repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
google-research/bert
nlp
566
What is BERT?
Hello, I am hearing a lot that I should use BERT for applications instead of word embeddings, but I am not understanding what BERT is? Maybe becuase I do not know transformer. Could anyone explain, what is BERT? How does it differ from word2vec, Glove and more importantly elmo. How does bert differ from openai-gpt? How can I adapt bert to a question-answering model or any classification task? Any help is highly appreciated. Thank you.
open
2019-04-09T00:39:53Z
2019-04-09T10:10:11Z
https://github.com/google-research/bert/issues/566
[]
ghost
2
joke2k/django-environ
django
17
environ should be able to infer casting type from the default
If you have `DEBUG = env('DEBUG', default=False)`, having to also specify `env = environ.Env(DEBUG=(bool, False),)` seems redundant. For example, see http://tornado.readthedocs.org/en/latest/options.html#tornado.options.OptionParser.define > If type is given (one of str, float, int, datetime, or timedelta) or can be inferred from the default, we parse the command line arguments based on the given type.
closed
2014-11-22T00:28:20Z
2018-06-26T20:57:54Z
https://github.com/joke2k/django-environ/issues/17
[ "enhancement" ]
crccheck
1
3b1b/manim
python
1,800
Fullscreen mode leaves out a fully transparent bar at the bottom in Windows 10
### Describe the bug When I use fullscreen mode with manimGL v1.6.1 on Windows 10 there is an empty bar at the bottom of the screen through which I can see whatever is behind the python fullscreen drawing area (i.e. it's not actually fullscreen). That is, if I have a browser open I can see the browser through the bottom bar, or if I have only the desktop, I can see it. **Code**: Any example in fullscreen, e.g. from the example_scenes.py. **Wrong display or Error traceback**: <!-- the wrong display result of the code you run, or the error Traceback --> ### Additional context ### Environment **OS System**: Windows 10 **manim version**: master MagnimGL v1.6.1 **python version**: Python 3.9.6
open
2022-04-23T20:28:03Z
2022-08-04T05:22:55Z
https://github.com/3b1b/manim/issues/1800
[ "bug" ]
vchizhov
3
amidaware/tacticalrmm
django
1,538
"Install software" is missing a package that appears at chocolatey.org
**Server Info (please complete the following information):** - OS: Ubuntu 20.04 - Browser: firefox - RMM Version (as shown in top left of web UI): v0.15.12 **Installation Method:** - [X ] Standard - [ ] Docker **Agent Info (please complete the following information):** - Agent version (as shown in the 'Summary' tab of the agent from web UI): Agent v2.4.9 - Agent OS: Win 10/11 **Describe the bug** A package that appears on https://chocolatey.org/ is not available to install **To Reproduce** Steps to reproduce the behavior: 1. Go to software 2. Click on install 3. Search for remarkable **Expected behavior** I'd expect to see https://community.chocolatey.org/packages/remarkable **Screenshots** ![image](https://github.com/amidaware/tacticalrmm/assets/22505336/1e7d8d64-f712-4856-a23a-f7cc739b128c) This package has only been on choco since Thursday, May 25, 2023 - do I need to refresh the choco package list somehow?
closed
2023-06-14T12:02:59Z
2023-12-20T05:02:24Z
https://github.com/amidaware/tacticalrmm/issues/1538
[ "bug", "enhancement" ]
moose999
12
2noise/ChatTTS
python
400
参考 Readme 生成的是电流声
commit id: e58fe48d2ee99310ce2066005c5108ac86942ad4 步骤 ``` git clone https://github.com/2noise/ChatTTS cd ChatTTS conda create -n chattts conda activate chattts pip install -r requirements.txt python examples/cmd/run.py "chat T T S is a text to speech model designed for dialogue applications." ``` 生成的 `output_audio_0.wav`如下: [output_audio_0.zip](https://github.com/user-attachments/files/15934697/output_audio_0.zip)
open
2024-06-22T01:31:49Z
2024-06-22T05:28:08Z
https://github.com/2noise/ChatTTS/issues/400
[ "bug", "help wanted", "question" ]
BUG1989
2
lanpa/tensorboardX
numpy
392
ImportError: cannot import name 'summary'
(n2n) [410@mu01 noise2noise-master]$ python config.py validate --dataset-dir=datasets/kodak --network-snapshot=results/network_final-gaussian-n2c.pickle Traceback (most recent call last): File "config.py", line 14, in <module> import validation File "/home/410/ysn/noise2noise-master/validation.py", line 16, in <module> import dnnlib.tflib.tfutil as tfutil File "/home/410/ysn/noise2noise-master/dnnlib/tflib/__init__.py", line 8, in <module> from . import autosummary File "/home/410/ysn/noise2noise-master/dnnlib/tflib/autosummary.py", line 28, in <module> from tensorboard import summary as summary_lib ImportError: cannot import name 'summary'
closed
2019-03-22T13:30:41Z
2019-05-19T13:46:58Z
https://github.com/lanpa/tensorboardX/issues/392
[]
YangSN0719
1
piskvorky/gensim
machine-learning
2,758
How to use LdaModel with Callback
<!-- **IMPORTANT**: - Use the [Gensim mailing list](https://groups.google.com/forum/#!forum/gensim) to ask general or usage questions. Github issues are only for bug reports. - Check [Recipes&FAQ](https://github.com/RaRe-Technologies/gensim/wiki/Recipes-&-FAQ) first for common answers. Github bug reports that do not include relevant information and context will be closed without an answer. Thanks! --> #### Problem description I wonder if I can implement early stopping while training LdaModel using Callbacks and throwing exception. But when I try to use Callback class gensim throws an error about `logger` attribute. If I add `logger` it then requires `get_value` method, i.e. it treats Callback like it's a Metric class. So how do you use it correctly? #### Steps/code/corpus to reproduce ``` from gensim import corpora, models from gensim.models.callbacks import Callback texts = [['Lorem ipsum dolor sit amet, consectetur adipiscing elit'],['sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ']] bigram = models.Phrases(texts, min_count=5, threshold=100) trigram = models.Phrases(bigram[texts], threshold=100) bigram_mod = models.phrases.Phraser(bigram) trigram_mod = models.phrases.Phraser(trigram) dictionary = corpora.Dictionary(trigram_mod[bigram_mod[texts]]) corpus = [dictionary.doc2bow(text) for text in texts] callback = Callback(metrics=['DiffMetric']) lda_model = models.LdaModel( corpus, num_topics=3, id2word=dictionary, callbacks=[callback] ) ``` > --------------------------------------------------------------------------- > AttributeError Traceback (most recent call last) > <ipython-input-2-67d9133f842a> in <module> > 13 > 14 lda_model = models.LdaModel( > ---> 15 corpus, num_topics=3, id2word=dictionary, callbacks=[callback] ) > > ~\Anaconda3\lib\site-packages\gensim\models\ldamodel.py in __init__(self, corpus, num_topics, id2word, distributed, chunksize, passes, update_every, alpha, eta, decay, offset, eval_every, iterations, gamma_threshold, minimum_probability, random_state, ns_conf, minimum_phi_value, per_word_topics, callbacks, dtype) > 517 if corpus is not None: > 518 use_numpy = self.dispatcher is not None > --> 519 self.update(corpus, chunks_as_numpy=use_numpy) > 520 > 521 def init_dir_prior(self, prior, name): > > ~\Anaconda3\lib\site-packages\gensim\models\ldamodel.py in update(self, corpus, chunksize, decay, offset, passes, update_every, eval_every, iterations, gamma_threshold, chunks_as_numpy) > 945 # pass the list of input callbacks to Callback class > 946 callback = Callback(self.callbacks) > --> 947 callback.set_model(self) > 948 # initialize metrics list to store metric values after every epoch > 949 self.metrics = defaultdict(list) > > ~\Anaconda3\lib\site-packages\gensim\models\callbacks.py in set_model(self, model) > 482 # store diff diagonals of previous epochs > 483 self.diff_mat = Queue() > --> 484 if any(metric.logger == "visdom" for metric in self.metrics): > 485 if not VISDOM_INSTALLED: > 486 raise ImportError("Please install Visdom for visualization") > > ~\Anaconda3\lib\site-packages\gensim\models\callbacks.py in <genexpr>(.0) > 482 # store diff diagonals of previous epochs > 483 self.diff_mat = Queue() > --> 484 if any(metric.logger == "visdom" for metric in self.metrics): > 485 if not VISDOM_INSTALLED: > 486 raise ImportError("Please install Visdom for visualization") > > AttributeError: 'Callback' object has no attribute 'logger' > #### Versions Windows-10-10.0.18362-SP0 Python 3.5.6 |Anaconda custom (64-bit)| (default, Aug 26 2018, 16:05:27) [MSC v.1900 64 bit (AMD64)] NumPy 1.15.2 SciPy 1.1.0 gensim 3.8.1 FAST_VERSION 1
open
2020-02-22T13:54:00Z
2023-06-22T06:07:25Z
https://github.com/piskvorky/gensim/issues/2758
[]
hellpanderrr
1
google-deepmind/graph_nets
tensorflow
114
hi,i want to know whether graph nets will add DropEdge in the future like https://github.com/DropEdge/DropEdge
closed
2020-04-13T07:33:30Z
2020-09-30T03:04:04Z
https://github.com/google-deepmind/graph_nets/issues/114
[]
luyifanlu
1
sinaptik-ai/pandas-ai
pandas
671
Conversational Answer won,t work
### System Info OS version: windows 10 Python version : 3.11 The current version of pandas ai ### 🐛 Describe the bug In the current version of Pandas AI : # Conversational Answer won,t work # when I asked what is the GDP then answer Just 20,0000 But I need The GDP is 20,000 like this ..
closed
2023-10-22T08:34:21Z
2024-06-01T00:20:17Z
https://github.com/sinaptik-ai/pandas-ai/issues/671
[]
Ridoy302583
2
ageitgey/face_recognition
machine-learning
613
Nameerror: pil_image is not defined
* face_recognition version: * Python version: * Operating System: ### Description Describe what you were trying to get done. Tell us what happened, what went wrong, and what you expected to happen. IMPORTANT: If your issue is related to a specific picture, include it so others can reproduce the issue. ### What I Did ``` Paste the command(s) you ran and the output. If there was a crash, please include the traceback here. ```
closed
2018-09-01T15:59:51Z
2018-09-01T16:01:21Z
https://github.com/ageitgey/face_recognition/issues/613
[]
multikillerr
0
gradio-app/gradio
data-visualization
10,201
Accordion - Expanding vertically to the right
- [x] I have searched to see if a similar issue already exists. I would really like to have the ability to place an accordion vertically and expand to the right. I have scenarios where this would be a better UI solution, as doing so would automatically push the other components to the right of it forward. I have no idea how to tweak this in CSS to make it work. If you have a simple CSS solution I would appreciate it until we have this feature. I am actually developing something that would really need this feature. I made this drawing of what it would be like. ![image](https://github.com/user-attachments/assets/1b9bd1d4-ef2a-4f18-a994-fcd4beaeb391)
closed
2024-12-14T23:51:34Z
2024-12-16T16:46:38Z
https://github.com/gradio-app/gradio/issues/10201
[]
elismasilva
1
adbar/trafilatura
web-scraping
604
New port of readability.js?
The current implementation of `readability_lxml` and the original project [readability.js](https://github.com/mozilla/readability/tree/main) is out of sync, so it would make sense to update the `readability_lxml` implementation to benefit from potentially newer feature and fixes. [readability.js](https://github.com/mozilla/readability/tree/main) has a big set of [test pages](https://github.com/mozilla/readability/tree/main/test/test-pages) with source.html and expected.html files. As a first step, we could test how `readability_lxml` compares against this test set? Based on the results we could check if it's better to _fix_ the differences (if there aren't too many), or if a new port based on the current javascript implementation would make more sense. What do you think? By the way, `readability_lxml` looks like it was first ported to ruby and then to python. Besides using `lxml`, were there any functions added specifically for trafilatura?
open
2024-05-23T13:49:54Z
2024-06-05T08:44:47Z
https://github.com/adbar/trafilatura/issues/604
[ "question" ]
zirkelc
4
miguelgrinberg/Flask-SocketIO
flask
1,037
connection refreshing automatically after emit event from Flask server.
