', 'angularaxis': {'gridcolor': 'white', 'linecolor': 'white', 'ticks': ''}, 'radialaxis': {'gridcolor': 'white', 'linecolor': 'white', 'ticks': ''}}, 'ternary': {'bgcolor': '#E5ECF6', 'aaxis': {'gridcolor': 'white', 'linecolor': 'white', 'ticks': ''}, 'baxis': {'gridcolor': 'white', 'linecolor': 'white', 'ticks': ''}, 'caxis': {'gridcolor': 'white', 'linecolor': 'white', 'ticks': ''}}, 'coloraxis': {'colorbar': {'outlinewidth': 0, 'ticks': ''}}, 'colorscale': {'sequential': [[0.0, '#0d0887'], [0.1111111111111111, '#46039f'], [0.2222222222222222, '#7201a8'], [0.3333333333333333, '#9c179e'], [0.4444444444444444, '#bd3786'], [0.5555555555555556, '#d8576b'], [0.6666666666666666, '#ed7953'], [0.7777777777777778, '#fb9f3a'], [0.8888888888888888, '#fdca26'], [1.0, '#f0f921']], 'sequentialminus': [[0.0, '#0d0887'], [0.1111111111111111, '#46039f'], [0.2222222222222222, '#7201a8'], [0.3333333333333333, '#9c179e'], [0.4444444444444444, '#bd3786'], [0.5555555555555556, '#d8576b'], [0.6666666666666666, '#ed7953'], [0.7777777777777778, '#fb9f3a'], [0.8888888888888888, '#fdca26'], [1.0, '#f0f921']], 'diverging': [[0, '#8e0152'], [0.1, '#c51b7d'], [0.2, '#de77ae'], [0.3, '#f1b6da'], [0.4, '#fde0ef'], [0.5, '#f7f7f7'], [0.6, '#e6f5d0'], [0.7, '#b8e186'], [0.8, '#7fbc41'], [0.9, '#4d9221'], [1, '#276419']]}, 'xaxis': {'gridcolor': 'white', 'linecolor': 'white', 'ticks': '', 'title': {'standoff': 15}, 'zerolinecolor': 'white', 'automargin': True, 'zerolinewidth': 2}, 'yaxis': {'gridcolor': 'white', 'linecolor': 'white', 'ticks': '', 'title': {'standoff': 15}, 'zerolinecolor': 'white', 'automargin': True, 'zerolinewidth': 2}, 'scene': {'xaxis': {'backgroundcolor': '#E5ECF6', 'gridcolor': 'white', 'linecolor': 'white', 'showbackground': True, 'ticks': '', 'zerolinecolor': 'white', 'gridwidth': 2}, 'yaxis': {'backgroundcolor': '#E5ECF6', 'gridcolor': 'white', 'linecolor': 'white', 'showbackground': True, 'ticks': '', 'zerolinecolor': 'white', 'gridwidth': 2}, 'zaxis': {'backgroundcolor': '#E5ECF6', 'gridcolor': 'white', 'linecolor': 'white', 'showbackground': True, 'ticks': '', 'zerolinecolor': 'white', 'gridwidth': 2}}, 'shapedefaults': {'line': {'color': '#2a3f5f'}}, 'annotationdefaults': {'arrowcolor': '#2a3f5f', 'arrowhead': 0, 'arrowwidth': 1}, 'geo': {'bgcolor': 'white', 'landcolor': '#E5ECF6', 'subunitcolor': 'white', 'showland': True, 'showlakes': True, 'lakecolor': 'white'}, 'title': {'x': 0.05}, 'mapbox': {'style': 'light'}}}, 'shapes': [{'fillcolor': 'LightSalmon', 'label': {'text': 'G/g', 'textposition': 'top left'}, 'layer': 'below', 'line': {'width': 0}, 'opacity': 0.5, 'type': 'rect', 'x0': -7.0, 'x1': 1.0, 'y0': -0.5, 'y1': 9.5}, {'label': {'font': {'color': 'black', 'size': 20}, 'text': 'Keys of G or g', 'textposition': 'top left'}, 'showlegend': True, 'type': 'rect', 'x0': -4, 'x1': -2, 'y0': 3, 'y1': 1}], 'legend': {'traceorder': 'grouped'}}} fig = go.Figure(figure) fig.show() ``` </p> </details>
closed
2024-01-04T12:53:31Z
2024-07-11T22:16:38Z
https://github.com/plotly/plotly.py/issues/4475
[]
johentsch
4
jacobgil/pytorch-grad-cam
computer-vision
116
Tuple Index Out of Range
Hello, when I try to run the script bellow I get an IndexError: tuple index out of range and I am not quite sure why. `from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM from pytorch_grad_cam.utils.image import show_cam_on_image trans=transforms.ToTensor() model = model target_layer = model.fc input_tensor =trans(resize_image(image[14][0])) input_tensor=input_tensor.unsqueeze(0) input_tensor=input_tensor.to('cuda') cam = GradCAM(model=model, target_layer=target_layer, use_cuda='args.use_cuda') target_category = None grayscale_cam = cam(input_tensor=input_tensor, target_category=target_category) grayscale_cam = grayscale_cam[0,:] visualization = show_cam_on_image(rgb_img, grayscale_cam)` **I then get the following error traceback:** `IndexError: tuple index out of range IndexError Traceback (most recent call last) <ipython-input-7-60b4cb2e59c1> in <module> 22 23 # You can also pass aug_smooth=True and eigen_smooth=True, to apply smoothing. ---> 24 grayscale_cam = cam(input_tensor=input_tensor, target_category=target_category) 25 26 # In this example grayscale_cam has only one image in the batch: ~/anaconda3/lib/python3.7/site-packages/pytorch_grad_cam/base_cam.py in __call__(self, input_tensor, target_category, aug_smooth, eigen_smooth) 127 128 return self.forward(input_tensor, --> 129 target_category, eigen_smooth) ~/anaconda3/lib/python3.7/site-packages/pytorch_grad_cam/base_cam.py in forward(self, input_tensor, target_category, eigen_smooth) 75 76 cam = self.get_cam_image(input_tensor, target_category, ---> 77 activations, grads, eigen_smooth) 78 79 cam = np.maximum(cam, 0) ~/anaconda3/lib/python3.7/site-packages/pytorch_grad_cam/base_cam.py in get_cam_image(self, input_tensor, target_category, activations, grads, eigen_smooth) 44 grads, 45 eigen_smooth=False): ---> 46 weights = self.get_cam_weights(input_tensor, target_category, activations, grads) 47 weighted_activations = weights[:, :, None, None] * activations 48 if eigen_smooth: ~/anaconda3/lib/python3.7/site-packages/pytorch_grad_cam/grad_cam.py in get_cam_weights(self, input_tensor, target_category, activations, grads) 14 activations, 15 grads): ---> 16 return np.mean(grads, axis=(2, 3)) <__array_function__ internals> in mean(*args, **kwargs) ~/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py in mean(a, axis, dtype, out, keepdims) 3333 3334 return _methods._mean(a, axis=axis, dtype=dtype, -> 3335 out=out, **kwargs) 3336 3337 ~/anaconda3/lib/python3.7/site-packages/numpy/core/_methods.py in _mean(a, axis, dtype, out, keepdims) 136 137 is_float16_result = False --> 138 rcount = _count_reduce_items(arr, axis) 139 # Make this warning show up first 140 if rcount == 0: ~/anaconda3/lib/python3.7/site-packages/numpy/core/_methods.py in _count_reduce_items(arr, axis) 55 items = 1 56 for ax in axis: ---> 57 items *= arr.shape[ax] 58 return items 59 IndexError: tuple index out of range` The image that I am feeding into it is 3,128,128 in dimension and I have added a 4th dimension with tensor.unsqueeze(0) as it would not be fed into the model properly without this pseudo "batch index". I do not understand which tuple it is finding to be out of range.
closed
2021-07-21T18:51:07Z
2021-07-23T19:20:58Z
https://github.com/jacobgil/pytorch-grad-cam/issues/116
[]
juanpabloalfonzo
2
autogluon/autogluon
computer-vision
4,148
[BUG] time_limit is displayd wrong in logs
**Describe the bug** I've wanted run example from https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html with: - `time_limit = 3600` - `preset = "best"` In logs `time_limit` is divided by 4 (900s instead of 3600s) which seems to me like a bug or not clear message ``` Beginning AutoGluon training ... Time limit = 900s ... Fitting model: KNeighborsUnif_BAG_L1 ... Training model for up to 599.53s of the 899.47s of remaining time. .. ``` Notes: - there is warning about ray not installed. - one message is displayed correctly `Sub-fit(s) time limit is: 3600 seconds.` **Expected behavior** `time_limit` specified in `fit` should be the same as in logs **To Reproduce** Everything done on google colab with newest version: ``` !pip install autogluon.tabular from autogluon.tabular import TabularDataset, TabularPredictor data_url = 'https://raw.githubusercontent.com/mli/ag-docs/main/knot_theory/' train_data = TabularDataset(f'{data_url}train.csv') label = 'signature' predictor = TabularPredictor(label=label).fit(train_data, presets='best', time_limit=3600) ``` **Screenshots / Logs** ``` No path specified. Models will be saved in: "AutogluonModels/ag-20240427_161329" Preset alias specified: 'best' maps to 'best_quality'. Presets specified: ['best'] Setting dynamic_stacking from 'auto' to True. Reason: Enable dynamic_stacking when use_bag_holdout is disabled. (use_bag_holdout=False) Stack configuration (auto_stack=True): num_stack_levels=1, num_bag_folds=8, num_bag_sets=1 Dynamic stacking is enabled (dynamic_stacking=True). AutoGluon will try to determine whether the input data is affected by stacked overfitting and enable or disable stacking as a consequence. Detecting stacked overfitting by sub-fitting AutoGluon on the input data. That is, copies of AutoGluon will be sub-fit on subset(s) of the data. Then, the holdout validation data is used to detect stacked overfitting. Sub-fit(s) time limit is: 3600 seconds. Starting holdout-based sub-fit for dynamic stacking. Context path is: AutogluonModels/ag-20240427_161329/ds_sub_fit/sub_fit_ho. /usr/local/lib/python3.10/dist-packages/autogluon/tabular/predictor/predictor.py:1213: UserWarning: Failed to use ray for memory safe fits. Falling back to normal fit. Error: ImportError('ray is required to train folds in parallel for TabularPredictor or HPO for MultiModalPredictor. A quick tip is to install via `pip install ray==2.10.0`') stacked_overfitting = self._sub_fit_memory_save_wrapper( Beginning AutoGluon training ... Time limit = 900s AutoGluon will save models to "AutogluonModels/ag-20240427_161329/ds_sub_fit/sub_fit_ho" =================== System Info =================== AutoGluon Version: 1.1.0 Python Version: 3.10.12 Operating System: Linux Platform Machine: x86_64 Platform Version: #1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023 CPU Count: 2 Memory Avail: 11.15 GB / 12.67 GB (88.0%) Disk Space Avail: 81.37 GB / 107.72 GB (75.5%) =================================================== Train Data Rows: 8889 Train Data Columns: 18 Label Column: signature Problem Type: multiclass Preprocessing data ... Warning: Some classes in the training set have fewer than 10 examples. AutoGluon will only keep 9 out of 13 classes for training and will not try to predict the rare classes. To keep more classes, increase the number of datapoints from these rare classes in the training data or reduce label_count_threshold. Fraction of data from classes with at least 10 examples that will be kept for training models: 0.9983125210934863 Train Data Class Count: 9 Using Feature Generators to preprocess the data ... Fitting AutoMLPipelineFeatureGenerator... Available Memory: 11422.74 MB Train Data (Original) Memory Usage: 1.22 MB (0.0% of available memory) Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features. Stage 1 Generators: Fitting AsTypeFeatureGenerator... Note: Converting 5 features to boolean dtype as they only contain 2 unique values. Stage 2 Generators: Fitting FillNaFeatureGenerator... Stage 3 Generators: Fitting IdentityFeatureGenerator... Stage 4 Generators: Fitting DropUniqueFeatureGenerator... Stage 5 Generators: Fitting DropDuplicatesFeatureGenerator... Useless Original Features (Count: 1): ['Symmetry_D8'] These features carry no predictive signal and should be manually investigated. This is typically a feature which has the same value for all rows. These features do not need to be present at inference time. Types of features in original data (raw dtype, special dtypes): ('float', []) : 14 | ['chern_simons', 'cusp_volume', 'injectivity_radius', 'longitudinal_translation', 'meridinal_translation_imag', ...] ('int', []) : 3 | ['Unnamed: 0', 'hyperbolic_adjoint_torsion_degree', 'hyperbolic_torsion_degree'] Types of features in processed data (raw dtype, special dtypes): ('float', []) : 9 | ['chern_simons', 'cusp_volume', 'injectivity_radius', 'longitudinal_translation', 'meridinal_translation_imag', ...] ('int', []) : 3 | ['Unnamed: 0', 'hyperbolic_adjoint_torsion_degree', 'hyperbolic_torsion_degree'] ('int', ['bool']) : 5 | ['Symmetry_0', 'Symmetry_D3', 'Symmetry_D4', 'Symmetry_D6', 'Symmetry_Z/2 + Z/2'] 0.4s = Fit runtime 17 features in original data used to generate 17 features in processed data. Train Data (Processed) Memory Usage: 0.85 MB (0.0% of available memory) Data preprocessing and feature engineering runtime = 0.46s ... AutoGluon will gauge predictive performance using evaluation metric: 'accuracy' To change this, specify the eval_metric parameter of Predictor() Large model count detected (112 configs) ... Only displaying the first 3 models of each family. To see all, set `verbosity=3`. User-specified model hyperparameters to be fit: { 'NN_TORCH': [{}, {'activation': 'elu', 'dropout_prob': 0.10077639529843717, 'hidden_size': 108, 'learning_rate': 0.002735937344002146, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 1.356433327634438e-12, 'ag_args': {'name_suffix': '_r79', 'priority': -2}}, {'activation': 'elu', 'dropout_prob': 0.11897478034205347, 'hidden_size': 213, 'learning_rate': 0.0010474382260641949, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 5.594471067786272e-10, 'ag_args': {'name_suffix': '_r22', 'priority': -7}}], 'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'], 'CAT': [{}, {'depth': 6, 'grow_policy': 'SymmetricTree', 'l2_leaf_reg': 2.1542798306067823, 'learning_rate': 0.06864209415792857, 'max_ctr_complexity': 4, 'one_hot_max_size': 10, 'ag_args': {'name_suffix': '_r177', 'priority': -1}}, {'depth': 8, 'grow_policy': 'Depthwise', 'l2_leaf_reg': 2.7997999596449104, 'learning_rate': 0.031375015734637225, 'max_ctr_complexity': 2, 'one_hot_max_size': 3, 'ag_args': {'name_suffix': '_r9', 'priority': -5}}], 'XGB': [{}, {'colsample_bytree': 0.6917311125174739, 'enable_categorical': False, 'learning_rate': 0.018063876087523967, 'max_depth': 10, 'min_child_weight': 0.6028633586934382, 'ag_args': {'name_suffix': '_r33', 'priority': -8}}, {'colsample_bytree': 0.6628423832084077, 'enable_categorical': False, 'learning_rate': 0.08775715546881824, 'max_depth': 5, 'min_child_weight': 0.6294123374222513, 'ag_args': {'name_suffix': '_r89', 'priority': -16}}], 'FASTAI': [{}, {'bs': 256, 'emb_drop': 0.5411770367537934, 'epochs': 43, 'layers': [800, 400], 'lr': 0.01519848858318159, 'ps': 0.23782946566604385, 'ag_args': {'name_suffix': '_r191', 'priority': -4}}, {'bs': 2048, 'emb_drop': 0.05070411322605811, 'epochs': 29, 'layers': [200, 100], 'lr': 0.08974235041576624, 'ps': 0.10393466140748028, 'ag_args': {'name_suffix': '_r102', 'priority': -11}}], 'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}], 'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}], 'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}], } AutoGluon will fit 2 stack levels (L1 to L2) ... Fitting 110 L1 models ... Fitting model: KNeighborsUnif_BAG_L1 ... Training model for up to 599.53s of the 899.47s of remaining time. 0.2116 = Validation score (accuracy) 0.07s = Training runtime 0.11s = Validation runtime Fitting model: KNeighborsDist_BAG_L1 ... Training model for up to 599.29s of the 899.24s of remaining time. 0.2214 = Validation score (accuracy) 0.05s = Training runtime 0.09s = Validation runtime ```
closed
2024-04-27T16:26:26Z
2024-05-21T16:44:54Z
https://github.com/autogluon/autogluon/issues/4148
[ "API & Doc", "module: tabular" ]
mglowacki100
1
seleniumbase/SeleniumBase
pytest
3,116
Add a stealthier Recorder Mode (UC + Recorder)
## Add a stealthier Recorder Mode (UC + Recorder) Make it possible to create recordings in Stealth Mode / UC Mode. Example: ```bash sbase recorder --uc ``` (And then create recordings from there.) Note that special UC Mode methods (such as `uc_gui_click_captcha()`, etc) will need to be added on afterward. ---- This will improve on https://github.com/seleniumbase/SeleniumBase/issues/3078, which let you generate a UC Mode boilerplate from the URL provided. Eg: ```bash sbase mkfile bypass_cf.py --uc --url=https://gitlab.com/users/sign_in ``` ```python from seleniumbase import SB with SB(uc=True) as sb: url = "https://gitlab.com/users/sign_in" sb.uc_open_with_reconnect(url, 4) sb.uc_gui_click_captcha() ```
closed
2024-09-11T04:57:39Z
2024-09-11T05:25:02Z
https://github.com/seleniumbase/SeleniumBase/issues/3116
[ "enhancement", "UC Mode / CDP Mode" ]
mdmintz
1
gevent/gevent
asyncio
1,675
Issue with Greenlet 0.4.17