I'm trying to create a simple chatroom style application with Flask and Flask-SocketIO. When users type messages and click 'submit' (submitting a form in html), it should create an unordered list of messages. The problem I'm facing is the message gets appended as list item but then after few seconds it disappears(it appears as though connection is refreshed). I want to turn off this behavior. Thanks in advance. :smile: Here is code snippet : Flask: ``` @socketio.on('send messages') def vote(data): messages = data['messages'] emit('announce messages', {"messages":messages}, broadcast=True) ``` JavaScript: ``` document.addEventListener('DOMContentLoaded', () => { // Connect to websocket var socket = io.connect(location.protocol + '//' + document.domain + ':' + location.port); // When connected socket.on('connect', () => { document.querySelector('#form').onsubmit = () => { const messages = document.querySelector('#messages').value; socket.emit('send messages', {'messages': messages}); return false; } }); socket.on('announce messages', data => { const li = document.createElement('li'); li.innerHTML = `${data.messages}`; document.querySelector('#push').append(li); return false; }); }); ```
closed
2019-08-14T06:33:32Z
2019-08-14T09:03:33Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1037
[ "question" ]
AkshayKumar007
2
MaartenGr/BERTopic
nlp
2,189
fit_transform tries to access embedding_model if representation_model is not None
### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Desribe the bug I was using BERTopic on a cluster of queries with my own embeddings (computed on a model that is hard to pass as a parameter) and it was working as expected. After trying to use `representation_model = KeyBERTInspired()` and adding ` representation_model=representation_model` to BERTopic as a parameter. I got this error : ``` AttributeError Traceback (most recent call last) [1] representation_model = KeyBERTInspired() [2] topic_model = BERTopic( [3] calculate_probabilities=True, [4] min_topic_size=1 [5] embedding_model=None, [6] representation_model=representation_model, [7] ) ----> [8] topics, probs = topic_model.fit_transform(corpus, np.array(corpus_embeddings)) [9] topic_model.get_topic_info() File ~/query_analysis/bertopic_env/lib/python3.11/site-packages/bertopic/_bertopic.py:493, in BERTopic.fit_transform(self, documents, embeddings, images, y) [490] self._save_representative_docs(custom_documents) [491] else: [492] # Extract topics by calculating c-TF-IDF --> [493] self._extract_topics(documents, embeddings=embeddings, verbose=self.verbose) [495] # Reduce topics [496] if self.nr_topics: File ~/query_analysis/bertopic_env/lib/python3.11/site-packages/bertopic/_bertopic.py:3991, in BERTopic._extract_topics(self, documents, embeddings, mappings, verbose) [3989] documents_per_topic = documents.groupby(["Topic"], as_index=False).agg({"Document": " ".join}) [3990] self.c_tf_idf_, words = self._c_tf_idf(documents_per_topic) -> [3991] self.topic_representations_ = self._extract_words_per_topic(words, documents) ... [3680] "Make sure to use an embedding model that can either embed documents" [3681] "or images depending on which you want to embed." [3682] AttributeError: 'NoneType' object has no attribute 'embed_documents' ``` ### Reproduction ```python from query import Query import json import numpy as np from sklearn.cluster import DBSCAN from bertopic import BERTopic from openai import OpenAI from bertopic.representation import KeyBERTInspired representation_model = KeyBERTInspired() topic_model = BERTopic( calculate_probabilities=True, min_topic_size=15, embedding_model=None, representation_model=representation_model, ) topics, probs = topic_model.fit_transform(corpus, np.array(corpus_embeddings)) topic_model.get_topic_info() ``` ### BERTopic Version 0.16.4
open
2024-10-17T08:10:23Z
2024-10-18T10:24:13Z
https://github.com/MaartenGr/BERTopic/issues/2189
[ "bug" ]
rasantangelo
1
Johnserf-Seed/TikTokDownload
api
565
【使用】我想问下。这个在linux命令行下(debian)怎么使用
教程好像说的都是windows如何使用。但是我觉得这种会经常更新视频的东西。使用debian进行定时增量更新是更好的选择 但是不知道在debian下。这个程序应该怎么使用
open
2023-09-27T08:51:41Z
2023-10-09T09:24:12Z
https://github.com/Johnserf-Seed/TikTokDownload/issues/565
[ "无效(invalid)" ]
Whichbfj28
10
apachecn/ailearning
python
421
ApacheCN
http://ailearning.apachecn.org/ ApacheCN 专注于优秀项目维护的开源组织
closed
2018-08-24T06:58:15Z
2021-09-07T17:41:31Z
https://github.com/apachecn/ailearning/issues/421
[ "Gitalk", "6666cd76f96956469e7be39d750cc7d9" ]
jiangzhonglian
2
chezou/tabula-py
pandas
269
consistency issues across similar pdfs
closed
2020-11-09T14:33:41Z
2020-11-09T14:34:28Z
https://github.com/chezou/tabula-py/issues/269
[]
aestella
1
huggingface/datasets
pytorch
7,107
load_dataset broken in 2.21.0
### Describe the bug `eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval_gpt4_baseline", trust_remote_code=True)` used to work till 2.20.0 but doesn't work in 2.21.0 In 2.20.0: ![Screenshot 2024-08-16 at 3 57 10 PM](https://github.com/user-attachments/assets/0516489b-8187-486d-bee8-88af3381dee9) in 2.21.0: ![Screenshot 2024-08-16 at 3 57 24 PM](https://github.com/user-attachments/assets/bc257570-f461-41e4-8717-90a69ed7c24f) ### Steps to reproduce the bug 1. Spin up a new google collab 2. `pip install datasets==2.21.0` 3. `import datasets` 4. `eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval_gpt4_baseline", trust_remote_code=True)` 5. Will throw an error. ### Expected behavior Try steps 1-5 again but replace datasets version with 2.20.0, it will work ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-6.1.85+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.5 - PyArrow version: 17.0.0 - Pandas version: 2.1.4 - `fsspec` version: 2024.5.0
closed
2024-08-16T14:59:51Z
2024-08-18T09:28:43Z
https://github.com/huggingface/datasets/issues/7107
[]
anjor
4
pyeve/eve
flask
1,360
Nested unique constraint doesn't work
### Expected Behavior The `unique` constraint does not work when is inside of a dict or a list, for example. The problem comes from [this line](https://github.com/pyeve/eve/blob/master/eve/io/mongo/validation.py#L95). The resulting query will find only properties in the root document. The `unique` constraint won't work also when nested inside lists, as the query will try to find by a numeric index instead of the key of the parent schema. ```json { "dict_test": { "type": "dict", "schema": { "string_attribute": { "type": "string", "unique": true } } } } ``` ### Actual Behavior You can create more than one resource of that schema with the same `string_attribute` value. ### Environment * Python version: 3.7 * Eve version: 1.1
closed
2020-02-25T19:19:44Z
2021-01-22T16:31:03Z
https://github.com/pyeve/eve/issues/1360
[]
elias-garcia
0
ClimbsRocks/auto_ml
scikit-learn
4
FUTURE: train regressors or classifiers
closed
2016-08-08T00:16:30Z
2016-08-12T06:12:57Z
https://github.com/ClimbsRocks/auto_ml/issues/4
[]
ClimbsRocks
1
AutoGPTQ/AutoGPTQ
nlp
678
How to install auto-gptq in GCC 8.5.0 environment?
I want to install auto-gptq package to finetune my LLM. But when I followed the README, it showed some error. The error show that need GCC 9.0, but my environment only has GCC 8.5.0 and couldn't update to 5.0 in some reasons. ``` Looking in indexes: https://mirrors.aliyun.com/pypi/simple/ Processing /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ Preparing metadata (setup.py) ... done Requirement already satisfied: accelerate>=0.26.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from auto_gptq==0.8.0.dev0+cu118) (0.29.3) Requirement already satisfied: datasets in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from auto_gptq==0.8.0.dev0+cu118) (2.18.0) Collecting sentencepiece (from auto_gptq==0.8.0.dev0+cu118) Using cached https://mirrors.aliyun.com/pypi/packages/4f/d2/18246f43ca730bb81918f87b7e886531eda32d835811ad9f4657c54eee35/sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB) Requirement already satisfied: numpy in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from auto_gptq==0.8.0.dev0+cu118) (1.26.4) Collecting rouge (from auto_gptq==0.8.0.dev0+cu118) Using cached https://mirrors.aliyun.com/pypi/packages/32/7c/650ae86f92460e9e8ef969cc5008b24798dcf56a9a8947d04c78f550b3f5/rouge-1.0.1-py3-none-any.whl (13 kB) Collecting gekko (from auto_gptq==0.8.0.dev0+cu118) Using cached https://mirrors.aliyun.com/pypi/packages/3f/ed/960a6cec9e588b8c05e830dcb6789750ee88e791e9cd5467f85a12ee7f46/gekko-1.1.1-py3-none-any.whl (13.2 MB) Requirement already satisfied: torch>=1.13.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from auto_gptq==0.8.0.dev0+cu118) (2.3.0+cu118) Requirement already satisfied: safetensors in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from auto_gptq==0.8.0.dev0+cu118) (0.4.3) Requirement already satisfied: transformers>=4.31.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from auto_gptq==0.8.0.dev0+cu118) (4.37.2) Requirement already satisfied: peft>=0.5.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from auto_gptq==0.8.0.dev0+cu118) (0.7.1) Requirement already satisfied: tqdm in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from auto_gptq==0.8.0.dev0+cu118) (4.66.2) Requirement already satisfied: packaging>=20.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from accelerate>=0.26.0->auto_gptq==0.8.0.dev0+cu118) (23.2) Requirement already satisfied: psutil in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from accelerate>=0.26.0->auto_gptq==0.8.0.dev0+cu118) (5.9.8) Requirement already satisfied: pyyaml in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from accelerate>=0.26.0->auto_gptq==0.8.0.dev0+cu118) (6.0.1) Requirement already satisfied: huggingface-hub in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from accelerate>=0.26.0->auto_gptq==0.8.0.dev0+cu118) (0.22.2) Requirement already satisfied: filelock in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (3.13.4) Requirement already satisfied: typing-extensions>=4.8.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (4.11.0) Requirement already satisfied: sympy in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (1.12) Requirement already satisfied: networkx in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (3.3) Requirement already satisfied: jinja2 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (3.1.3) Requirement already satisfied: fsspec in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (2024.2.0) Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (11.8.89) Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (11.8.89) Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (11.8.87) Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (8.7.0.84) Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (11.11.3.6) Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (10.9.0.58) Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (10.3.0.86) Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (11.4.1.48) Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (11.7.5.86) Requirement already satisfied: nvidia-nccl-cu11==2.20.5 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (2.20.5) Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (11.8.86) Requirement already satisfied: regex!=2019.12.17 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from transformers>=4.31.0->auto_gptq==0.8.0.dev0+cu118) (2024.4.28) Requirement already satisfied: requests in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from transformers>=4.31.0->auto_gptq==0.8.0.dev0+cu118) (2.31.0) Requirement already satisfied: tokenizers<0.19,>=0.14 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from transformers>=4.31.0->auto_gptq==0.8.0.dev0+cu118) (0.15.2) Requirement already satisfied: pyarrow>=12.0.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from datasets->auto_gptq==0.8.0.dev0+cu118) (16.0.0) Requirement already satisfied: pyarrow-hotfix in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from datasets->auto_gptq==0.8.0.dev0+cu118) (0.6) Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from datasets->auto_gptq==0.8.0.dev0+cu118) (0.3.8) Requirement already satisfied: pandas in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from datasets->auto_gptq==0.8.0.dev0+cu118) (2.2.2) Requirement already satisfied: xxhash in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from datasets->auto_gptq==0.8.0.dev0+cu118) (3.4.1) Requirement already satisfied: multiprocess in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from datasets->auto_gptq==0.8.0.dev0+cu118) (0.70.16) Requirement already satisfied: aiohttp in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from datasets->auto_gptq==0.8.0.dev0+cu118) (3.9.5) Requirement already satisfied: six in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from rouge->auto_gptq==0.8.0.dev0+cu118) (1.16.0) Requirement already satisfied: aiosignal>=1.1.2 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from aiohttp->datasets->auto_gptq==0.8.0.dev0+cu118) (1.3.1) Requirement already satisfied: attrs>=17.3.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from aiohttp->datasets->auto_gptq==0.8.0.dev0+cu118) (23.2.0) Requirement already satisfied: frozenlist>=1.1.1 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from aiohttp->datasets->auto_gptq==0.8.0.dev0+cu118) (1.4.1) Requirement already satisfied: multidict<7.0,>=4.5 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from aiohttp->datasets->auto_gptq==0.8.0.dev0+cu118) (6.0.5) Requirement already satisfied: yarl<2.0,>=1.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from aiohttp->datasets->auto_gptq==0.8.0.dev0+cu118) (1.9.4) Requirement already satisfied: charset-normalizer<4,>=2 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from requests->transformers>=4.31.0->auto_gptq==0.8.0.dev0+cu118) (3.3.2) Requirement already satisfied: idna<4,>=2.5 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from requests->transformers>=4.31.0->auto_gptq==0.8.0.dev0+cu118) (3.7) Requirement already satisfied: urllib3<3,>=1.21.1 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from requests->transformers>=4.31.0->auto_gptq==0.8.0.dev0+cu118) (2.2.1) Requirement already satisfied: certifi>=2017.4.17 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from requests->transformers>=4.31.0->auto_gptq==0.8.0.dev0+cu118) (2024.2.2) Requirement already satisfied: MarkupSafe>=2.0 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from jinja2->torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (2.1.5) Requirement already satisfied: python-dateutil>=2.8.2 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from pandas->datasets->auto_gptq==0.8.0.dev0+cu118) (2.9.0.post0) Requirement already satisfied: pytz>=2020.1 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from pandas->datasets->auto_gptq==0.8.0.dev0+cu118) (2024.1) Requirement already satisfied: tzdata>=2022.7 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from pandas->datasets->auto_gptq==0.8.0.dev0+cu118) (2024.1) Requirement already satisfied: mpmath>=0.19 in /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages (from sympy->torch>=1.13.0->auto_gptq==0.8.0.dev0+cu118) (1.3.0) Building wheels for collected packages: auto_gptq Building wheel for auto_gptq (setup.py) ... error error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [285 lines of output] conda_cuda_include_dir /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/nvidia/cuda_runtime/include appending conda cuda include dir /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/nvidia/cuda_runtime/include running bdist_wheel running build running build_py creating build creating build/lib.linux-x86_64-cpython-312 creating build/lib.linux-x86_64-cpython-312/auto_gptq copying auto_gptq/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq creating build/lib.linux-x86_64-cpython-312/tests copying tests/__init__.