* gevent version: 20.6.2 * Python version: Please be as specific as possible: "cPython 3.8.2" * Operating System: Please be as specific as possible: "Ubuntu (Linux 8e4dd7170f65 5.4.0-47-generic #51-Ubuntu SMP Fri Sep 4 19:50:52 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux)" ### Description: The last version of greenlet is causing segmentation fault (core dumped) with gevent. ``` <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject ./entrypoint: line 10: 7 Segmentation fault (core dumped) talisker.gunicorn.gevent webapp.app:app --bind $1 --worker-class gevent --name talisker-`hostname` ```
closed
2020-09-22T13:02:29Z
2020-09-22T13:03:54Z
https://github.com/gevent/gevent/issues/1675
[]
jkfran
1
LAION-AI/Open-Assistant
python
3,271
create minimal tutorial on using a plugin
- [x] research and gather what is needed - [ ] create a blog showing how to use plugins - [x] graduate some of that content into a proper place in /docs
open
2023-05-31T17:24:56Z
2023-05-31T21:40:22Z
https://github.com/LAION-AI/Open-Assistant/issues/3271
[ "documentation", "plugins" ]
andrewm4894
1
noirbizarre/flask-restplus
flask
293
Using JSON Schema models
I'm trying to use a JSON schema to generate a model to be used with `marshal_with`. Here's my MWE: ```python #!/usr/bin/env python3 from flask import Flask, Blueprint from flask_restplus import Resource, Api, fields import json app = Flask(__name__) blueprint = Blueprint("api", __name__) api = Api(blueprint, version="0.1", title="title") app.register_blueprint(blueprint) model = api.schema_model("Response", {"type": "string"}) @api.route("/hello") class Analyze(Resource): @api.marshal_with(model) def get(self): return 5 if __name__ == "__main__": app.run(debug=True) ``` When you visit `localhost:5000/hello`, the following traceback occurs: ``` Traceback (most recent call last): File "/nix/store/nl9a0l5dvrc3c8y8110qihfcbdzgy5zl-python3.6-flask-0.12/lib/python3.6/site-packages/flask/app.py", line 1612, in full_dispatch_request rv = self.dispatch_request() File "/nix/store/nl9a0l5dvrc3c8y8110qihfcbdzgy5zl-python3.6-flask-0.12/lib/python3.6/site-packages/flask/app.py", line 1598, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "/nix/store/nhg8sdk9nwqkghk9xwwb69dybjxbj1gz-python3.6-flask-restplus-0.10.1/lib/python3.6/site-packages/flask_restplus/api.py", line 313, in wrapper resp = resource(*args, **kwargs) File "/nix/store/nl9a0l5dvrc3c8y8110qihfcbdzgy5zl-python3.6-flask-0.12/lib/python3.6/site-packages/flask/views.py", line 84, in view return self.dispatch_request(*args, **kwargs) File "/nix/store/nhg8sdk9nwqkghk9xwwb69dybjxbj1gz-python3.6-flask-restplus-0.10.1/lib/python3.6/site-packages/flask_restplus/resource.py", line 44, in dispatch_request resp = meth(*args, **kwargs) File "/nix/store/nhg8sdk9nwqkghk9xwwb69dybjxbj1gz-python3.6-flask-restplus-0.10.1/lib/python3.6/site-packages/flask_restplus/marshalling.py", line 110, in wrapper return marshal(resp, self.fields, self.envelope, mask) File "/nix/store/nhg8sdk9nwqkghk9xwwb69dybjxbj1gz-python3.6-flask-restplus-0.10.1/lib/python3.6/site-packages/flask_restplus/marshalling.py", line 54, in marshal for k, v in list(fields.items())) AttributeError: 'SchemaModel' object has no attribute 'items' ``` I'm just trying to use a `SchemaModel` in the same way I would use a `Model`, like in the following example (which works): ```python model = api.model("Response", {"field": fields.String(required=True)}) @api.route("/hello") class Analyze(Resource): @api.marshal_with(model) def get(self): return {"field": "str"} ``` How can I use the JSON schema-generated model?
open
2017-06-16T21:08:17Z
2019-10-16T09:17:55Z
https://github.com/noirbizarre/flask-restplus/issues/293
[]
langston-barrett
16
pywinauto/pywinauto
automation
1,066
The same wrappers accessed in two different ways do not have the same parent.
## Expected Behavior The output should be: ```python True True ``` The first True is because wrapper_maximize_button1 == wrapper_maximize_button2 So I expect wrapper_maximize_button1.parent() == wrapper_maximize_button2.parent() ## Actual Behavior The output is: ```python True False ``` False is the result of wrapper_maximize_button1.parent() == wrapper_maximize_button2.parent() ## Steps to Reproduce the Problem 1. Execute code ## Short Example of Code to Demonstrate the Problem ```python import pywinauto pywinauto.application.Application().start(cmd_line="explorer.exe") desktop = pywinauto.Desktop(backend='uia', allow_magic_lookup=False) if desktop['File Explorer'].is_maximized(): desktop['File Explorer'].restore() window = desktop.windows(title='File Explorer', control_type='Window')[0] wrapper_maximize_button1 = window.descendants(title='Maximize')[0] pt = wrapper_maximize_button1.rectangle().mid_point() wrapper_maximize_button2 = desktop.from_point(pt[0],pt[1]) print(wrapper_maximize_button1 == wrapper_maximize_button2) # True print(wrapper_maximize_button1.parent() == wrapper_maximize_button2.parent()) # Should be True ``` ## Specifications - Pywinauto version: 0.6.8 - Python version and bitness: 3.8.3 64bit - Platform and OS: PC Windows 10
open
2021-05-04T17:45:50Z
2021-05-18T14:46:12Z
https://github.com/pywinauto/pywinauto/issues/1066
[ "Priority-Low", "need investigation" ]
beuaaa
10
paperless-ngx/paperless-ngx
machine-learning
7,361
[BUG] Inconsisnt custom field value validation
### Description https://github.com/paperless-ngx/paperless-ngx/blob/2312eba5b6640419facb566cf1dc2becdc875850/src/documents/models.py#L886-L902 `CustomFieldInstance.value_*` are configured to have `.blank=False`. However, this is not enforced by [`CustomFieldInstanceSerializer.validate`](https://github.com/paperless-ngx/paperless-ngx/blob/2312eba5b6640419facb566cf1dc2becdc875850/src/documents/serialisers.py#L566-L607). As a result custom fields can have two possible values for “no data”. This is not a huge issue for GUI users, but a pain for API-based integration. This might also confuse contributors who look at the `CustomFieldInstance` and assume custom fields cannot be blank. ### Steps to reproduce 1. Create a custom field with name "test_custom_field" with type "text". 2. In the web interface, edit any document, add a "test_custom_field", **do not put anything in the box**, and click "save". 3. Verify that this document now has a "test_custom_field" with value `null`. 4. Edit this document again, enter something into the "test_custom_field" box, **delete it**, and click "save". 5. Verify that this document now has a "test_custom_field" with value `""`. ### Webserver logs ```bash N/A, nothing special. ``` ### Browser logs _No response_ ### Paperless-ngx version dev ### Host OS x86_64 Ubuntu 20.04.6 LTS ### Installation method Bare metal ### System status _No response_ ### Browser _No response_ ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
closed
2024-08-01T12:12:32Z
2024-09-01T03:09:31Z
https://github.com/paperless-ngx/paperless-ngx/issues/7361
[ "not a bug" ]
yichi-yang
4
piskvorky/gensim
data-science
3,352
new word cannot be added to vocabulary by build_vocab
<!-- **IMPORTANT**: - Use the [Gensim mailing list](https://groups.google.com/forum/#!forum/gensim) to ask general or usage questions. Github issues are only for bug reports. - Check [Recipes&FAQ](https://github.com/RaRe-Technologies/gensim/wiki/Recipes-&-FAQ) first for common answers. Github bug reports that do not include relevant information and context will be closed without an answer. Thanks! --> #### Problem description Hi, I have a question about the behavior of build_vocab. I am Japanese and I am using gensim's Word2Vec model by loading the Japanese model [here](http://public.shiroyagi.s3.amazonaws.com/latest-ja-word2vec-gensim-model.zip). I want to add a new word that is not in the vocabulary, so I created a corpus and tried build_vocab, but about 280 of the 320 or so new words were not registered and I got a key error. Here is a simple code: build_vocab, train, and then check if the vocab is updated, and I get a keyerorr. I would like to know the cause of this. ```python import gensim # model's path model_path='latest-ja-word2vec-gensim-model/word2vec.gensim.model' model = gensim.models.Word2Vec.load(model_path) model.wv["python"] # error occured because 'python' is not in the vocab # adding new word corpus_list=[["python"]] # build_vocab and train model.build_vocab(corpus_list, update=True) model.train(corpus_list, total_examples=model.corpus_count, epochs=model.epochs) model.wv["python"] # error occured ``` #### Versions ```python gensim version 3.8.1 python version 3.8.9 ```
closed
2022-06-09T06:07:57Z
2023-11-12T22:25:28Z
https://github.com/piskvorky/gensim/issues/3352
[]
Atsuyoshi-Funahashi
4
shaikhsajid1111/social-media-profile-scrapers
web-scraping
14
'ProfilePage' None
I'm getting a "'ProfilePage' None" return for all attempts. ![image](https://user-images.githubusercontent.com/26424807/194880564-3686361d-51ac-4c67-8429-8d5b5eef4d1d.png)
open
2022-10-10T13:50:05Z
2022-10-10T13:50:05Z
https://github.com/shaikhsajid1111/social-media-profile-scrapers/issues/14
[]
hamelcubsfan
0
huggingface/datasets
pytorch
6,564
`Dataset.filter` missing `with_rank` parameter
### Describe the bug The issue shall be open: https://github.com/huggingface/datasets/issues/6435 When i try to pass `with_rank` to `Dataset.filter()`, i get this: `Dataset.filter() got an unexpected keyword argument 'with_rank'` ### Steps to reproduce the bug Run notebook: https://colab.research.google.com/drive/1WUNKph8BdP0on5ve3gQnh_PE0cFLQqTn?usp=sharing ### Expected behavior Should work? ### Environment info NVIDIA RTX 4090
closed
2024-01-06T23:48:13Z
2024-01-29T16:36:55Z
https://github.com/huggingface/datasets/issues/6564
[]
kopyl
2
Colin-b/pytest_httpx
pytest
38
async callback are not supported
When I register an async function as a callback to httpx_mock I get this error: `TypeError: cannot unpack non-iterable coroutine object` I suppose it's not awaited here: https://github.com/Colin-b/pytest_httpx/blob/develop/pytest_httpx/_httpx_mock.py#L179 Is this a bug or am I using the library wrong? Thanks!
closed
2021-03-18T11:55:14Z
2022-10-20T21:39:02Z
https://github.com/Colin-b/pytest_httpx/issues/38
[ "question" ]
mkotsalainen
4
aiogram/aiogram
asyncio
566
I suggest adding a new builtin filter
**Is your feature request related to a problem? Please describe.** No **Describe the solution you'd like** In my handlers I often use StorageDataFilter. It's similar as StateFilter and helps me to check storage data for current user and chat. Here are examples: ```python dp = Dispatcher(bot) # check if storage data for current user and chat has key 'regime' with value 'demo' @dp.message_handler(storage_data={'regime': 'demo'}) async def test(msg: types.Message): ... # check if has key 'regime' with value 'demo' and key 'game' with value 'football' @dp.message_handler(storage_data={'regime': 'demo', 'game': 'football'}) async def test(msg: types.Message): ... # check if has key 'game' with value 'football' or 'basketball' # key 'game' with value ['football', 'basketball'] is also suitable @dp.message_handler(storage_data={'game': ['football', 'basketball']}) async def test(msg: types.Message): ... # check if has key 'regime' with value 'demo' and key 'game' with any value @dp.message_handler(storage_data={'regime': 'demo', 'game': '*'}) async def test(msg: types.Message): ... # check if has key 'game' with value '*' (or ['*']) @dp.message_handler(storage={'game': ['*']}) async def test(msg: types.Message): ... ``` Here is code of filter: ```python class StorageDataFilter(BoundFilter): """ Check if all items matches the relevant items in the current storage data. """ key = 'storage_data' ctx_storage_data = ContextVar('user_storage_data') def __init__(self, dispatcher, storage_data: dict): from aiogram import Dispatcher self.dispatcher: Dispatcher = dispatcher self.storage_data = storage_data @staticmethod def get_target(obj) -> typing.Tuple[Optional[int], Optional[int]]: if isinstance(obj, CallbackQuery): try: chat_id = obj.message.chat.id except AttributeError: chat_id = None else: try: chat_id = obj.chat.id except AttributeError: chat_id = None try: user_id = obj.from_user.id except AttributeError: user_id = None return chat_id, user_id async def get_current_storage_data(self, obj) -> Optional[dict]: try: return self.ctx_storage_data.get() except LookupError: chat_id, user_id = self.get_target(obj) if chat_id or user_id: storage_data = await self.dispatcher.storage.get_data(chat=chat_id, user=user_id) self.ctx_storage_data.set(storage_data) return storage_data async def check(self, obj) -> bool: current_storage_data = await self.get_current_storage_data(obj) if current_storage_data is None: return False for key, value in self.storage_data.items(): if key not in current_storage_data: return False if value == '*': continue if isinstance(value, (list, tuple, set)): if current_storage_data[key] in value: continue if current_storage_data[key] == value: continue return False return True ``` What about to include this filter in builtins filters?
closed
2021-04-16T10:49:20Z
2023-08-04T18:11:49Z
https://github.com/aiogram/aiogram/issues/566
[ "new feature", "under discussion" ]
LDmitriy7
3
klen/mixer
sqlalchemy
127
Please update Faker version due security issue
How to check: ```bash $ pip install safety $ safety check -r requirements.txt ╒══════════════════════════════════════════════════════════════════════════════╕ │ │ │ /$$$$$$ /$$ │ │ /$$__ $$ | $$ │ │ /$$$$$$$ /$$$$$$ | $$ \__//$$$$$$ /$$$$$$ /$$ /$$ │ │ /$$_____/ |____ $$| $$$$ /$$__ $$|_ $$_/ | $$ | $$ │ │ | $$$$$$ /$$$$$$$| $$_/ | $$$$$$$$ | $$ | $$ | $$ │ │ \____ $$ /$$__ $$| $$ | $$_____/ | $$ /$$| $$ | $$ │ │ /$$$$$$$/| $$$$$$$| $$ | $$$$$$$ | $$$$/| $$$$$$$ │ │ |_______/ \_______/|__/ \_______/ \___/ \____ $$ │ │ /$$ | $$ │ │ | $$$$$$/ │ │ by pyup.io \______/ │ │ │ ╞══════════════════════════════════════════════════════════════════════════════╡ │ REPORT │ │ checked 1 packages, using default DB │ ╞════════════════════════════╤═══════════╤══════════════════════════╤══════════╡ │ package │ installed │ affected │ ID │ ╞════════════════════════════╧═══════════╧══════════════════════════╧══════════╡ │ faker │ 0.9.1 │ <2.1.2 │ 37658 │ ╘══════════════════════════════════════════════════════════════════════════════╛ ```
closed
2020-04-01T07:28:55Z
2020-12-30T20:17:31Z
https://github.com/klen/mixer/issues/127
[]
sirkonst
1
cobrateam/splinter
automation
391
error: ChromeDriver executable needs to be available in the path
I downloaded chromedriver.zip extracted chromedriver.exe into N:\ added N:\; to PATH. I get above message from: from splinter import Browser b = Browser("chrome") From a command prompt it works: C:\Python33\Scripts>chromedriver Starting ChromeDriver (v2.9.248315) on port 9515
closed
2015-04-18T23:03:19Z
2018-08-27T00:55:49Z
https://github.com/cobrateam/splinter/issues/391
[]
ghost
0
sqlalchemy/sqlalchemy
sqlalchemy
10,282
Mypy: @declared_attr crash mypy when using "--follow-imports=silent"
### Ensure stubs packages are not installed - [X] No sqlalchemy stub packages is installed (both `sqlalchemy-stubs` and `sqlalchemy2-stubs` are not compatible with v2) ### Verify if the api is typed - [X] The api is not in a module listed in [#6810](https://github.com/sqlalchemy/sqlalchemy/issues/6810) so it should pass type checking ### Describe the typing issue When mypy is configured to [follow import but suppress error messages](https://mypy.readthedocs.io/en/stable/running_mypy.html#follow-imports) (eg: with `--follow-imports=silent`), any `@declared_attr` in a module imported will crash mypy >= 1.4.0. ### To Reproduce ```python # example.py from sqlalchemy import Column, String from sqlalchemy.orm import Mapped, declared_attr, declarative_mixin @declarative_mixin class Foo: @declared_attr def bar(cls) -> Mapped[str]: return Column(String) # example2.py from example import Foo ``` ### Error ``` example.py:-1: error: INTERNAL ERROR -- Please try using mypy master on GitHub: https://mypy.readthedocs.io/en/stable/common_issues.html#using-a-development-mypy-build Please report a bug at https://github.com/python/mypy/issues version: 1.5.1 Traceback (most recent call last): File "mypy/checkexpr.py", line 5141, in accept File "mypy/nodes.py", line 2207, in accept File "mypy/checkexpr.py", line 4633, in visit_lambda_expr File "mypy/nodes.py", line 2200, in expr IndexError: list index out of range example.py:-1: : note: use --pdb to drop into pdb ``` ### Versions - OS: linux - Python: 3.11.3 - SQLAlchemy: 2.0.20 & 1.4.49 - Type checker: mypy >= 1.4.0 (for some reason, it works with mypy 1.3.1) ### Additional context The error happens in mypy [at this line](https://github.com/python/mypy/blob/v1.5.1/mypy/nodes.py#L2200). This is because the `Block` passed when creating the `LambdaExpr` [here](https://github.com/sqlalchemy/sqlalchemy/blob/rel_2_0_20/lib/sqlalchemy/ext/mypy/decl_class.py#L340-L342) is empty.