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/bench_autoawq_autogptq.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/test_awq_compatibility_generation.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/test_peft_conversion.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/test_q4.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/test_quantization.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/test_repacking.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/test_serialization.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/test_sharded_loading.py -> build/lib.linux-x86_64-cpython-312/tests copying tests/test_triton.py -> build/lib.linux-x86_64-cpython-312/tests creating build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks copying auto_gptq/eval_tasks/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks copying auto_gptq/eval_tasks/_base.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks copying auto_gptq/eval_tasks/language_modeling_task.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks copying auto_gptq/eval_tasks/sequence_classification_task.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks copying auto_gptq/eval_tasks/text_summarization_task.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks creating build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/_base.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/_const.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/auto.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/baichuan.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/bloom.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/codegen.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/cohere.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/decilm.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/gemma.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/gpt2.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/gpt_bigcode.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/gpt_neox.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/gptj.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/internlm.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/llama.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/longllama.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/mistral.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/mixtral.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/moss.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/mpt.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/opt.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/phi.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/qwen.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/qwen2.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/rw.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/stablelmepoch.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/starcoder2.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/xverse.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling copying auto_gptq/modeling/yi.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/modeling creating build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules copying auto_gptq/nn_modules/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules copying auto_gptq/nn_modules/_fused_base.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules copying auto_gptq/nn_modules/fused_gptj_attn.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules copying auto_gptq/nn_modules/fused_llama_attn.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules copying auto_gptq/nn_modules/fused_llama_mlp.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules creating build/lib.linux-x86_64-cpython-312/auto_gptq/quantization copying auto_gptq/quantization/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/quantization copying auto_gptq/quantization/config.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/quantization copying auto_gptq/quantization/gptq.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/quantization copying auto_gptq/quantization/quantizer.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/quantization creating build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/accelerate_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/data_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/exllama_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/import_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/marlin_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/modeling_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/peft_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils copying auto_gptq/utils/perplexity_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/utils creating build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks/_utils copying auto_gptq/eval_tasks/_utils/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks/_utils copying auto_gptq/eval_tasks/_utils/classification_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks/_utils copying auto_gptq/eval_tasks/_utils/generation_utils.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/eval_tasks/_utils creating build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/qlinear_cuda.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/qlinear_cuda_old.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/qlinear_exllama.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/qlinear_exllamav2.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/qlinear_marlin.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/qlinear_qigen.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/qlinear_triton.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear copying auto_gptq/nn_modules/qlinear/qlinear_tritonv2.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/qlinear creating build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/triton_utils copying auto_gptq/nn_modules/triton_utils/__init__.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/triton_utils copying auto_gptq/nn_modules/triton_utils/custom_autotune.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/triton_utils copying auto_gptq/nn_modules/triton_utils/dequant.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/triton_utils copying auto_gptq/nn_modules/triton_utils/kernels.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/triton_utils copying auto_gptq/nn_modules/triton_utils/mixin.py -> build/lib.linux-x86_64-cpython-312/auto_gptq/nn_modules/triton_utils running build_ext /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/utils/cpp_extension.py:428: UserWarning: There are no g++ version bounds defined for CUDA version 11.8 warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}') building 'autogptq_cuda_64' extension creating /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312 creating /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension creating /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64 /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/utils/cpp_extension.py:1967: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST']. warnings.warn( Emitting ninja build file /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/2] /usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_kernel_64.o.d -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/TH -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_cuda -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/nvidia/cuda_runtime/include -I/home/dongna/.virtualenvs/Qwen-14B/include -I/usr/local/miniconda3/include/python3.12 -c -c /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_extension/cuda_64/autogptq_cuda_kernel_64.cu -o /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_kernel_64.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=autogptq_cuda_64 -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_89,code=compute_89 -gencode=arch=compute_89,code=sm_89 -ccbin g++ -std=c++17 FAILED: /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_kernel_64.o /usr/local/cuda/bin/nvcc --generate-dependencies-with-compile --dependency-output /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_kernel_64.o.d -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/TH -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_cuda -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/nvidia/cuda_runtime/include -I/home/dongna/.virtualenvs/Qwen-14B/include -I/usr/local/miniconda3/include/python3.12 -c -c /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_extension/cuda_64/autogptq_cuda_kernel_64.cu -o /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_kernel_64.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=autogptq_cuda_64 -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_89,code=compute_89 -gencode=arch=compute_89,code=sm_89 -ccbin g++ -std=c++17 In file included from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/core/TensorBase.h:14, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/core/TensorBody.h:38, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/core/Tensor.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/Tensor.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/function_hook.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/cpp_hook.h:2, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/variable.h:6, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/autograd.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include/torch/autograd.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include/torch/all.h:7, from /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_extension/cuda_64/autogptq_cuda_kernel_64.cu:1: /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/util/C++17.h:13:2: error: #error "You're trying to build PyTorch with a too old version of GCC. We need GCC 9 or later." #error \ ^~~~~ [2/2] g++ -MMD -MF /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_64.o.d -fno-strict-overflow -DNDEBUG -O2 -Wall -fPIC -O2 -isystem /usr/local/miniconda3/include -fPIC -O2 -isystem /usr/local/miniconda3/include -fPIC -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/TH -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_cuda -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/nvidia/cuda_runtime/include -I/home/dongna/.virtualenvs/Qwen-14B/include -I/usr/local/miniconda3/include/python3.12 -c -c /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_extension/cuda_64/autogptq_cuda_64.cpp -o /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_64.o -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=autogptq_cuda_64 -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17 FAILED: /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_64.o g++ -MMD -MF /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_64.o.d -fno-strict-overflow -DNDEBUG -O2 -Wall -fPIC -O2 -isystem /usr/local/miniconda3/include -fPIC -O2 -isystem /usr/local/miniconda3/include -fPIC -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/TH -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_cuda -I/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/nvidia/cuda_runtime/include -I/home/dongna/.virtualenvs/Qwen-14B/include -I/usr/local/miniconda3/include/python3.12 -c -c /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_extension/cuda_64/autogptq_cuda_64.cpp -o /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/build/temp.linux-x86_64-cpython-312/autogptq_extension/cuda_64/autogptq_cuda_64.o -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=autogptq_cuda_64 -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17 In file included from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/core/TensorBase.h:14, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/core/TensorBody.h:38, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/core/Tensor.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/Tensor.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/function_hook.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/cpp_hook.h:2, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/variable.h:6, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/autograd.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include/torch/autograd.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include/torch/all.h:7, from /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_extension/cuda_64/autogptq_cuda_64.cpp:1: /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/util/C++17.h:13:2: error: #error "You're trying to build PyTorch with a too old version of GCC. We need GCC 9 or later." #error \ ^~~~~ In file included from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/Backend.h:5, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/Layout.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/core/TensorBody.h:12, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/core/Tensor.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/ATen/Tensor.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/function_hook.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/cpp_hook.h:2, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/variable.h:6, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/autograd/autograd.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include/torch/autograd.h:3, from /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/torch/csrc/api/include/torch/all.h:7, from /home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/autogptq_extension/cuda_64/autogptq_cuda_64.cpp:1: /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:752:73: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradCPU)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:752:73: error: overflow in constant expression [-fpermissive] constexpr auto autograd_cpu_ks = DispatchKeySet(DispatchKey::AutogradCPU); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:753:73: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradIPU)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:753:73: error: overflow in constant expression [-fpermissive] constexpr auto autograd_ipu_ks = DispatchKeySet(DispatchKey::AutogradIPU); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:754:73: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradXPU)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:754:73: error: overflow in constant expression [-fpermissive] constexpr auto autograd_xpu_ks = DispatchKeySet(DispatchKey::AutogradXPU); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:755:75: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradCUDA)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:755:75: error: overflow in constant expression [-fpermissive] constexpr auto autograd_cuda_ks = DispatchKeySet(DispatchKey::AutogradCUDA); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:756:73: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradXLA)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:756:73: error: overflow in constant expression [-fpermissive] constexpr auto autograd_xla_ks = DispatchKeySet(DispatchKey::AutogradXLA); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:757:75: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradLazy)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:757:75: error: overflow in constant expression [-fpermissive] constexpr auto autograd_lazy_ks = DispatchKeySet(DispatchKey::AutogradLazy); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:758:75: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradMeta)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:758:75: error: overflow in constant expression [-fpermissive] constexpr auto autograd_meta_ks = DispatchKeySet(DispatchKey::AutogradMeta); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:759:73: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradMPS)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:759:73: error: overflow in constant expression [-fpermissive] constexpr auto autograd_mps_ks = DispatchKeySet(DispatchKey::AutogradMPS); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:760:73: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradHPU)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:760:73: error: overflow in constant expression [-fpermissive] constexpr auto autograd_hpu_ks = DispatchKeySet(DispatchKey::AutogradHPU); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:762:52: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradPrivateUse1)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:762:52: error: overflow in constant expression [-fpermissive] DispatchKeySet(DispatchKey::AutogradPrivateUse1); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:764:52: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradPrivateUse2)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:764:52: error: overflow in constant expression [-fpermissive] DispatchKeySet(DispatchKey::AutogradPrivateUse2); ^ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:766:52: in ‘constexpr’ expansion of ‘c10::DispatchKeySet(AutogradPrivateUse3)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:236:42: in ‘constexpr’ expansion of ‘c10::toBackendComponent(k)’ /home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/include/c10/core/DispatchKeySet.h:766:52: error: overflow in constant expression [-fpermissive] DispatchKeySet(DispatchKey::AutogradPrivateUse3); ^ ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 2107, in _run_ninja_build subprocess.run( File "/usr/local/miniconda3/lib/python3.12/subprocess.py", line 571, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "/home/dongna/lsx-project/Qwen-14B/Qwen-main/AutoGPTQ/setup.py", line 247, in <module> setup( File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/__init__.py", line 104, in setup return distutils.core.setup(**attrs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/core.py", line 184, in setup return run_commands(dist) ^^^^^^^^^^^^^^^^^^ File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/core.py", line 200, in run_commands dist.run_commands() File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/dist.py", line 969, in run_commands self.run_command(cmd) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/dist.py", line 967, in run_command super().run_command(command) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/dist.py", line 988, in run_command cmd_obj.run() File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/wheel/bdist_wheel.py", line 368, in run self.run_command("build") File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/dist.py", line 967, in run_command super().run_command(command) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/dist.py", line 988, in run_command cmd_obj.run() File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/command/build.py", line 132, in run self.run_command(cmd_name) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/dist.py", line 967, in run_command super().run_command(command) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/dist.py", line 988, in run_command cmd_obj.run() File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/command/build_ext.py", line 91, in run _build_ext.run(self) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/command/build_ext.py", line 359, in run self.build_extensions() File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 870, in build_extensions build_ext.build_extensions(self) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/command/build_ext.py", line 479, in build_extensions self._build_extensions_serial() File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/command/build_ext.py", line 505, in _build_extensions_serial self.build_extension(ext) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/command/build_ext.py", line 252, in build_extension _build_ext.build_extension(self, ext) File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/setuptools/_distutils/command/build_ext.py", line 560, in build_extension objects = self.compiler.compile( ^^^^^^^^^^^^^^^^^^^^^^ File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 683, in unix_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 1783, in _write_ninja_file_and_compile_objects _run_ninja_build( File "/home/dongna/.virtualenvs/Qwen-14B/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 2123, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for auto_gptq Running setup.py clean for auto_gptq Failed to build auto_gptq ERROR: Could not build wheels for auto_gptq, which is required to install pyproject.toml-based projects ```
closed
2024-05-24T08:31:50Z
2024-06-02T09:09:36Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/678
[]
StephenSX66
0
hbldh/bleak
asyncio
700
WinRT: pairing crashes if accepting too soon
* bleak version: 0.13.0 * Python version: 3.8.2 * Operating System: Windows 10 ### Description Trying to pair and connect to the device, after accepting to pair on the OS pop-up, Bleak fails. The device I am trying to connect to requires pairing. If I accept pairing as soon as it pops up, the script fails. If I wait until after services discovery has finished, and only then accept the pairing, it will work OK. ### What I Did With this code: ```python # bleak_minimal_example.py import asyncio from bleak import BleakScanner from bleak import BleakClient address = "AA:AA:AA:AA:AA:AA" # Characteristics UUIDs NUM_SENSORS_UUID = "b9e634a8-57ef-11e9-8647-d663bd873d93" # =============================================================== # Connect and read # =============================================================== async def run_connection(address, debug=False): async with BleakClient(address) as client: print(" >> Please accept pairing") await asyncio.sleep(5.0) print(" >> Reading...") num_sensors = await client.read_gatt_char(NUM_SENSORS_UUID, use_cached = True) print(" Number of sensors: {0}".format(num_sensors.hex())) # =============================================================== # MAIN # =============================================================== if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(run_connection(address)) print ('>> Goodbye!') exit(0) ``` **Use case 1: fails** Accepting the pairing before it finished discovering services - fails 1. the script calls BleakClient.connect() 2. connects to the device and Windows pop-up requests to pair 3. Bleak.connect() is still doing the discovery (and it takes long, because the device has many services with many chars.) 4. if I accept the pairing before it finished discovering it fails  The traceback of the error: ``` Traceback (most recent call last): File "bleak_minimal_example.py", line 86, in <module> loop.run_until_complete(run_connection(device_address)) File "C:\Program Files\Python38\lib\asyncio\base_events.py", line 616, in run_until_complete return future.result() File "bleak_minimal_example.py", line 50, in run_connection async with BleakClient(address) as client: File "C:\Program Files\Python38\lib\site-packages\bleak\backends\client.py", line 61, in __aenter__ await self.connect() File "C:\Program Files\Python38\lib\site-packages\bleak\backends\winrt\client.py", line 258, in connect await self.get_services() File "C:\Program Files\Python38\lib\site-packages\bleak\backends\winrt\client.py", line 446, in get_services await service.get_characteristics_async( OSError: [WinError -2147418113] Catastrophic failure ``` **Use case 2: succeeds** Waiting to accept pairing, then succeeds 1. the script calls BleakClient.connect() 2. connects to the device and Windows pop-up requests to pair 3. Bleak.connect() is still doing the discovery (and it takes long, because the device has many services with many chars.) 4. after connect returned I print ('Please accept pairing') 5. I accept the pairing 6. the script reads + writes... all good ### Alternative use of the API: With the script modified to call pair() before connect(): ``` # bleak_minimal_pair_example.py import asyncio from bleak import BleakScanner from bleak import BleakClient address = "AA:AA:AA:AA:AA:AA" # Characteristics UUIDs NUM_SENSORS_UUID = "b9e634a8-57ef-11e9-8647-d663bd873d93" # =============================================================== # Connect and read # =============================================================== async def run_connection(address, debug=False): client = BleakClient(address) if await client.pair(): pritnt("paired") await client.connect() print(" >> Reading...") num_sensors = await client.read_gatt_char(NUM_SENSORS_UUID, use_cached = True) print(" Number of sensors: {0}".format(num_sensors.hex())) # =============================================================== # MAIN # =============================================================== if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(run_connection(address)) print ('>> Goodbye!') exit(0) ``` The execution fails as follows: The traceback of the error: ``` python bleak_minimal_pair_example.py Traceback (most recent call last): File "bleak_minimal_pair_example.py", line 47, in <module> loop.run_until_complete(run_connection(address)) File "C:\Program Files\Python38\lib\asyncio\base_events.py", line 616, in run_until_complete return future.result() File "bleak_minimal_pair_example.py", line 31, in run_connection if await client.pair(): File "C:\Program Files\Python38\lib\site-packages\bleak\backends\winrt\client.py", line 336, in pair self._requester.device_information.pairing.can_pair AttributeError: 'NoneType' object has no attribute 'device_information' ```
open
2021-12-27T19:17:45Z
2022-11-22T14:03:54Z
https://github.com/hbldh/bleak/issues/700
[ "Backend: WinRT" ]
marianacalzon
2
piskvorky/gensim
data-science
3,019
can not import ENGLISH_CONNECTOR_WORDS from gensim.models.phrases
#### Problem description When I try to load the gensim ENGLISH_CONNECTOR_WORDS, it seems to be missing in my current version. I am trying to use common stopwords in my Phrase detection training. #### Steps/code/corpus to reproduce Here is what I tried to do by following the [gensim Phrase Detection documnetation](https://radimrehurek.com/gensim/models/phrases.html). ```python from gensim.models.phrases import Phrases, ENGLISH_CONNECTOR_WORDS ``` Here is the output: ```python --------------------------------------------------------------------------- ImportError Traceback (most recent call last) <ipython-input-5-f038e2aaf034> in <module> ----> 1 from gensim.models.phrases import Phrases, ENGLISH_CONNECTOR_WORDS ImportError: cannot import name 'ENGLISH_CONNECTOR_WORDS' from 'gensim.models.phrases' (/project/venv/lib/python3.9/site-packages/gensim/models/phrases.py) ``` #### Versions ```python macOS-10.15.7-x86_64-i386-64bit Python 3.9.0 (default, Oct 30 2020, 16:46:27) [Clang 12.0.0 (clang-1200.0.32.2)] Bits 64 NumPy 1.19.4 SciPy 1.6.0 gensim 3.8.3 FAST_VERSION 0 ```
closed
2021-01-06T02:20:05Z
2021-01-06T11:08:57Z
https://github.com/piskvorky/gensim/issues/3019
[]
syedarehaq
1
Kanaries/pygwalker
pandas
618
[BUG] Memory growth when using PyGWalker with Streamlit
**Describe the bug** I observe RAM growth when using PyGWalker with Streamlit framework. The RAM usage constantly grow on page reload (on every app run). When using Streamlit without PyGWalker, RAM usage remain constant (flat, does not grow). It seems like memory is never released, this was observed indirectly (we tracked growth locally, see reproduction below, but we also observe same issue in Azure web app and RAM usage never decline). **To Reproduce** We tracked down the issue with isolated Streamlit app with PyGwalker and memory profile (run with `python -m streamlit run app.py`): ``` # app.py import numpy as np np.random.seed(seed=1) import pandas as pd from memory_profiler import profile from pygwalker.api.streamlit import StreamlitRenderer @profile def app(): # Create random dataframe df = pd.DataFrame(np.random.randint(0, 100, size=(100, 4)), columns=list("ABCD")) render = StreamlitRenderer(df) render.explorer() app() ``` Observed output for a few consequent reloads from browser (press `R`, rerun): ``` Line # Mem usage Increment Occurrences Line Contents 13 302.6 MiB 23.3 MiB 1 render.explorer() 13 315.4 MiB 23.3 MiB 1 render.explorer() 13 325.8 MiB 23.3 MiB 1 render.explorer() ``` **Expected behavior** RAM usage to remain at constant level between app reruns. **Screenshots** On screenshot you may observe a user activity peaks (cause CPU usage) and growing RAM usage (memory set). ![Metrics from Azure](https://github.com/user-attachments/assets/d16d227c-2135-4bcc-b603-1ccb7147a342) On this screenshot a debug app memory profiling is displayed. ![Debug app memory profile](https://github.com/user-attachments/assets/f1a0451e-45f4-45d7-b609-3f080ac6f921) **Versions** streamlit 1.38.0 pygwalker 0.4.9.3 memory_profiler (latest) python 3.9.10 browser: chrome 128.0.6613.138 (Official Build) (64-bit) Tested locally on Windows 11 *Thanks for support!*
open
2024-09-13T07:23:36Z
2024-09-29T02:07:33Z
https://github.com/Kanaries/pygwalker/issues/618
[ "bug", "good first issue", "P1" ]
ChrnyaevEK
3
microsoft/MMdnn
tensorflow
529
Could not support Slice in pytorch to IR
Platform (like ubuntu 16.04/win10): ubuntu 16.04 Python version:3.6 Source framework with version (like Tensorflow 1.4.1 with GPU):pytorch0.4.0 with GPU Destination framework with version (like CNTK 2.3 with GPU):caffe
open
2018-12-17T07:55:59Z
2018-12-26T13:48:40Z
https://github.com/microsoft/MMdnn/issues/529
[ "enhancement" ]
xiaoranchenwai
1
davidsandberg/facenet
tensorflow
510
Hi,a question about export embeddings and labels
Hello, I have a quesion bout the labels by export_embeddings.py. I think the 'label_list' is the same as 'classes' So I can only ues the label_list to train my own model? Looking farword your replying sincely Thanks @davidsandberg @cjekel
closed
2017-10-31T08:04:33Z
2017-11-07T01:00:42Z
https://github.com/davidsandberg/facenet/issues/510
[]
xvdehao
1
tortoise/tortoise-orm
asyncio
1,853
IntField: constraints not taken into account
**Describe the bug** The IntField has the property constraints. It contains the constraints `ge` and `le`. These constraints are not taken into account (in any place as far as I can tell) or they should be reflected by a validator. **To Reproduce** ```py from tortoise import models, fields, run_async from tortoise.contrib.test import init_memory_sqlite class Acc(models.Model): id = fields.IntField(pk=True) some = fields.IntField() async def main(): constraints_id = Acc._meta.fields_map.get('id').constraints # {'ge': -2147483648, 'le': 2147483647} too_high_id = constraints_id.get('le') + 1 constraints_some = Acc._meta.fields_map.get('some').constraints # {'ge': -2147483648, 'le': 2147483647} too_low_some = constraints_some.get('ge') - 1 acc = Acc(id=too_high_id, some=too_low_some) # this should throw an error await acc.save() # or maybe this if __name__ == '__main__': run_async(init_memory_sqlite(main)()) ``` **Expected behavior** Either the constraints should match the capabilities of the DB or the constraints should be checked beforehand. And an error should be thrown. **Additional context** The produced Pydantic Model by pydantic_model_creator would check those constraints.
open
2025-01-17T10:30:36Z
2025-02-24T10:49:30Z
https://github.com/tortoise/tortoise-orm/issues/1853
[ "enhancement" ]
markus-96
0
pallets/flask
flask
4,569
Move `redirect` to the `Flask` app object
Add a `redirect` method to the `Flask` app object. Similar to functions like `flask.json.dumps`, `flask.redirect` should look for a `current_app` and call its `redirect` method. This will allow applications to override the redirect behavior.