open
2023-08-25T17:16:55Z
2024-02-26T14:18:44Z
https://github.com/sqlalchemy/sqlalchemy/issues/10282
[ "bug", "PRs (with tests!) welcome", "SQLA mypy plugin" ]
k4nar
5
ijl/orjson
numpy
24
Can not load exception class: {}.{}json.JSONDecodeError
I have some interesting situation with `orjson==2.0.6` in my project. I wasn't able to reproduce this issue outside of the project, it means there's probably some strange conflict with existing dependencies or environment. Clean module outside of the project but in the same venv and same imports works absolutely fine. Any idea what it can be? *Python*: 3.6.3 PyCharm output: ``` thread '<unnamed>' panicked at 'Can not load exception class: {}.{}json.JSONDecodeError: PyErr { type: Py(0x9d0c40, PhantomData) }', src/libcore/result.rs:999:5 stack backtrace: 0: <unknown> 1: <unknown> 2: <unknown> 3: <unknown> 4: <unknown> 5: <unknown> 6: <unknown> 7: <unknown> 8: <unknown> 9: PyInit_orjson 10: _PyImport_LoadDynamicModuleWithSpec 11: <unknown> 12: PyCFunction_Call 13: _PyEval_EvalFrameDefault 14: <unknown> 15: <unknown> 16: _PyEval_EvalFrameDefault 17: <unknown> 18: <unknown> 19: _PyEval_EvalFrameDefault 20: <unknown> 21: <unknown> 22: _PyEval_EvalFrameDefault 23: <unknown> 24: <unknown> 25: _PyEval_EvalFrameDefault 26: <unknown> 27: <unknown> 28: _PyEval_EvalFrameDefault 29: <unknown> 30: _PyFunction_FastCallDict 31: _PyObject_FastCallDict 32: _PyObject_CallMethodIdObjArgs 33: PyImport_ImportModuleLevelObject 34: _PyEval_EvalFrameDefault 35: <unknown> 36: PyEval_EvalCode 37: <unknown> 38: PyCFunction_Call 39: _PyEval_EvalFrameDefault 40: <unknown> 41: <unknown> 42: _PyEval_EvalFrameDefault 43: <unknown> 44: <unknown> 45: _PyEval_EvalFrameDefault 46: <unknown> 47: <unknown> 48: _PyEval_EvalFrameDefault 49: <unknown> 50: <unknown> 51: _PyEval_EvalFrameDefault 52: <unknown> 53: _PyFunction_FastCallDict 54: _PyObject_FastCallDict 55: _PyObject_CallMethodIdObjArgs 56: PyImport_ImportModuleLevelObject 57: _PyEval_EvalFrameDefault 58: <unknown> 59: PyEval_EvalCode 60: <unknown> 61: PyCFunction_Call 62: _PyEval_EvalFrameDefault 63: <unknown> 64: <unknown> 65: _PyEval_EvalFrameDefault 66: <unknown> 67: <unknown> 68: _PyEval_EvalFrameDefault 69: <unknown> 70: <unknown> 71: _PyEval_EvalFrameDefault 72: <unknown> 73: <unknown> 74: _PyEval_EvalFrameDefault 75: <unknown> 76: _PyFunction_FastCallDict 77: _PyObject_FastCallDict 78: _PyObject_CallMethodIdObjArgs 79: PyImport_ImportModuleLevelObject 80: _PyEval_EvalFrameDefault 81: <unknown> 82: PyEval_EvalCode 83: <unknown> 84: PyCFunction_Call 85: _PyEval_EvalFrameDefault 86: <unknown> 87: <unknown> 88: _PyEval_EvalFrameDefault 89: <unknown> 90: <unknown> 91: _PyEval_EvalFrameDefault 92: <unknown> 93: <unknown> 94: _PyEval_EvalFrameDefault 95: <unknown> 96: <unknown> 97: _PyEval_EvalFrameDefault 98: <unknown> 99: _PyFunction_FastCallDict ```
closed
2019-08-01T17:32:38Z
2019-08-01T19:31:49Z
https://github.com/ijl/orjson/issues/24
[]
leobuskin
2
ultralytics/ultralytics
computer-vision
19,179
train method, object detection rate & No detect on background(no object env) rather than box iou
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hello, I perform a video test using best.pt saved from the model I am training. i think the performance of save models are arranged like this, 100 epoch > 90 epoch > 80 epoch.. but in real-time test environment, It seems like the model doesn't always perform the way I described above. I think that when updating the best.pt model in the current training method, it is done by calculating the iou with the label box. The training method for the model I actually want is as follows. 1. iou does not need to be high. 2. just need to detect the object well. 3. I hope no false positives occur in background images without objects. I think we can adjust the box loss, cls loss, and dfl loss weight in the training parameters. What do you think? I'm currently training with default settings. box 7.5, cls 0.5, dlf 1.5 ### Additional _No response_
open
2025-02-11T08:31:13Z
2025-02-13T23:47:28Z
https://github.com/ultralytics/ultralytics/issues/19179
[ "question" ]
yeonhyochoi
3
tiangolo/uwsgi-nginx-flask-docker
flask
111
best approach to include custom supervisord.conf ?
Hello, I've used this configured image before for a small project and it worked like a charm! For a new project I'd like to include custom configuration for supervisord, looking through the baseimage dockerfile ( https://hub.docker.com/r/tiangolo/uwsgi-nginx) /,I found: # Custom Supervisord config > COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf I've tried building my own baseimages last time, but this takes up a lot of time for every config change. If I leave the baseimage as it is, but instead include a custom COPY supervisord.conf to that location ( /etc/supervisor/conf.d/supervisord.conf) in the final dockerfile. Would this be a valid approach? Thank you
closed
2018-11-23T11:59:54Z
2019-01-01T19:51:41Z
https://github.com/tiangolo/uwsgi-nginx-flask-docker/issues/111
[]
AYEG
7
modin-project/modin
pandas
6,518
BUG: converting string columns to interchange protocol changes values to NaN
### Modin version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest released version of Modin. - [X] I have confirmed this bug exists on the main branch of Modin. (In order to do this you can follow [this guide](https://modin.readthedocs.io/en/stable/getting_started/installation.html#installing-from-the-github-master-branch).) ### Reproducible Example ```python import pandas import modin.pandas as pd print(pandas.api.interchange.from_dataframe(pd.DataFrame({'fips': ['01001']}).__dataframe__())) ``` ### Issue Description BUG: converting string columns to interchange protocol changes values to NaN ### Expected Behavior Should convert to strings, as pandas would ### Error Logs N/A ### Installed Versions <details> ``` INSTALLED VERSIONS ------------------ commit : 38110bb65643babc748e9ed59f6e7780d80c539e python : 3.8.16.final.0 python-bits : 64 OS : Darwin OS-release : 22.5.0 Version : Darwin Kernel Version 22.5.0: Mon Apr 24 20:51:50 PDT 2023; root:xnu-8796.121.2~5/RELEASE_X86_64 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 Modin dependencies ------------------ modin : 0.23.0+67.g38110bb65 ray : 2.4.0 dask : 2023.4.1 distributed : 2023.4.1 hdk : None pandas dependencies ------------------- pandas : 2.0.2 numpy : 1.24.3 pytz : 2023.3 dateutil : 2.8.2 setuptools : 66.0.0 pip : 23.0.1 Cython : 0.29.34 pytest : 7.3.1 hypothesis : None sphinx : 7.0.0 blosc : None feather : 0.4.1 xlsxwriter : None lxml.etree : 4.9.2 html5lib : None pymysql : None psycopg2 : 2.9.6 jinja2 : 3.1.2 IPython : 8.12.1 pandas_datareader: None bs4 : 4.12.2 bottleneck : None brotli : 1.0.9 fastparquet : 2022.12.0 fsspec : 2023.4.0 gcsfs : None matplotlib : 3.7.1 numba : None numexpr : 2.8.4 odfpy : None openpyxl : 3.0.10 pandas_gbq : 0.19.1 pyarrow : 11.0.0 pyreadstat : None pyxlsb : None s3fs : 0.4.2 scipy : 1.10.1 snappy : None sqlalchemy : 1.4.45 tables : 3.8.0 tabulate : None xarray : 2023.1.0 xlrd : 2.0.1 zstandard : None tzdata : 2023.3 qtpy : None pyqt5 : None ``` </details>
closed
2023-08-28T20:12:15Z
2023-08-31T17:07:14Z
https://github.com/modin-project/modin/issues/6518
[ "bug 🦗", "Integration ➕➕", "P1" ]
mvashishtha
0
ray-project/ray
python
51,379
[Data] Ray read_tfrecords allow ray_remote_args configs
### Description For parquet reader, its possible to pass in additional Ray task configs via `ray_remote_args` as the doc suggested [here](https://docs.ray.io/en/latest/data/performance-tips.html#tuning-read-resources). However, such option is not available for the read_tfrecords loader. ### Use case To fine-tune the loader configs, we need to offer `ray_remote_args` as init args for read_tfrecords.
open
2025-03-14T19:40:34Z
2025-03-18T17:11:57Z
https://github.com/ray-project/ray/issues/51379
[ "enhancement", "triage", "data" ]
shaowei-su
0
microsoft/unilm
nlp
1,251
[Kosmos-2] Will depth information be incorporated in the future?
Hi, I wonder has anyone successfully incorporated Kosmos-2 with depth information? Will this be the future goal to make the model gain more spatial awareness? Model I am using Kosmos-2
open
2023-08-11T21:56:39Z
2023-08-21T03:13:46Z
https://github.com/microsoft/unilm/issues/1251
[]
quantingxie
2
hzwer/ECCV2022-RIFE
computer-vision
336
HDv3模型的复现
flow, mask, merged = self.flownet(torch.cat((imgs, gt), 1), scale=scale, training=training) **loss_l1** = (merged[2] - gt).abs().mean() **loss_smooth** = self.sobel(flow[2], flow[2]*0).mean() # loss_vgg = self.vgg(merged[2], gt) if training: self.optimG.zero_grad() **loss_G = loss_cons + loss_smooth * 0.1** loss_G.backward() self.optimG.step() else: flow_teacher = flow[2] return merged[2], { 'mask': mask, 'flow': flow[2][:, :2], 'loss_l1': loss_l1, 'loss_cons': loss_cons, 'loss_smooth': **loss_smooth,** } 想问您使用的是几个loss?是”loss_l1+loss_cons+loss_smooth“三个loss吗?还是仅仅loss_cons + loss_smooth * 0.1? 还想问下作者,使用HDv3复现插多帧模型的时候,训练并不成功,模型的psnr值为2.多,是什么原因呢?