closed
2022-05-02T14:41:29Z
2022-05-26T00:06:04Z
https://github.com/pallets/flask/issues/4569
[ "save-for-sprint" ]
davidism
2
vllm-project/vllm
pytorch
14,583
[Bug]: ERROR 03-11 07:47:00 [engine.py:141] AttributeError: Invalid attention type encoder-only
### Your current environment <details> <summary>The output of `python collect_env.py`</summary> ```text Your output of `python collect_env.py` here ``` INFO 03-11 07:49:54 [__init__.py:256] Automatically detected platform rocm. Collecting environment information... PyTorch version: 2.7.0.dev20250309+rocm6.3 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 6.3.42131-fa1d09cbd OS: Fedora Linux 40 (Server Edition) (x86_64) GCC version: (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) Clang version: 18.0.0git (https://github.com/RadeonOpenCompute/llvm-project roc-6.3.3 25012 e5bf7e55c91490b07c49d8960fa7983d864936c4) CMake version: version 3.31.2 Libc version: glibc-2.39 Python version: 3.12.8 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:31:09) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.13.5-100.fc40.x86_64-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: AMD Instinct MI100 (gfx908:sramecc+:xnack-) Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: 6.3.42131 MIOpen runtime version: 3.3.0 Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: AuthenticAMD Model name: AMD EPYC 7C13 64-Core Processor CPU family: 25 Model: 1 Thread(s) per core: 1 Core(s) per socket: 64 Socket(s): 2 Stepping: 1 Frequency boost: enabled CPU(s) scaling MHz: 45% CPU max MHz: 3720.0000 CPU min MHz: 400.0000 BogoMIPS: 4000.34 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm debug_swap Virtualization: AMD-V L1d cache: 4 MiB (128 instances) L1i cache: 4 MiB (128 instances) L2 cache: 64 MiB (128 instances) L3 cache: 512 MiB (16 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-63 NUMA node1 CPU(s): 64-127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-ml-py==12.560.30 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] optree==0.14.1 [pip3] pytorch-triton-rocm==3.2.0+git4b3bb1f8 [pip3] pyzmq==26.2.1 [pip3] torch==2.7.0.dev20250309+rocm6.3 [pip3] torchaudio==2.6.0.dev20250309+rocm6.3 [pip3] torchvision==0.22.0.dev20250309+rocm6.3 [pip3] transformers==4.49.0 [pip3] triton==3.0.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-ml-py 12.560.30 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] optree 0.14.1 pypi_0 pypi [conda] pytorch-triton-rocm 3.2.0+git4b3bb1f8 pypi_0 pypi [conda] pyzmq 26.2.1 pypi_0 pypi [conda] torch 2.7.0.dev20250309+rocm6.3 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250309+rocm6.3 pypi_0 pypi [conda] torchvision 0.22.0.dev20250309+rocm6.3 pypi_0 pypi [conda] transformers 4.49.0 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi ROCM Version: 6.3.42134-a9a80e791 Neuron SDK Version: N/A vLLM Version: 0.7.4.dev340+gdc74613f.d20250310 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: ============================ ROCm System Management Interface ============================ ================================ Weight between two GPUs ================================= GPU0 GPU1 GPU0 0 40 GPU1 40 0 ================================= Hops between two GPUs ================================== GPU0 GPU1 GPU0 0 2 GPU1 2 0 =============================== Link Type between two GPUs =============================== GPU0 GPU1 GPU0 0 PCIE GPU1 PCIE 0 ======================================= Numa Nodes ======================================= GPU[0] : (Topology) Numa Node: 1 GPU[0] : (Topology) Numa Affinity: 1 GPU[1] : (Topology) Numa Node: 1 GPU[1] : (Topology) Numa Affinity: 1 ================================== End of ROCm SMI Log =================================== PYTORCH_ROCM_ARCH=gfx908 VLLM_TARGET_DEVICE=rocm LD_LIBRARY_PATH=/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/cv2/../../lib64:/usr/lib64:/usr/local/lib:/opt/rocm-6.3.3/lib: PYTORCH_ROCM_DISABLE_HIPBLASLT=1 VLLM_USE_TRITON_FLASH_ATTN=0 NCCL_CUMEM_ENABLE=0 TORCHINDUCTOR_COMPILE_THREADS=1 CUDA_MODULE_LOADING=LAZY </details> ### 🐛 Describe the bug ERROR 03-11 07:47:00 [engine.py:141] AttributeError('Invalid attention type encoder_only') ERROR 03-11 07:47:00 [engine.py:141] Traceback (most recent call last): ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/engine/multiprocessing/engine.py", line 139, in start ERROR 03-11 07:47:00 [engine.py:141] self.run_engine_loop() ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/engine/multiprocessing/engine.py", line 202, in run_engine_loop ERROR 03-11 07:47:00 [engine.py:141] request_outputs = self.engine_step() ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/engine/multiprocessing/engine.py", line 228, in engine_step ERROR 03-11 07:47:00 [engine.py:141] raise e ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/engine/multiprocessing/engine.py", line 211, in engine_step ERROR 03-11 07:47:00 [engine.py:141] return self.engine.step() ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/engine/llm_engine.py", line 1407, in step ERROR 03-11 07:47:00 [engine.py:141] outputs = self.model_executor.execute_model( ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/executor/executor_base.py", line 139, in execute_model ERROR 03-11 07:47:00 [engine.py:141] output = self.collective_rpc("execute_model", ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/executor/uniproc_executor.py", line 56, in collective_rpc ERROR 03-11 07:47:00 [engine.py:141] answer = run_method(self.driver_worker, method, args, kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/utils.py", line 2238, in run_method ERROR 03-11 07:47:00 [engine.py:141] return func(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/worker/worker_base.py", line 420, in execute_model ERROR 03-11 07:47:00 [engine.py:141] output = self.model_runner.execute_model( ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context ERROR 03-11 07:47:00 [engine.py:141] return func(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/worker/pooling_model_runner.py", line 111, in execute_model ERROR 03-11 07:47:00 [engine.py:141] hidden_or_intermediate_states = model_executable( ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl ERROR 03-11 07:47:00 [engine.py:141] return self._call_impl(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl ERROR 03-11 07:47:00 [engine.py:141] return forward_call(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/model_executor/models/bert.py", line 414, in forward ERROR 03-11 07:47:00 [engine.py:141] return self.model(input_ids=input_ids, ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl ERROR 03-11 07:47:00 [engine.py:141] return self._call_impl(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl ERROR 03-11 07:47:00 [engine.py:141] return forward_call(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/model_executor/models/bert.py", line 349, in forward ERROR 03-11 07:47:00 [engine.py:141] return self.encoder(hidden_states) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/compilation/decorators.py", line 172, in __call__ ERROR 03-11 07:47:00 [engine.py:141] return self.forward(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/model_executor/models/bert.py", line 119, in forward ERROR 03-11 07:47:00 [engine.py:141] hidden_states = layer(hidden_states) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl ERROR 03-11 07:47:00 [engine.py:141] return self._call_impl(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl ERROR 03-11 07:47:00 [engine.py:141] return forward_call(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/model_executor/models/bert.py", line 154, in forward ERROR 03-11 07:47:00 [engine.py:141] attn_output = self.attention(hidden_states) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl ERROR 03-11 07:47:00 [engine.py:141] return self._call_impl(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl ERROR 03-11 07:47:00 [engine.py:141] return forward_call(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/model_executor/models/bert.py", line 188, in forward ERROR 03-11 07:47:00 [engine.py:141] self_output = self.self(hidden_states) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl ERROR 03-11 07:47:00 [engine.py:141] return self._call_impl(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl ERROR 03-11 07:47:00 [engine.py:141] return forward_call(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/model_executor/models/bert.py", line 243, in forward ERROR 03-11 07:47:00 [engine.py:141] output = self.attn(q, k, v) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl ERROR 03-11 07:47:00 [engine.py:141] return self._call_impl(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl ERROR 03-11 07:47:00 [engine.py:141] return forward_call(*args, **kwargs) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/attention/layer.py", line 225, in forward ERROR 03-11 07:47:00 [engine.py:141] return torch.ops.vllm.unified_attention( ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/data01/anaconda3/envs/vllm/lib/python3.12/site-packages/torch/_ops.py", line 1158, in __call__ ERROR 03-11 07:47:00 [engine.py:141] return self._op(*args, **(kwargs or {})) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/attention/layer.py", line 331, in unified_attention ERROR 03-11 07:47:00 [engine.py:141] return self.impl.forward(self, query, key, value, kv_cache, attn_metadata) ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/attention/backends/rocm_flash_attn.py", line 667, in forward ERROR 03-11 07:47:00 [engine.py:141] causal_mask) = _get_seq_len_block_table_args( ERROR 03-11 07:47:00 [engine.py:141] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-11 07:47:00 [engine.py:141] File "/home/radmin/gitlab/vllm/vllm/attention/backends/rocm_flash_attn.py", line 421, in _get_seq_len_block_table_args ERROR 03-11 07:47:00 [engine.py:141] raise AttributeError(f"Invalid attention type {str(attn_type)}") ERROR 03-11 07:47:00 [engine.py:141] AttributeError: Invalid attention type encoder_only ... INFO 03-11 07:47:00 [logger.py:39] Received request embd-57e89ad988d14a9894249ce553985904-0: prompt: 'Thaa های тоlen loten diている oड्या suaલા16 ju ме in ac4%õ gia למ செல்லጉ gia למDEESTAכך sind高ronani till els sua су 20 jaunung r habari:1000larирање í është nuóła tubuha බව tillσεa är dekora های то mássang ги habari:1000e pour X可 habari:1000í های4 ke And Gι-им under pesquisa گفتπληf το viva jenαць<pad> nu vi sua untuk Si като ж sunt r inteیل nu меня vi敬 çoxité í化 keLA video پاکستان2和城 З R-имego pesquisa گفتπληf το viva მაць<pad> nu vi sua untuk Si като ж sunt r inteیل nuadi ; vi敬 çox програм2和城 З 8 եւимവര് bod” روی τοва न ke Leroep degreette 8 bona敬tima2 15 למ estasге可五eσεa های то más MV nu viство dụnge ved Gο asi ke技术ı sua aðı可 frálar Д तक和 အ кога vi可 frá keимتى wyborબကိုS למDEnet pasJAड्या apstkelA pasJAड्या apqa pesquisa گفت eनेa پاکستان pesquisa گفت e Toaint bod eő://kel ಇಲ್ಲ 그第二 Glückמיילa hafaට preocupaמייל так Також e`a還有 még को retzaο Le vilበል una triება ihana ärı可 fráe ved сува más viим uygun”ʻ nu viим歐 wybor dari keyn vi suaى frá ke NUe Wij团a viимego pesquisa گفت” fånuಲಿ Fed vi NU 문제им не” nuим歐تtigeσεa های اصلی vi suangимego pesquisa گفت e To”نLAበል ärим не e tri”ება ihan’f τοابון2 lo काम Anton部署njanı vi fărălarand vi çox perheधे videotul програмovi นาย Glücka nhưngට preocupaA suaseid үндэсний many第二 Glückמיילa hafaට preocupaמייל так ta e tri://</s>եց всеот นาย Glücka nhưngට preocupaAEtgrip اشاره 그 นาย Glücka nhưngට preocupa دی', params: PoolingParams(additional_metadata=None), prompt_token_ids: [5971, 11, 584, 690, 1977, 459, 510, 45, 7826, 36, 50207, 1646, 9725, 2485, 1129, 3928, 23, 1030, 11267, 4340, 3529, 7183, 80472, 11959, 3529, 7183, 8399, 55669, 77432, 1276, 1395, 1900, 2628, 570, 1115, 1646, 649, 387, 33519, 449, 1690, 17508, 12, 14105, 320, 21470, 439, 1396, 315, 41050, 11, 13931, 11, 5099, 570, 5810, 11, 369, 40075, 11, 584, 690, 1005, 433, 449, 1670, 17508, 12, 14105, 13, 578, 1193, 1403, 17508, 12, 14105, 430, 584, 617, 311, 3493, 527, 1473, 9, 1595, 1379, 31639, 5228, 45722, 420, 374, 279, 330, 7349, 1445, 3321, 1, 315, 279, 1646, 482, 602, 1770, 2637, 1268, 1690, 892, 7504, 315, 3925, 279, 30828, 4009, 5097, 439, 1988, 311, 8356, 1202, 2612, 304, 264, 4741, 1522, 627, 9, 1595, 3081, 31639, 5228, 45722, 420, 374, 279, 330, 13741, 3321, 1, 315, 279, 1646, 482, 602, 1770, 2637, 1268, 1690, 892, 7504, 315, 3938, 2819, 279, 30828, 4009, 16674, 304, 264, 4741, 1522, 382, 791, 1595, 11719, 4486, 63, 5852, 374, 1120, 1618, 311, 636, 53823, 79385, 3135, 382, 13622, 30828, 14488, 304, 423, 7183, 1397, 1521, 1403, 5137, 13, 5810, 11, 584, 690, 1005, 66160, 315, 279, 3280, 2786, 13, 1226, 527, 1457, 5644, 311, 5052, 1057, 1646, 389, 1057, 1403, 4101, 320, 1729, 7231, 264, 1160, 8649, 279, 1403, 4101, 311, 1595, 6410, 55358, 7887, 1527, 294, 7183, 8399, 1179, 452, 11855, 50207, 1747, 271, 2590, 284, 452, 11855, 50207, 1747, 5498, 31639, 5228, 28, 1187, 11, 2612, 31639, 5228, 28, 717, 11, 4288, 4486, 28, 2983, 696, 2590, 21529, 2625, 10613, 51927, 62815, 11, 5542, 722, 34263, 62815, 1145, 40446, 28, 1135, 11, 14008, 3702, 629, 10267, 596, 1457, 636, 1063, 51165, 220, 1927, 4038, 8469, 11, 369, 1057, 1403, 4101, 13, 1226, 649, 1120, 1005, 279, 1595, 20473, 63, 5811, 315, 279, 1595, 35798, 55358, 734, 311, 3371, 279, 1646, 902, 4101, 311, 18057, 13, 13516, 18007, 11, 279, 1595, 3081, 31639, 5228, 63, 1587, 539, 6089, 80799, 279, 18057, 35174, 1595, 77, 63, 315, 1595, 35798, 368, 29687, 5810, 11, 584, 16572, 279, 1646, 449, 1595, 3081, 31639, 5228, 28, 717, 63, 323, 8356, 51165, 369, 1595, 77, 28, 1927, 63, 4038, 8469, 26, 420, 374, 5042, 2884, 304, 459, 3313, 33263, 49053, 1648, 4920, 279, 16451, 320, 2940, 279, 4009, 53947, 60606, 1202, 3766, 16674, 3677, 24361, 51927, 11, 4255, 722, 34263, 284, 1646, 24706, 71951, 5941, 10613, 51927, 62815, 11, 5542, 722, 34263, 62815, 1145, 308, 28, 1927, 696, 2, 5569, 1203, 512, 24361, 51927, 11, 4255, 722, 34263, 284, 69824, 77663, 18956, 2625, 24361, 51927, 11, 4255, 722, 34263, 2526], lora_request: None, prompt_adapter_request: None. CRITICAL 03-11 07:47:00 [launcher.py:116] MQLLMEngine is already dead, terminating server process INFO: 192.168.50.87:49810 - "POST /v1/embeddings HTTP/1.1" 500 Internal Server Error ### Before submitting a new issue... - [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
closed
2025-03-10T22:56:17Z
2025-03-12T16:31:21Z
https://github.com/vllm-project/vllm/issues/14583
[ "bug" ]
gigascake
1
aio-libs-abandoned/aioredis-py
asyncio
1,179
"aioredis.exceptions.ConnectionError: max number of clients reached" When my website gets lots of requests
### Describe the bug When I dos my website I get this error `aioredis.exceptions.ConnectionError: max number of clients reached`. I do not get this error when using the non async redis library. ### To Reproduce code : https://pastecord.com/pozywivufa.py ### Expected behavior I would expect this to ratelimit the requests from the dos attack. ### Logs/tracebacks ```python-traceback `Error handling request Traceback (most recent call last): File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\venv\lib\site-packages\aiohttp\web_protocol.py", line 422, in _handle_request resp = await self._request_handler(request) File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\venv\lib\site-packages\aiohttp\web_app.py", line 499, in _handle resp = await handler(request) File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\aiohttplimiter\redis_limiter.py", line 43, in wrapper nc = await self.db.get(db_key) File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\venv\lib\site-packages\aioredis\client.py", line 1061, in execute_command conn = self.connection or await pool.get_connection(command_name, **options) File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\venv\lib\site-packages\aioredis\connection.py", line 1359, in get_connection await connection.connect() File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\venv\lib\site-packages\aioredis\connection.py", line 661, in connect await self.on_connect() File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\venv\lib\site-packages\aioredis\connection.py", line 726, in on_connect auth_response = await self.read_response() File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\venv\lib\site-packages\aioredis\connection.py", line 854, in read_response response = await self._parser.read_response() File "C:\Users\fixin\PycharmProjects\aiohttp-ratelimiter\venv\lib\site-packages\aioredis\connection.py", line 383, in read_response raise error aioredis.exceptions.ConnectionError: max number of clients reached ` ``` ### Python Version ```console $ python --version 3.9.7 ``` ### aioredis Version ```console $ python -m pip show aioredis 2.0 ``` ### Additional context _No response_ ### Code of Conduct - [X] I agree to follow the aio-libs Code of Conduct
closed
2021-10-20T19:20:49Z
2022-02-14T14:26:16Z
https://github.com/aio-libs-abandoned/aioredis-py/issues/1179
[ "bug" ]
Nebula1213
7
ploomber/ploomber
jupyter
300
Simplify logic to determine project root
Currently, ploomber sets the project root to a folder that has a requirements.txt or environment.yml. This was under the assumption that pipeline.yaml is always next to these files but that might not be the case. We must simplify this logic to make it more intuitive and only rely on pipeline.yaml. This requires refactoring the logic to cover the case where the pipeline.yaml file is inside a package (e.g., src/package_name/pipeline.yaml).
closed
2021-06-12T17:37:19Z
2021-06-18T01:23:43Z
https://github.com/ploomber/ploomber/issues/300
[]
edublancas
0
BeanieODM/beanie
pydantic
304
Cyclic Relations
Will beanie support cyclic relations soon, or is that not a planned feature? E.g., ```python from beanie import Document class Employer(Document): name: str employees: Link['Employee'] class Employee(Document): name: str employer: Link[Employer] ```
closed
2022-07-14T22:23:54Z
2023-01-06T02:35:05Z
https://github.com/BeanieODM/beanie/issues/304
[ "Stale" ]
gncs
6
seleniumbase/SeleniumBase
pytest
2,249
PSA: Check for duplicates before opening new tickets!
I'm starting to receive more than 20 GitHub notifications per day (plus more from other networks). I'm well aware of the sharp increase in visitors since releasing a popular new YouTube video a week ago on UC Mode (https://www.youtube.com/watch?v=5dMFI3e85ig), which is currently getting around 100 views per day. I'm doing my best to keep up with all your tickets, questions, issues, etc, but you can help out by making sure your questions weren't already answered. Be aware that I do have a full-time job outside of SeleniumBase. Many of your tickets require more than simple answers: <img width="588" alt="Screenshot 2023-11-07 at 9 32 27 AM" src="https://github.com/seleniumbase/SeleniumBase/assets/6788579/48b65c6e-bad7-4244-8bb4-6ae86ffa4f54"> (That's just the notifications from GitHub!) Getting through that many notifications in a timely fashion may require speeding through them with less-than-complete answers/solutions. This probably means I'll need to start prioritizing tickets when too many come in at once. If you want your tickets to be prioritized, be sure you have already given a **GitHub Star** (⭐) to SeleniumBase first. That shows you appreciate the work I do, and in return, your tickets get prioritized.
open
2023-11-07T15:25:25Z
2023-11-07T18:33:58Z
https://github.com/seleniumbase/SeleniumBase/issues/2249
[ "News / Announcements" ]
mdmintz
3
Yorko/mlcourse.ai
matplotlib
680
Assignment 2. Last question
The right answer is not 55. It's 54, according to the data: [image](https://drive.google.com/file/d/1XQ7eWW4Wcn_3Uub3IOx_ZCMWmT5mJAZ0/view?usp=sharing) This might as well be my mistake in rounding ages, but I've used the standard round() function for that. `df['age_years'] = round(df['age'] / 30 / 12)` (the result is practically the same on both cleaned and default datasets)
closed
2021-02-10T18:54:54Z
2021-02-10T19:14:28Z
https://github.com/Yorko/mlcourse.ai/issues/680
[]
DablSi
0
huggingface/datasets
tensorflow
7,298
loading dataset issue with load_dataset() when training controlnet
### Describe the bug i'm unable to load my dataset for [controlnet training](https://github.com/huggingface/diffusers/blob/074e12358bc17e7dbe111ea4f62f05dbae8a49d5/examples/controlnet/train_controlnet.py#L606) using load_dataset(). however, load_from_disk() seems to work? would appreciate if someone can explain why that's the case here 1. for reference here's the structure of the original training files _before_ dataset creation - ``` - dir train - dir A (illustrations) - dir B (SignWriting) - prompt.json containing: {"source": "B/file.png", "target": "A/file.png", "prompt": "..."} ``` 2. here are features _after_ dataset creation - ``` "features": { "control_image": { "_type": "Image" }, "image": { "_type": "Image" }, "caption": { "dtype": "string", "_type": "Value" } ``` 3. I've also attempted to upload the dataset to huggingface with the same error output ### Steps to reproduce the bug 1. [dataset creation script](https://github.com/sign-language-processing/signwriting-illustration/blob/main/signwriting_illustration/controlnet_huggingface/dataset.py) 2. controlnet [training script](examples/controlnet/train_controlnet.py) used 3. training parameters - ! accelerate launch diffusers/examples/controlnet/train_controlnet.py \ --pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5" \ --output_dir="$OUTPUT_DIR" \ --train_data_dir="$HF_DATASET_DIR" \ --conditioning_image_column=control_image \ --image_column=image \ --caption_column=caption \ --resolution=512\ --learning_rate=1e-5 \ --validation_image "./validation/0a4b3c71265bb3a726457837428dda78.png" "./validation/0a5922fe2c638e6776bd62f623145004.png" "./validation/1c9f1a53106f64c682cf5d009ee7156f.png" \ --validation_prompt "An illustration of a man with short hair" "An illustration of a woman with short hair" "An illustration of Barack Obama" \ --train_batch_size=4 \ --num_train_epochs=500 \ --tracker_project_name="sd-controlnet-signwriting-test" \ --hub_model_id="sarahahtee/signwriting-illustration-test" \ --checkpointing_steps=5000 \ --validation_steps=1000 \ --report_to wandb \ --push_to_hub 4. command - ` sbatch --export=HUGGINGFACE_TOKEN=hf_token,WANDB_API_KEY=api_key script.sh` ### Expected behavior ``` 11/25/2024 17:12:18 - INFO - __main__ - Initializing controlnet weights from unet Generating train split: 1 examples [00:00, 334.85 examples/s] Traceback (most recent call last): File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 1189, in <module> main(args) File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 923, in main train_dataset = make_train_dataset(args, tokenizer, accelerator) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 639, in make_train_dataset raise ValueError( ValueError: `--image_column` value 'image' not found in dataset columns. Dataset columns are: _data_files, _fingerprint, _format_columns, _format_kwargs, _format_type, _output_all_columns, _split ``` ### Environment info accelerate 1.1.1 huggingface-hub 0.26.2 python 3.11 torch 2.5.1 transformers 4.46.2
open
2024-11-26T10:50:18Z
2024-11-26T10:50:18Z
https://github.com/huggingface/datasets/issues/7298
[]
sarahahtee
0
microsoft/nni
machine-learning
5,533
RuntimeError: max(): Expected reduction dim to be specified for input.numel() == 0. Specify the reduction dim with the 'dim' argument
**Describe the bug**: - scheduler: AGP - pruner: TaylorFO - mode: global - using evaluator (new api) - torchvision resnet 18 model - iterations: 10 **Environment**: - NNI version: 2.10 - Training service (local|remote|pai|aml|etc): local - Python version: Python 3.9.12 - PyTorch version: 1.12.0 py3.9_cuda11.3_cudnn8.3.2_0 pytorch - torchvision: 0.13.0 py39_cu113 pytorch - Cpu or cuda version: cuda **Reproduce the problem** - Code|Example:
closed
2023-04-26T23:05:45Z
2023-05-10T10:44:34Z
https://github.com/microsoft/nni/issues/5533
[]
kriteshg
9
roboflow/supervision
machine-learning
754
[ByteTrack] - redesign `update_with_detections` to use IoU to match input `Detections` with `tracker_id`
### Description - Currently, `update_with_detections` returns the predicted position of boxes, not their actual coordinates received from the detector. Many users have complained about the deterioration of box quality when using ByteTrack. ([#743](https://github.com/roboflow/supervision/issues/743)) - `ByteTrack` does not work with segmentation models because masks are not transferred to the `update_with_detections` output. - The `Detections.data field` is lost after passing through `update_with_detections`. All these issues can be resolved by changing the logic in `update_with_detections`. Instead of mapping values obtained from `update_with_tensors` to new `Detections` objects, we should use IoU to map the results of `update_with_tensors` to input `Detections` objects. This way, the input `xyxy` coordinates and the input state of the `mask` and `data` fields will be preserved. For this purpose, we can utilize the already existing function [`box_iou_batch`](https://github.com/roboflow/supervision/blob/3024ddca83ad837651e59d040e2a5ac5b2b4f00f/supervision/detection/utils.py#L31). The matching procedure has been demonstrated in [one](https://www.youtube.com/watch?v=OS5qI9YBkfk) of our videos on YouTube. ### Additional - Note: Please share a Google Colab with minimal code to test the new feature. We know it's additional work, but it will definitely speed up the review process. Each change must be tested by the reviewer. Setting up a local environment to do this is time-consuming. Please ensure that Google Colab can be accessed without any issues (make it public). Thank you! 🙏🏻
closed
2024-01-18T21:16:44Z
2024-03-25T15:20:26Z
https://github.com/roboflow/supervision/issues/754
[ "enhancement", "api:tracker", "Q1.2024" ]
SkalskiP
3
art049/odmantic
pydantic
353
Embedded Model Exclude None Not Functioning
# Bug Using 'exclude_none' in .update function does not work for fields in embedded models ### Current Behavior Create 'model' with embedded model in field. Use 'exclude_none' in 'model.update(*, exclude_none=True). Field with non-null value becomes null in embedded model. ### Expected behavior Fields in embedded model should not change from a non-null value to a null if exclude_none is set to True. ### Environment - ODMantic version: odmantic==0.8.0
open
2023-04-18T00:12:05Z
2023-04-19T04:35:07Z
https://github.com/art049/odmantic/issues/353
[ "bug" ]
pmcb99
1
onnx/onnx
pytorch
6,104
Clarification of Reshape semantics for attribute 'allowzero' NOT set, zero volume
# Ask a Question ### Question The Reshape documentation is not clear on whether reshaping from [0,10] to new shape [0,1,-1] is legal when attribute 'allowzero' is NOT set. The relevant sentence is: > At most one dimension of the new shape can be -1. In this case, the value is inferred from the size of the tensor and the remaining dimensions. In the example, the input volume is 0, and the first two dimensions of the output tensor are [0,1]. The output tensor thus has a volume of 0 for _any_ value inferred for the -1 wildcard. Thus by one reading of the documentation the example is illegal. However, another interpretation would be that when an input dimension is forwarded (because the new shape specifies 0 and `allowzero` is not set), then the dimension is ignored for purposes of inferring the -1 wildcard. I.e., the inference question is treated as equivalent to inferring the -1 wildcard for reshaping [10] to [1,-1]. Which interpretation is intended?
open
2024-04-29T15:02:27Z
2024-05-06T21:53:42Z
https://github.com/onnx/onnx/issues/6104
[ "question", "topic: spec clarification" ]
ArchRobison
3
nerfstudio-project/nerfstudio
computer-vision
2,602
Add Orthographic Rendering Support
**Is your feature request related to a problem? Please describe.** At present, nerfstudio does not support orthographic renderring. However, generating orthographic images requires merely producing a set of parallel rays for rendering for NeRF. This capability is essential for various applications but is currently lacking in nerfstudio. I plan to submit a PR for this feature. **Describe the solution you'd like** I propose to extend the existing `Cameras` class by adding an orthographic camera model to `CameraType`. This model would accept the same camera parameters as the perspective camera model already present in nerfstudio, allowing users to easily switch between perspective and orthographic modes.
open
2023-11-13T07:53:09Z
2024-10-07T15:15:43Z
https://github.com/nerfstudio-project/nerfstudio/issues/2602
[]
LeaFendd
16
biolab/orange3
data-visualization
7,016
File does not always recognize datetime from Google Sheets, and, in such cases, won't allow reinterpretation of text as datetime.