open
2023-08-16T05:37:32Z
2024-07-02T03:25:39Z
https://github.com/hzwer/ECCV2022-RIFE/issues/336
[]
ZFU123456
5
httpie/cli
rest-api
548
Posting a form field string with spaces results in error
I'm currently trying to post to a form and the argument I'm trying to pass is a string with spaces in it. ``` $ http --form POST example.com name="John Smith" ``` But I keep getting this error back: ``` http: error: argument REQUEST_ITEM: "Smith" is not a valid value ``` I've seen this example on a couple of different blogs so it must of worked at some point in time. Am i doing something wrong? Debug printout ``` HTTPie 0.9.9 Requests 2.12.4 Pygments 2.1.3 Python 2.7.12 (default, Jun 29 2016, 09:13:05) [GCC 4.9.2] /usr/bin/python Linux 4.4.27-moby <Environment { "colors": 8, "config": { "__meta__": { "about": "HTTPie configuration file", "help": "https://httpie.org/docs#config", "httpie": "0.9.9" }, "default_options": "[]" }, "config_dir": "/root/.httpie", "is_windows": false, "stderr": "<open file '<stderr>', mode 'w' at 0x7ff88d3df1e0>", "stderr_isatty": true, "stdin": "<open file '<stdin>', mode 'r' at 0x7ff88d3df0c0>", "stdin_encoding": "UTF-8", "stdin_isatty": true, "stdout": "<open file '<stdout>', mode 'w' at 0x7ff88d3df150>", "stdout_encoding": "UTF-8", "stdout_isatty": true }> ```
closed
2016-12-16T18:07:43Z
2016-12-16T22:44:21Z
https://github.com/httpie/cli/issues/548
[]
thornycrackers
4
pyg-team/pytorch_geometric
pytorch
9,395
GPU out of memory caused by eval() mode in TGN
### 🐛 Describe the bug I encountered an out-of-memory (OOM) issue during the evaluation phase, whereas the training procedure runs without any problems. I have verified that the OOM issue is caused solely by the eval() function, which should not be the case. To reproduce the bug more directly, I have prepared the following code: ```` import os.path as osp import torch from sklearn.metrics import average_precision_score, roc_auc_score from torch.nn import Linear from torch_geometric.datasets import JODIEDataset from torch_geometric.loader import TemporalDataLoader from torch_geometric.nn import TGNMemory, TransformerConv from torch_geometric.nn.models.tgn import ( IdentityMessage, LastAggregator, LastNeighborLoader, ) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') memory_dim = time_dim = embedding_dim = 200 memory = TGNMemory( 5000000, 200, memory_dim, time_dim, message_module=IdentityMessage(32, memory_dim, time_dim), aggregator_module=LastAggregator(), ).to(device) memory.eval() import time time.sleep(3600) ```` Additionally, before encountering the OOM bug, I faced another issue with the following error message: `RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and CPU!` Fortunately, this device assignment problem has been resolved by previously closed issues #7008 and #8926. After resolving the device assignment problem, I ran the above code, and the GPU memory usage exploded from 6GB to more than 40 GB. However, if I comment on the _memory.eval()_ line, the GPU memory usage remains under 10GB. This is unexpected because model.eval() should not cause such a dramatic increase in GPU memory usage. I believe this is a bug. Thank you for your assistance. ### Versions Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==1.13.1 [pip3] torch_cluster==1.6.3 [pip3] torch_geometric==2.5.3 [pip3] torch_scatter==2.1.2 [pip3] torch_sparse==0.6.18 [pip3] torch-spline-conv==1.2.2+pt113cu117 [pip3] torchaudio==0.13.1 [pip3] torchvision==0.14.1 [conda] blas 1.0 mkl [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-service 2.4.0 py39h5eee18b_1 [conda] mkl_fft 1.3.8 py39h5eee18b_0 [conda] mkl_random 1.2.4 py39hdb19cb5_0 [conda] numpy 1.26.4 py39h5f9d8c6_0 [conda] numpy-base 1.26.4 py39hb5e798b_0 [conda] pytorch 1.13.1 py3.9_cuda11.7_cudnn8.5.0_0 pytorch [conda] pytorch-cuda 11.7 h778d358_5 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] torch-cluster 1.6.3 pypi_0 pypi [conda] torch-geometric 2.5.3 pypi_0 pypi [conda] torch-scatter 2.1.2 pypi_0 pypi [conda] torch-sparse 0.6.18 pypi_0 pypi [conda] torch-spline-conv 1.2.2+pt113cu117 pypi_0 pypi [conda] torchaudio 0.13.1 py39_cu117 pytorch [conda] torchvision 0.14.1 py39_cu117 pytorch
closed
2024-06-05T20:01:15Z
2024-06-12T22:08:31Z
https://github.com/pyg-team/pytorch_geometric/issues/9395
[ "bug" ]
Joney-Yf
1
pytest-dev/pytest-xdist
pytest
160
Regression in pip test suite
We went from https://travis-ci.org/pypa/pip/jobs/241184675#L218 to https://travis-ci.org/pypa/pip/jobs/241509953#L218 and the only thing that changed was pytest-xdist going from 1.16.0 to 1.17.0. <details> ``` +tox -- -m integration -n 8 --duration=5 GLOB sdist-make: /home/travis/build/pypa/pip/setup.py py34 inst-nodeps: /home/travis/build/pypa/pip/.tox/dist/pip-10.0.0.dev0.zip py34 installed: apipkg==1.4,execnet==1.4.1,freezegun==0.3.9,mock==1.0.1,pretend==1.0.8,py==1.4.34,pytest==3.1.2,pytest-catchlog==1.2.2,pytest-rerunfailures==2.1.0,pytest-timeout==1.2.0,pytest-xdist==1.17.0,python-dateutil==2.6.0,scripttest==1.3,six==1.10.0,virtualenv==15.2.0.dev0 py34 runtests: PYTHONHASHSEED='472861946' py34 runtests: commands[0] | py.test --timeout 300 -m integration -n 8 --duration=5 ============================= test session starts ============================== platform linux -- Python 3.4.4, pytest-3.1.2, py-1.4.34, pluggy-0.4.0 rootdir: /home/travis/build/pypa/pip, inifile: setup.cfg plugins: xdist-1.17.0, timeout-1.2.0, rerunfailures-2.1.0, catchlog-1.2.2 timeout: 300.0s method: signal  gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I gw0 C / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I gw0 C / gw1 C / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I gw0 C / gw1 C / gw2 C / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I gw0 C / gw1 C / gw2 C / gw3 C / gw4 I / gw5 I / gw6 I / gw7 I gw0 C / gw1 C / gw2 C / gw3 C / gw4 C / gw5 I / gw6 I / gw7 I gw0 C / gw1 C / gw2 C / gw3 C / gw4 C / gw5 C / gw6 I / gw7 I gw0 C / gw1 C / gw2 C / gw3 C / gw4 C / gw5 C / gw6 C / gw7 I gw0 C / gw1 C / gw2 C / gw3 C / gw4 C / gw5 C / gw6 C / gw7 C gw0 ok / gw1 C / gw2 C / gw3 C / gw4 C / gw5 C / gw6 C / gw7 C gw0 ok / gw1 ok / gw2 C / gw3 C / gw4 C / gw5 C / gw6 C / gw7 C gw0 ok / gw1 ok / gw2 ok / gw3 C / gw4 C / gw5 C / gw6 C / gw7 C gw0 ok / gw1 ok / gw2 ok / gw3 ok / gw4 C / gw5 C / gw6 C / gw7 C gw0 ok / gw1 ok / gw2 ok / gw3 ok / gw4 ok / gw5 C / gw6 C / gw7 C gw0 ok / gw1 ok / gw2 ok / gw3 ok / gw4 ok / gw5 ok / gw6 C / gw7 C gw0 ok / gw1 ok / gw2 ok / gw3 ok / gw4 ok / gw5 ok / gw6 ok / gw7 C gw0 ok / gw1 ok / gw2 ok / gw3 ok / gw4 ok / gw5 ok / gw6 ok / gw7 ok gw0 [359] / gw1 ok / gw2 ok / gw3 ok / gw4 ok / gw5 ok / gw6 ok / gw7 ok gw0 [359] / gw1 [359] / gw2 ok / gw3 ok / gw4 ok / gw5 ok / gw6 ok / gw7 ok gw0 [359] / gw1 [359] / gw2 [359] / gw3 ok / gw4 ok / gw5 ok / gw6 ok / gw7 ok gw0 [359] / gw1 [359] / gw2 [359] / gw3 [359] / gw4 ok / gw5 ok / gw6 ok / gw7 ok gw0 [359] / gw1 [359] / gw2 [359] / gw3 [359] / gw4 [359] / gw5 ok / gw6 ok / gw7 ok gw0 [359] / gw1 [359] / gw2 [359] / gw3 [359] / gw4 [359] / gw5 [359] / gw6 ok / gw7 ok gw0 [359] / gw1 [359] / gw2 [359] / gw3 [359] / gw4 [359] / gw5 [359] / gw6 [359] / gw7 ok gw0 [359] / gw1 [359] / gw2 [359] / gw3 [359] / gw4 [359] / gw5 [359] / gw6 [359] / gw7 [359] scheduling tests via LoadScheduling .....................................x........................sINTERNALERROR> Traceback (most recent call last): INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/_pytest/main.py", line 105, in wrap_session INTERNALERROR> session.exitstatus = doit(config, session) or 0 INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/_pytest/main.py", line 141, in _main INTERNALERROR> config.hook.pytest_runtestloop(session=session) INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/_pytest/vendored_packages/pluggy.py", line 745, in __call__ INTERNALERROR> return self._hookexec(self, self._nonwrappers + self._wrappers, kwargs) INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/_pytest/vendored_packages/pluggy.py", line 339, in _hookexec INTERNALERROR> return self._inner_hookexec(hook, methods, kwargs) INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/_pytest/vendored_packages/pluggy.py", line 334, in <lambda> INTERNALERROR> _MultiCall(methods, kwargs, hook.spec_opts).execute() INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/_pytest/vendored_packages/pluggy.py", line 614, in execute INTERNALERROR> res = hook_impl.function(*args) INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/xdist/dsession.py", line 539, in pytest_runtestloop INTERNALERROR> self.loop_once() INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/xdist/dsession.py", line 558, in loop_once INTERNALERROR> call(**kwargs) INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/xdist/dsession.py", line 664, in slave_testreport INTERNALERROR> self.sched.mark_test_complete(node, rep.item_index, rep.duration) INTERNALERROR> File "/home/travis/build/pypa/pip/.tox/py34/lib/python3.4/site-packages/xdist/dsession.py", line 280, in mark_test_complete INTERNALERROR> self.node2pending[node].remove(item_index) INTERNALERROR> ValueError: list.remove(x): x not in list ``` </details>
closed
2017-06-10T19:39:36Z
2017-06-10T19:51:24Z
https://github.com/pytest-dev/pytest-xdist/issues/160
[]
xavfernandez
4
flasgger/flasgger
rest-api
259
when will Flasgger 0.9.2 be released?