<!-- Thanks for taking the time to report a bug! If you're raising an issue about an add-on (i.e., installed via Options > Add-ons), raise an issue in the relevant add-on's issue tracker instead. See: https://github.com/biolab?q=orange3 To fix the bug, we need to be able to reproduce it. Please answer the following questions to the best of your ability. --> **What's wrong?** File does not always recognize datetime from Google Sheets, and, in such cases, won't allow reinterpretation of text as datetime. **How can we reproduce the problem?** Put a File widget on the canvas, and put the following link in the URL field: https://tinyurl.com/5xsaaywz (or https://docs.google.com/spreadsheets/d/1bWFTDeoOZ8qOc18OrprhhuHemgLolV8N0RG601j52zw/edit?gid=644664737#gid=644664737, which is what the short link refers to). The datetime "End of Ride" is properly ISO formatted, but as Type, only text and categorical can be selected. It can be changed to datetime with Edit Domain downstream, though **What's your environment?** <!-- To find your Orange version, see "Help → About → Version" or `Orange.version.full_version` in code --> - Operating system: Mac OS 15.3 - Orange version: 3.38.1
closed
2025-02-04T16:06:11Z
2025-02-11T08:10:58Z
https://github.com/biolab/orange3/issues/7016
[ "bug report" ]
wvdvegte
2
noirbizarre/flask-restplus
flask
314
Propagating exceptions
Flask has a [handle_exception](https://github.com/pallets/flask/blob/0.12.2/flask/app.py#L1520) method which handles exceptions and[ propagates](https://github.com/pallets/flask/blob/0.12.2/flask/app.py#L580) them if necessary prior to making a call to [log_exception](https://github.com/pallets/flask/blob/0.12.2/flask/app.py#L15446). Re-raising exceptions can be extremely helpful for debugging purposes. Flask RESTPlus explicitly [calls](https://github.com/noirbizarre/flask-restplus/blob/0.10.1/flask_restplus/api.py#L597) the same `log_exception` function but I was wondering whether i) it should call `handle_exception` instead or ii) it should also re-raise (propagate) exceptions in debug mode. A temporary work around is something of the form, ```python @api.errorhandler def default_error_handler(error): """ Default error handler to make certain that non-exception specific error handlers and non-HTTPException exceptions are re-raised to ensure that the original Flask error handler in invoked, which handles propagation of errors. :param Exception error: The error :raises Exception: Re-raises the exception """ raise error ``` which ensures that an exception is thrown causing the [orginal_handler](https://github.com/noirbizarre/flask-restplus/blob/master/flask_restplus/api.py#L567) to be called however the full stack trace is not present. Note even with the workaround I cannot invoke the Flask interactive debugger. I'm unsure whether that is the expected behavior or not.
open
2017-08-14T21:24:03Z
2018-05-03T01:30:45Z
https://github.com/noirbizarre/flask-restplus/issues/314
[]
john-bodley
3
STVIR/pysot
computer-vision
149
AdjustLayer may cause non-symmetric cropping
in _pysot/models/neck/neck.py_ starting from line 21 ``` if x.size(3) < 20: l = 4 r = l + 7 x = x[:, :, l:r, l:r] return x ``` The hard-coding of _l_ & _r_ may cause non-symmetric cropping.
closed
2019-08-04T14:29:47Z
2019-08-06T11:58:47Z
https://github.com/STVIR/pysot/issues/149
[]
MARMOTatZJU
1
astrofrog/mpl-scatter-density
matplotlib
7
Examples do not work in the jupyter notebook
Very interesting mini module. Thank you for this. Examples do not appear to work in the jupyter notebook. I had no problem executing them in the ipython shell Here is the traceback (Jupyter 5.0.0, python 3.6.1, ipython 5.3.0): ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /usr/lib/python3.6/site-packages/IPython/core/formatters.py in __call__(self, obj) 305 pass 306 else: --> 307 return printer(obj) 308 # Finally look for special method names 309 method = get_real_method(obj, self.print_method) /usr/lib/python3.6/site-packages/IPython/core/pylabtools.py in <lambda>(fig) 238 239 if 'png' in formats: --> 240 png_formatter.for_type(Figure, lambda fig: print_figure(fig, 'png', **kwargs)) 241 if 'retina' in formats or 'png2x' in formats: 242 png_formatter.for_type(Figure, lambda fig: retina_figure(fig, **kwargs)) /usr/lib/python3.6/site-packages/IPython/core/pylabtools.py in print_figure(fig, fmt, bbox_inches, **kwargs) 122 123 bytes_io = BytesIO() --> 124 fig.canvas.print_figure(bytes_io, **kw) 125 data = bytes_io.getvalue() 126 if fmt == 'svg': /usr/lib/python3.6/site-packages/matplotlib/backend_bases.py in print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs) 2208 bbox_filtered = [] 2209 for a in bbox_artists: -> 2210 bbox = a.get_window_extent(renderer) 2211 if a.get_clip_on(): 2212 clip_box = a.get_clip_box() /usr/lib/python3.6/site-packages/matplotlib/image.py in get_window_extent(self, renderer) 755 756 def get_window_extent(self, renderer=None): --> 757 x0, x1, y0, y1 = self._extent 758 bbox = Bbox.from_extents([x0, y0, x1, y1]) 759 return bbox.transformed(self.axes.transData) TypeError: 'NoneType' object is not iterable ```
closed
2017-07-19T23:47:44Z
2017-07-20T16:05:29Z
https://github.com/astrofrog/mpl-scatter-density/issues/7
[ "bug" ]
lbignone
4
microsoft/Bringing-Old-Photos-Back-to-Life
pytorch
104
How to activate multi-GPU mode?
Is the multi-GPU mode supported? How do I enable it? Thank you in advance
closed
2020-12-31T00:01:33Z
2021-12-02T01:34:31Z
https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/issues/104
[]
Gegam
3
jpadilla/django-rest-framework-jwt
django
15
Ability to refresh JWT token
I know this has been talked about a little, but the ability to refresh the JWT token would be a great feature. I have a Django app that communicates to the REST framework via JWT. I stick the JWT token in the apps session scope but I have no control on how to refresh the token if the use is not done and it expires. I'd rather not have to have them login again and obviously storing the user credentials defeats the purpose of using JTW.
closed
2014-03-18T22:58:57Z
2014-08-30T11:57:03Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/15
[]
jmacul2
3
polakowo/vectorbt
data-visualization
312
portfolion records and stats mismatch
PnL in records does not match the ending balance in portfolio stats, not sure i am missing something here. There is ~ month worth of data but only one day traded, all trades are closed. ``` portfolio = vbt.Portfolio.from_orders(p, orders, freq="1Min",direction='longonly',init_cash=10000.0) print(portfolio.trades.records_readable.to_string()) Exit Trade Id Column Size Entry Timestamp Avg Entry Price Entry Fees Exit Timestamp Avg Exit Price Exit Fees PnL Return Direction Status Position Id 0 0 TEAM 44.0 2021-06-04 13:31:00+00:00 225.4100 0.0 2021-06-04 19:58:00+00:00 225.77 0.0 15.840 0.001597 Long Closed 0 1 1 LULU 30.0 2021-06-04 13:31:00+00:00 326.9899 0.0 2021-06-04 19:58:00+00:00 329.50 0.0 75.303 0.007676 Long Closed 1 2 2 TSLA 17.0 2021-06-04 13:31:00+00:00 580.3300 0.0 2021-06-04 19:58:00+00:00 599.11 0.0 319.260 0.032361 Long Closed 2 3 3 NVDA 14.0 2021-06-04 13:31:00+00:00 692.2900 0.0 2021-06-04 19:58:00+00:00 702.36 0.0 140.980 0.014546 Long Closed 3 4 4 IDXX 17.0 2021-06-04 13:30:00+00:00 559.9600 0.0 2021-06-04 19:58:00+00:00 558.34 0.0 -27.540 -0.002893 Long Closed 4 ``` `print(portfolio.stats())` ``` Start 2021-06-01 08:00:00+00:00 End 2021-07-01 23:59:00+00:00 Period 12 days 19:30:00 Start Value 10000.0 End Value 10032.740187 Total Return [%] 0.327402 Benchmark Return [%] 9.289643 Max Gross Exposure [%] 30.512039 Total Fees Paid 0.0 Max Drawdown [%] 1.33725 Max Drawdown Duration 10 days 19:55:24 Total Trades 0.3125 Total Closed Trades 0.3125 Total Open Trades 0.0 Open Trade PnL 0.0 Win Rate [%] 80.0 Best Trade [%] 1.065745 Worst Trade [%] 1.065745 Avg Winning Trade [%] 1.404507 Avg Losing Trade [%] -0.289306 Avg Winning Trade Duration 0 days 06:27:00 Avg Losing Trade Duration 0 days 06:28:00 Profit Factor inf Expectancy 104.7686 Sharpe Ratio inf Calmar Ratio 39.094083 Omega Ratio inf Sortino Ratio inf Name: agg_func_mean, dtype: object ```
closed
2021-12-29T22:39:03Z
2021-12-29T22:58:32Z
https://github.com/polakowo/vectorbt/issues/312
[]
asemx
6
keras-team/keras
python
21,052
convert_to_tensor does not support torch tensors on "meta" device
I faced the same error then #19376 using the torch backend. While investigating, I found that the "root" issue comes from `convert_to_tensor` not supporting torch tensors defined on "meta" device. ## Way to reproduce ```python import os os.environ["KERAS_BACKEND"] = "torch" import torch from keras import ops with torch.device('meta'): x = torch.randn(5) ops.convert_to_tensor(x) ``` Outputs ```python NotImplementedError: Cannot copy out of meta tensor; no data! ``` ## System version ``` 3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0] Linux-5.4.0-208-generic-x86_64-with-glibc2.31 Keras 3.9.0 torch 2.5.1 ```
closed
2025-03-17T16:51:37Z
2025-03-18T15:15:20Z
https://github.com/keras-team/keras/issues/21052
[ "type:Bug" ]
rfezzani
0
jschneier/django-storages
django
549
Add AWS_STORAGE_CLASS setting
And deprecate `AWS_REDUCED_REDUNDANCY`. The available values (pulled out of botocore) are: "STANDARD", "REDUCED_REDUNDANCY", "GLACIER", "STANDARD_IA", "ONEZONE_IA",
closed
2018-08-12T03:15:34Z
2020-02-03T05:47:11Z
https://github.com/jschneier/django-storages/issues/549
[ "s3boto" ]
jschneier
0
holoviz/panel
matplotlib
6,923
FileInput default to higher websocket_max_message_size?