Hi there :) Starting with Flasgger 0.9.2 you can specify external URL locations for loading the JavaScript and CSS for the Swagger and jQuery libraries loaded in the Flasgger default templates. when will Flasgger 0.9.2 be released?
closed
2018-11-13T18:46:50Z
2018-11-15T02:38:32Z
https://github.com/flasgger/flasgger/issues/259
[]
wobeng
2
mljar/mercury
data-visualization
13
Add scrolling if many parameters in the sidebar
In the case of many widgets in the sidebar the Run and Donwload buttons are not available. There should be some scroll available. ![image](https://user-images.githubusercontent.com/6959032/149965901-3313047c-881d-45c6-b56d-27b548bb3019.png)
closed
2022-01-18T15:23:21Z
2022-01-18T15:36:19Z
https://github.com/mljar/mercury/issues/13
[]
pplonski
0
netbox-community/netbox
django
18,705
Can never upgrade - Always migration errors.
### Deployment Type Self-hosted ### NetBox Version 4.1.10 ### Python Version 3.11 ### Steps to Reproduce **Checkout latest release** sudo git checkout v4.2.4 **Run upgrade script** ./upgrade.sh ### Expected Behavior Successful upgrade to 4.2.4 ### Observed Behavior Error when running migrations. I have also disabled ALL plugins for testing/upgrading. I have also tried stepping up to 4.1.11 but that also fails with the same error. ``` ipam.prefix... Traceback (most recent call last): File "/opt/netbox/venv/lib/python3.11/site-packages/django/db/backends/utils.py", line 105, in _execute return self.cursor.execute(sql, params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/netbox/venv/lib/python3.11/site-packages/psycopg/server_cursor.py", line 294, in execute raise ex.with_traceback(None) psycopg.errors.UndefinedColumn: column ipam_prefix.site_id does not exist LINE 1: ..."ipam_prefix"."comments", "ipam_prefix"."prefix", "ipam_pref... ^ HINT: Perhaps you meant to reference the column "ipam_prefix._site_id". The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/netbox/netbox/manage.py", line 10, in <module> execute_from_command_line(sys.argv) File "/opt/netbox/venv/lib/python3.11/site-packages/django/core/management/__init__.py", line 442, in execute_from_command_line utility.execute() File "/opt/netbox/venv/lib/python3.11/site-packages/django/core/management/__init__.py", line 436, in execute self.fetch_command(subcommand).run_from_argv(self.argv) File "/opt/netbox/venv/lib/python3.11/site-packages/django/core/management/base.py", line 413, in run_from_argv self.execute(*args, **cmd_options) File "/opt/netbox/venv/lib/python3.11/site-packages/django/core/management/base.py", line 459, in execute output = self.handle(*args, **options) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/netbox/netbox/extras/management/commands/reindex.py", line 95, in handle i = search_backend.cache(model.objects.iterator(), remove_existing=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/netbox/netbox/netbox/search/backends.py", line 197, in cache for instance in instances: File "/opt/netbox/venv/lib/python3.11/site-packages/django/db/models/query.py", line 518, in _iterator yield from iterableFile "/opt/netbox/venv/lib/python3.11/site-packages/django/db/models/query.py", line 91, in __iter__ results = compiler.execute_sql ^^^^^^^^^^^^^^^^^^^^^ File "/opt/netbox/venv/lib/python3.11/site-packages/django/db/models/sql/compiler.py", line 1562, in execute_sql cursor.execute(sql, params) File "/opt/netbox/venv/lib/python3.11/site-packages/django/db/backends/utils.py", line 79, in execute return self._execute_with_wrappers( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/netbox/venv/lib/python3.11/site-packages/django/db/backends/utils.py", line 92, in _execute_with_wrappers return executor(sql, params, many, context) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/netbox/venv/lib/python3.11/site-packages/django/db/backends/utils.py", line 100, in _execute with self.db.wrap_database_errors: File "/opt/netbox/venv/lib/python3.11/site-packages/django/db/utils.py", line 91, in __exit__ raise dj_exc_value.with_traceback(traceback) from exc_value File "/opt/netbox/venv/lib/python3.11/site-packages/django/db/backends/utils.py", line 105, in _execute return self.cursor.execute(sql, params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/netbox/venv/lib/python3.11/site-packages/psycopg/server_cursor.py", line 294, in execute raise ex.with_traceback(None) django.db.utils.ProgrammingError: column ipam_prefix.site_id does not exist LINE 1: ..."ipam_prefix"."comments", "ipam_prefix"."prefix", "ipam_pref... ^ HINT: Perhaps you meant to reference the column "ipam_prefix._site_id". ```
closed
2025-02-22T08:01:20Z
2025-02-24T13:39:09Z
https://github.com/netbox-community/netbox/issues/18705
[]
deanfourie1
0
TencentARC/GFPGAN
pytorch
91
如何生成自己数据的landmark文件?
FFHQ_eye_mouth_landmarks_512.pth 这个是FFHQ的数据集的landmark,如果要训练自己的数据集,这个如何生成?比如用CeleBA 数据集
open
2021-11-02T09:29:29Z
2022-08-31T09:18:06Z
https://github.com/TencentARC/GFPGAN/issues/91
[]
alexliyang
5
apify/crawlee-python
web-scraping
705
Make the AutoscaledPool log understandable
AutoscalePool periodically logs system load information in this function: [AutoscaledPool._log_system_status](https://github.com/apify/crawlee-python/blob/07c138e07c8edb0fc3df58e5e39d3769bafe21ec/src/crawlee/_autoscaling/autoscaled_pool.py#L212) This looks for example like this: > 2024-11-06T15:11:50.471Z [crawlee._autoscaling.autoscaled_pool] INFO current_concurrency = 1; desired_concurrency = 1; cpu = 0.581; mem = 0.0; event_loop = 0.227; client_info = 0.0 It shows values that are internally used by the desired_concurrency controller, but those value are hard to interpret by humans and thus not very useful to show in log. Make this log understandable. On the other hand, the logged values should also be connected to values used by mentioned controller. If it gets readable, but detached from controller, then the log is again not very usable. So there is a risk that making this more readable would require changing the controller itself. See full discussion in: https://github.com/apify/crawlee-python/issues/662
open
2024-11-18T09:25:04Z
2024-11-18T09:25:47Z
https://github.com/apify/crawlee-python/issues/705
[ "enhancement", "t-tooling" ]
Pijukatel
0
ploomber/ploomber
jupyter
245
Jupyter extension support when entry point is a directory
Via env variable
closed
2020-09-11T21:26:56Z
2020-09-14T20:56:14Z
https://github.com/ploomber/ploomber/issues/245
[]
edublancas
0
miguelgrinberg/Flask-SocketIO
flask
1,046
Using nginx reverse-proxy Js Client connects with Flask socketio but doesn't receive any messages
For some reason my Angular client connects with the backend server (apparently successfully) but it doens't receive any message. Neither direct messages nor broadcasted. This problem was introduced after using Nginx configured as reverse-proxy for the backend. I followed the latest official documentation of flask socketio module but still didn't found any clue of what's going on. On the client I connect and prepare to receive messages with: ``` const API = "http://146.250.180.213/api/" :: socket: io; :: this.socket = io(API); :: this.socket.on('connect', function() { console.log('Conection with server estblished - socketio'); }); :: this.socket.on('update_monitor', (data: any) => { console.log('Broadcasted message received! Data:', data); }); ``` On Flask I start the server and define endpoints with: ``` app = Flask(__name__) socketio = SocketIO(app) if __name__ == '__main__': socketio.run(app, port=5000, debug=True) ``` ``` @app.route('/test_endpoint', methods=['GET']) def test_endpoint(): socketio.emit('update_monitor', {"mrtp": app.config['MOST_RECENT_TIMESTAMP_PROCESSED'], 'updated_elements': ['ESICAS23C_ESICAS23']}) return jsonify({'message': 'ok'}), 200 @socketio.on('connect') def connect(): print('Client connected') @socketio.on('disconnect') def disconnect(): print('Client disconnected') ``` I use the 'test_endpoint' to test the socketio mechanism by requesting it with Postman. On Nginx, I followed the configuration provided by the socketio documentation: ``` server { listen 0.0.0.0:80; root /usr/share/nginx/html; index index.html index.htm; include /etc/nginx/mime.types; location / { try_files $uri /index.html; } location /socket.io { # include proxy_params; dont know what this stands for proxy_http_version 1.1; proxy_buffering off; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "Upgrade"; proxy_pass http://127.0.0.1:5000/socket.io; } location /grafana/ { proxy_pass http://localhost:3000/; proxy_hide_header X-Frame-Options; } location /api { proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_hide_header X-Frame-Options; proxy_connect_timeout 9999; proxy_send_timeout 9999; proxy_read_timeout 9999; send_timeout 9999; rewrite ^/api/(.*) /$1 break; proxy_pass http://localhost:5000; } } ``` And I start the server with gunicorn (eventlet): `gunicorn manage:app --worker-class eventlet -w 1 --bind 0.0.0.0:5000 --reload ` Both on client and backend I see that they connects, but client never receives any message. ![image](https://user-images.githubusercontent.com/13735079/63599549-39fb9280-c598-11e9-95ec-67f55a95be55.png) ![image](https://user-images.githubusercontent.com/13735079/63599559-3d8f1980-c598-11e9-90c1-11af10908390.png) Already checked nginx (docker logs) logs output and nothing abnormal happens. There isn't any error message, anywhere. Any clue of what's happening? Suggestions?
closed
2019-08-23T14:22:24Z
2025-03-08T15:34:54Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1046
[ "question" ]
denisb411
14
jupyter-book/jupyter-book
jupyter
2,093
Update boilerplate code to use main branch by default instead of master
### Context Github's new default branch name is "main": https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches#about-the-default-branch Same goes for Gitlab: https://docs.gitlab.com/ee/user/project/repository/branches/default.html Jupyterbook is still referencing "master". ### Proposal Let's update the docs and boilerplate code to reflect Github's new default branch name. ### Tasks and updates I'd be happy to take this on, but please let me know if there's someone who'd be willing to review it.
open
2023-12-27T17:59:27Z
2023-12-27T17:59:56Z
https://github.com/jupyter-book/jupyter-book/issues/2093
[ "enhancement" ]
topspinj
1
serengil/deepface
machine-learning
1,033
Custom Model Position
Deepface has achieved 99% excellence, but cannot customize the location of model files. I think it is not very user-friendly for users with network issues。 ` home = functions.get_deepface_home() if os.path.isfile(home + "/.deepface/weights/openface_weights.h5") != True: print("openface_weights.h5 will be downloaded...") output = home + "/.deepface/weights/openface_weights.h5" gdown.download(url, output, quiet=False)`
closed
2024-02-23T03:48:40Z
2024-02-23T07:40:24Z
https://github.com/serengil/deepface/issues/1033
[ "question" ]
2310794041
1
wkentaro/labelme
deep-learning
861
Add a way to load a predefined list of labels for a project [Feature]
Never mind, I found the --labels command line argument does what I want
closed
2021-04-28T02:59:57Z
2022-06-25T04:43:50Z
https://github.com/wkentaro/labelme/issues/861
[]
hqm
1
microsoft/unilm
nlp
1,587
Kosmos 2.5 for Volta GPU
I'm on a Volta GPU, I'm aware that flash attention is not compatible with them but I've seen that the kosmos 2.5 requirements.txt contains "xformers", but I haven't seen any implementation in the kosmos 2.5 code. Do you plan to use xformers as a fallback when flash_attn is not installed?
open
2024-06-25T07:57:33Z
2024-06-26T10:10:08Z
https://github.com/microsoft/unilm/issues/1587
[]
Borobo
0
seleniumbase/SeleniumBase
pytest
2,768
Add the `--ee` option for regular tests and Recorder mode
## Add the `--ee` option for regular tests and Recorder mode For regular tests that run with `pytest`, if adding `--ee` as a `pytest` command-line option, this will allow you to skip the current test by pressing the `ESC` key from the web browser of the active test. (Note that the test will end at the next safe moment, and the test will be marked as `Skipped`.) For Recorder Mode, the `--ee` option enables concluding the Recording by pressing `SHIFT` followed by `ESC`, instead of the usual way of ending the recording by typing `c` in the command-prompt and pressing `ENTER` to continue from the `breakpoint()`. Note that pressing `ESC` without `SHIFT` in Recorder Mode will only pause the current Recording (until `~` is pressed). You'll need to use `SHIFT` followed by `ESC` to fully end the Recording.
closed
2024-05-13T01:36:38Z
2024-05-13T04:57:40Z
https://github.com/seleniumbase/SeleniumBase/issues/2768
[ "enhancement", "documentation" ]
mdmintz
1
graphdeco-inria/gaussian-splatting
computer-vision
741
Resetting max_radii2D in densification_postfix() seems to make no gaussians pruned in densify_and_prune().
In function ``` def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): grads = self.xyz_gradient_accum / self.denom grads[grads.isnan()] = 0.0 self.densify_and_clone(grads, max_grad, extent) self.densify_and_split(grads, max_grad, extent) prune_mask = (self._opacity < min_opacity).squeeze() print("opacity true =", torch.sum(prune_mask).item()) if max_screen_size: big_points_vs = self.max_radii2D > max_screen_size prune_mask = torch.logical_or(prune_mask, big_points_vs) print("radii true = ", torch.sum(prune_mask).item()) big_points_ws = self.get_scaling.max(dim=1).values > 50 * extent prune_mask = torch.logical_or(prune_mask, big_points_ws) print("scaling true = ", torch.sum(prune_mask).item()) self.prune_points(prune_mask) torch.cuda.empty_cache() ``` densify_and_split() will be called first, but this function will call densification_postfix(): ``` def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_transform): d = {"xyz": new_xyz, "f_dc": new_features_dc, "f_rest": new_features_rest, "opacity": new_opacities, "scaling": new_scaling, "rotation": new_rotation, "tau": new_transform} optimizable_tensors, optimizable_tensors_t = self.cat_tensors_to_optimizer(d) self._xyz = optimizable_tensors["xyz"] self._features_dc = torch.cat((self._features_dc, new_features_dc), dim=0) self._features_rest = torch.cat((self._features_rest, new_features_rest), dim=0) self._opacity = torch.cat((self._opacity, new_opacities), dim=0) # print("new opa=", new_opacities.shape) self.tilted.tilted.tau = optimizable_tensors_t["tau"] self._scaling = optimizable_tensors["scaling"] self._rotation = optimizable_tensors["rotation"] self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") # Here it just set self.max_radii2D to all zeros ``` densification_postfix() will set self.max_radii2D to all zeros, will this result in no gaussians will be pruned for being too large in the value max_radii2D ? When I ran these other's code in other's project, I printed the number of True values in the mask for pruning gaussians with max_radii2D value above the threshold and got always 0 along the whole training progress. I wonder if I made some mistakes or misunderstand the pruning progress. Looking forward to your reply! Thanks so much :)
closed
2024-04-07T11:58:43Z
2024-04-19T01:25:41Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/741
[]
StarSapph1re
2
JaidedAI/EasyOCR
pytorch
547
minor bug when migrating from 1.4 to 1.4.1.
As stated in the 'What's new' section, in Version 1.4.1: > Extend rotation_info argument to support all possible angle (thanksabde0103, see PR) I run the detection and recognition on this specific [image](https://drive.google.com/file/d/1eSymuZlO1J4wib68RQ84_2exTZv2lii_/view?usp=sharing). As you can see in order to get all the text a 90 degree and a 270 degree rotation is needed. For both versions I run the line below: ``` result = reader.recognize(np.array(im.convert('L')), merged_list, free_list[0], rotation_info=[0, 90, 180, 270]) ``` The results I am getting from one version to another are totally different. Version 1.4: ``` ([[145, 0], [882, 0], [882, 101], [145, 101]], 'EUROPEAN LAWYERS', 0.9799557536771372) ([[911, 107], [1014, 107], [1014, 906], [911, 906]], 'BARREAUX EUROPEENS', 0.646282488832031) ([[4, 124], [108, 124], [108, 876], [4, 876]], 'EUROPEAN BARS', 0.6906238763445064) ([[185, 401], [841, 401], [841, 583], [185, 583]], 'CCBE', 0.9803938127024359) ([[150, 893], [881, 893], [881, 1010], [150, 1010]], 'AVOCATS EUROPEENS', 0.7165664042811335) ``` Version 1.4.1: ``` [ ([[145, 0], [882, 0], [882, 101], [145, 101]], 'EUROPEAN LAWYERS', 0.9799557536771372), ([[911, 107], [1014, 107], [1014, 906], [911, 906]], 'SNJJdo&n: XnVaudva', 0.09454260329171453), ([[4, 124], [108, 124], [108, 876], [4, 876]], 'EUROPEAN BARS', 0.9971172987203192), ([[185, 401], [841, 401], [841, 583], [185, 583]], '7833', 0.4892914593219757), ([[150, 893], [881, 893], [881, 1010], [150, 1010]], 'SNJAdoHn] SLVDOAV', 0.06483533410458987)] ``` When just using `rotation_info = [270]` I get all the text right but 'BARREAUX EUROPEENS'. When using `rotation_info = [90]` I get all the text right but 'EUROPEAN BARS'. Which means that when giving one element other than 0 in rotation_info it gives the right results for the horizontal text as well. But the thing is that I need both the 90 and 270 rotation and when the elements are 2+ in rotation_info I only get the results for the last element which was not an issue in version 1.4. For now I am just going to use Version 1.4, but needed to inform of that minor bug.
closed
2021-09-23T08:17:13Z
2021-10-06T08:41:29Z
https://github.com/JaidedAI/EasyOCR/issues/547
[]
beecadox
2
FujiwaraChoki/MoneyPrinterV2
automation
54
Error: Generated Title is too long. Retrying...
I'm getting this error, please help me? ![Untitled](https://github.com/FujiwaraChoki/MoneyPrinterV2/assets/25850343/bdbd1d10-2877-4862-8ba9-a7164771f6f3)
closed
2024-03-03T13:07:12Z
2024-03-04T10:46:13Z
https://github.com/FujiwaraChoki/MoneyPrinterV2/issues/54
[]
alexdo83
1
Crinibus/scraper
web-scraping
76
Use plotly or something more prettier to visualize data
closed
2020-09-28T21:11:40Z
2020-11-14T23:43:30Z
https://github.com/Crinibus/scraper/issues/76
[ "enhancement" ]
Crinibus
1