Currently, the default is 20 MBs, but this is pretty small for most use cases. If it exceeds the 20 MBs, it silently disconnects the websocket (at least in notebook; when serving, it does show `2024-06-14 11:39:36,766 WebSocket connection closed: code=None, reason=None`). This leaves the user confused as to why nothing is happening (perhaps a separate issue). Is there a good reason why the default is 20 MBs, or can we make it larger? For reference: https://discourse.holoviz.org/t/file-upload-is-uploading-the-file-but-the-value-is-always-none/7268/7
closed
2024-06-14T18:59:54Z
2024-06-25T11:23:18Z
https://github.com/holoviz/panel/issues/6923
[ "wontfix", "type: discussion" ]
ahuang11
1
albumentations-team/albumentations
machine-learning
2,353
HueSaturationValue: whites don't remain white with increase in saturation
## Describe the bug Whites become blue with increase in saturation. ### To Reproduce Steps to reproduce the behavior: Environment: ``` Python 3.11.10 Ubuntu 22.04 opencv-python==4.11.0.86 albumentations==2.0.0 ``` Code: ```python !wget "https://i.pinimg.com/originals/56/ad/53/56ad5334915d999d8ecc6e503f14fb29.png" -O sat.jpg from albumentations import HueSaturationValue hsv_transform = HueSaturationValue(hue_shift_limit=0, sat_shift_limit=(255,255), val_shift_limit=0, p=1.0) img = cv2.imread('sat.jpg') # Replace with a valid image path plt.imshow(hsv_transform(image=img)["image"].astype(np.uint8)) plt.axis("off") ``` Also reproducible in Explore with the same arguments: https://explore.albumentations.ai/transform/HueSaturationValue ### Expected behavior Whites should remain white and unaffected by saturation changes. ### Actual behavior Whites became bluer with increase in saturation. ### Screenshots **Original** ![Image](https://github.com/user-attachments/assets/6177a69e-3003-4498-b3ad-513cae310b91) **Shifted** ![Image](https://github.com/user-attachments/assets/9416170f-7b96-4c7f-bd52-3a94dcd4e3cd)
closed
2025-02-25T06:33:45Z
2025-02-26T21:03:34Z
https://github.com/albumentations-team/albumentations/issues/2353
[ "bug" ]
Y-T-G
1
hankcs/HanLP
nlp
887
关于能否客观统计出文章中各词语的出现的次数
## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [ √] 我在此括号内输入x打钩,代表上述事项确认完毕。 ## 版本号 1.6.6 当前最新版本号是:1.6.6 我使用的版本是:1.6.6 ## 我的问题 如何客观统计出文章中各词语的出现的次数。 例如:今天是星期天我狠开心,希望下个星期天我也依然开心。 以上:星期天:2次;开心:2次;今天:1次 等... ## 复现问题 无 ### 步骤 无 ### 触发代码 无 ### 期望输出 无 ### 实际输出 无 ## 其他信息 无
closed
2018-07-16T08:02:59Z
2018-07-16T08:29:45Z
https://github.com/hankcs/HanLP/issues/887
[]
potenlife
1
AUTOMATIC1111/stable-diffusion-webui
deep-learning
16,466
[Bug]: TypeError: AsyncConnectionPool.__init__() got an unexpected keyword argument 'socket_options'
### Checklist - [ ] The issue exists after disabling all extensions - [ ] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [ ] The issue exists in the current version of the webui - [ ] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? /content env: TF_CPP_MIN_LOG_LEVEL=1 51 packages can be upgraded. Run 'apt list --upgradable' to see them. W: Skipping acquire of configured file 'main/source/Sources' as repository 'https://r2u.stat.illinois.edu/ubuntu jammy InRelease' does not seem to provide it (sources.list entry misspelt?) env: LD_PRELOAD=/content/libtcmalloc_minimal.so.4 ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. libcairo2-dev is already the newest version (1.16.0-5ubuntu2). pkg-config is already the newest version (0.29.2-1ubuntu3). aria2 is already the newest version (1.36.0-1). python3-dev is already the newest version (3.10.6-1~22.04.1). 0 upgraded, 0 newly installed, 0 to remove and 51 not upgraded. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path 'stable-diffusion-webui' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/embeddings/negative' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/models/Lora/positive' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 555fe1|OK | 0B/s|/content/stable-diffusion-webui/models/ESRGAN/4x-UltraSharp.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. --2024-09-06 05:59:24-- https://raw.githubusercontent.com/camenduru/stable-diffusion-webui-scripts/main/run_n_times.py Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 533 [text/plain] Saving to: ‘/content/stable-diffusion-webui/scripts/run_n_times.py’ /content/stable-dif 100%[===================>] 533 --.-KB/s in 0s 2024-09-06 05:59:24 (37.4 MB/s) - ‘/content/stable-diffusion-webui/scripts/run_n_times.py’ saved [533/533] ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/deforum-for-automatic1111-webui' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/stable-diffusion-webui-images-browser' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/stable-diffusion-webui-huggingface' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/sd-civitai-browser' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/sd-webui-additional-networks' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/sd-webui-controlnet' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/openpose-editor' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/sd-webui-depth-lib' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/posex' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/sd-webui-3d-open-pose-editor' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/sd-webui-tunnels' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/batchlinks-webui' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/stable-diffusion-webui-catppuccin' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/stable-diffusion-webui-rembg' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/stable-diffusion-webui-two-shot' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/sd-webui-aspect-ratio-helper' already exists and is not an empty directory. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: destination path '/content/stable-diffusion-webui/extensions/asymmetric-tiling-sd-webui' already exists and is not an empty directory. /content/stable-diffusion-webui ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. HEAD is now at f865d3e1 add changelog for 1.4.1 ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. HEAD is now at cf1d67a Update modelcard.md ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 1024ca|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11e_sd15_ip2p_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 347dcb|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11e_sd15_shuffle_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= cd5f42|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_canny_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= ca2576|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11f1p_sd15_depth_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= a48655|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_inpaint_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= dfb597|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_lineart_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= f22a80|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_mlsd_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 397dc5|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_normalbae_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 708b46|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_openpose_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 7637f7|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_scribble_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= f6a8a9|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_seg_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= e6d27f|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_softedge_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= aa348b|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15s2_lineart_anime_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 8ac149|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11f1e_sd15_tile_fp16.safetensors Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 05a30c|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11e_sd15_ip2p_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 28a747|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11e_sd15_shuffle_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 3e8f60|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_canny_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= c2b50d|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11f1p_sd15_depth_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= e2c962|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_inpaint_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 7dcf73|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_lineart_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 45d18d|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_mlsd_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= b58cf9|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_normalbae_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= f50a20|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_openpose_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 035707|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_scribble_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 7dc879|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_seg_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 732b82|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15_softedge_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 59c20b|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11p_sd15s2_lineart_anime_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 57d782|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_v11f1e_sd15_tile_fp16.yaml Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 5215f9|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_style_sd14v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= b3f046|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_sketch_sd14v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= ee8964|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_seg_sd14v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= bebf0f|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_openpose_sd14v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 28d091|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_keypose_sd14v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 9a2864|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_depth_sd14v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= c2538a|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_color_sd14v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 3feadd|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_canny_sd14v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= e5199d|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_canny_sd15v2.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= aae782|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_depth_sd15v2.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 3bc04e|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_sketch_sd15v2.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 986c25|OK | 0B/s|/content/stable-diffusion-webui/extensions/sd-webui-controlnet/models/t2iadapter_zoedepth_sd15v1.pth Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Download Results: gid |stat|avg speed |path/URI ======+====+===========+======================================================= 8fea2c|OK | 0B/s|/content/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.ckpt Status Legend: (OK):download completed. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. fatal: No names found, cannot describe anything. Python 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] Version: ## 1.4.1 Commit hash: f865d3e11647dfd6c7b2cdf90dde24680e58acd8 Installing requirements ControlNet init warning: Unable to install insightface automatically. Please try run `pip install insightface` manually. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. ERROR: ld.so: object '/content/libtcmalloc_minimal.so.4' from LD_PRELOAD cannot be preloaded (file too short): ignored. Launching Web UI with arguments: --listen --xformers --enable-insecure-extension-access --theme dark --gradio-queue --multiple 2024-09-06 05:59:58.551432: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2024-09-06 05:59:58.589830: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2024-09-06 05:59:58.600425: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2024-09-06 06:00:00.268915: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT Traceback (most recent call last): File "/content/stable-diffusion-webui/launch.py", line 40, in <module> main() File "/content/stable-diffusion-webui/launch.py", line 36, in main start() File "/content/stable-diffusion-webui/modules/launch_utils.py", line 340, in start import webui File "/content/stable-diffusion-webui/webui.py", line 35, in <module> import gradio File "/usr/local/lib/python3.10/dist-packages/gradio/__init__.py", line 3, in <module> import gradio.components as components File "/usr/local/lib/python3.10/dist-packages/gradio/components.py", line 55, in <module> from gradio import processing_utils, utils File "/usr/local/lib/python3.10/dist-packages/gradio/utils.py", line 339, in <module> class AsyncRequest: File "/usr/local/lib/python3.10/dist-packages/gradio/utils.py", line 358, in AsyncRequest client = httpx.AsyncClient() File "/usr/local/lib/python3.10/dist-packages/httpx/_client.py", line 1397, in __init__ self._transport = self._init_transport( File "/usr/local/lib/python3.10/dist-packages/httpx/_client.py", line 1445, in _init_transport return AsyncHTTPTransport( File "/usr/local/lib/python3.10/dist-packages/httpx/_transports/default.py", line 275, in __init__ self._pool = httpcore.AsyncConnectionPool( TypeError: AsyncConnectionPool.__init__() got an unexpected keyword argument 'socket_options' ### Steps to reproduce the problem TypeError: AsyncConnectionPool.__init__() got an unexpected keyword argument 'socket_options' ### What should have happened? 1 ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo 1 ### Console logs ```Shell 1 ``` ### Additional information _No response_
open
2024-09-06T06:06:03Z
2024-10-09T01:35:34Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16466
[ "bug-report" ]
whenold
3
python-restx/flask-restx
api
142
AttributeError: 'SchemaModel' object has no attribute 'items'
Hi, I am trying to use @api.marshal_with a JSON schema but I get the following error: AttributeError: 'SchemaModel' object has no attribute 'items' The schema is correct as it works with @api.response and the model is shown correctly in Swagger. ### **Code** ```python downloadOrderResponse = api.schema_model('DownloadOrderResponse', { 'properties': { 'iccid': { "type" : "string", "pattern" : "^[0-9]{19}[0-9F]?$", "description" : "ICCID as described in section 5.2.1" } }, 'type': 'object' }) @api.route('/downloadOrder') class DownloadOrder(Resource): @api.marshal_with(downloadOrderResponse, skip_none=True) def post(self): return { "iccid": "01234567890123456789" } ``` ### **Expected Behavior** Correct response marshalling using the JSON schema. ### **Actual Behavior** Throws: AttributeError: 'SchemaModel' object has no attribute 'items' ### **Error Messages/Stack Trace** Traceback (most recent call last): File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/app.py", line 2464, in __call__ return self.wsgi_app(environ, start_response) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/app.py", line 2450, in wsgi_app response = self.handle_exception(e) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/api.py", line 638, in error_router return original_handler(f) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/app.py", line 1867, in handle_exception reraise(exc_type, exc_value, tb) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/_compat.py", line 39, in reraise raise value File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/api.py", line 636, in error_router return self.handle_error(e) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/app.py", line 2447, in wsgi_app response = self.full_dispatch_request() File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/app.py", line 1952, in full_dispatch_request rv = self.handle_user_exception(e) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/api.py", line 638, in error_router return original_handler(f) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/app.py", line 1821, in handle_user_exception reraise(exc_type, exc_value, tb) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/_compat.py", line 39, in reraise raise value File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/api.py", line 636, in error_router return self.handle_error(e) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/app.py", line 1950, in full_dispatch_request rv = self.dispatch_request() File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/app.py", line 1936, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/api.py", line 375, in wrapper resp = resource(*args, **kwargs) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask/views.py", line 89, in view return self.dispatch_request(*args, **kwargs) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/resource.py", line 44, in dispatch_request resp = meth(*args, **kwargs) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/marshalling.py", line 269, in wrapper resp, self.fields, self.envelope, self.skip_none, mask, self.ordered File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/marshalling.py", line 58, in marshal out, has_wildcards = _marshal(data, fields, envelope, skip_none, mask, ordered) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/flask_restx/marshalling.py", line 181, in _marshal for k, v in iteritems(fields) File "/Users/edwin/.local/share/virtualenvs/flask-test-BGYUVEN8/lib/python3.7/site-packages/six.py", line 589, in iteritems return iter(d.items(**kw)) AttributeError: 'SchemaModel' object has no attribute 'items' ### **Environment** - Python version: 3.7.4 - Flask version: 1.1.2 - Werkzeug version: 1.0.1 - Flask-RESTX version: 0.2.0
open
2020-05-24T11:59:27Z
2024-06-02T07:32:26Z
https://github.com/python-restx/flask-restx/issues/142
[ "bug" ]
edwinhaver
8
encode/databases
asyncio
535
Support for psycopg3?
Has there been any discussion around support for [psycopg 3](https://www.psycopg.org/features/) (now just psycopg)? It is a complete rewrite of the project. It was implemented to support async from the start. Seems like a natural fit.
open
2023-02-15T19:59:53Z
2024-03-03T13:51:08Z
https://github.com/encode/databases/issues/535
[]
ghost
5
tableau/server-client-python
rest-api
678
deleting duplicate datasources using tableau sever client
i am trying to delete some duplicate data sources available on the server using tableau server client. the script i have will only delete all data sources, but i do have specific data source names i want to delete from the server
closed
2020-08-27T00:36:51Z
2020-09-15T04:59:47Z
https://github.com/tableau/server-client-python/issues/678
[]
Segexy
1
Miserlou/Zappa
flask
1,984
Upcoming changes in Lambda. Does it affect Zappa?
https://aws.amazon.com/es/blogs/compute/coming-soon-updated-lambda-states-lifecycle-for-vpc-networking/ I have seen this regarding function creation. Does it affect Zappa?
open
2020-01-21T16:01:20Z
2021-02-09T13:15:25Z
https://github.com/Miserlou/Zappa/issues/1984
[]
soymonitus
9
tensorlayer/TensorLayer
tensorflow
1,166
A error about Q_learning
_**_a = np.argmax(Q[s, :] + np.random.randn(1, env.action_space.n) * (1. / (i + 1))) IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices_**_ import argparse import os import time import gym import matplotlib.pyplot as plt import numpy as np parser = argparse.ArgumentParser() parser.add_argument('--train', dest='train', action='store_true', default=True) parser.add_argument('--test', dest='test', action='store_true', default=True) parser.add_argument( '--save_path', default=None, help='folder to save if mode == train else model path,' 'qnet will be saved once target net update' ) parser.add_argument('--seed', help='random seed', type=int, default=0) parser.add_argument('--env_id', default='FrozenLake-v1') args = parser.parse_args() ## Load the environment alg_name = 'Qlearning' env_id = args.env_id env = gym.make(env_id) render = False # display the game environment ##================= Implement Q-Table learning algorithm =====================## ## Initialize table with all zeros Q = np.zeros([env.observation_space.n, env.action_space.n]) ## Set learning parameters lr = .85 # alpha, if use value function approximation, we can ignore it lambd = .99 # decay factor num_episodes = 10000 t0 = time.time() if args.train: all_episode_reward = [] for i in range(num_episodes): ## Reset environment and get first new observation s = env.reset() rAll = 0 ## The Q-Table learning algorithm for j in range(99): if render: env.render() ## Choose an action by greedily (with noise) picking from Q table a = np.argmax(Q[s, :] + np.random.randn(1, env.action_space.n) * (1. / (i + 1))) ## Get new state and reward from environment s1, r, d, _ = env.step(a) ## Update Q-Table with new knowledge Q[s, a] = Q[s, a] + lr * (r + lambd * np.max(Q[s1, :]) - Q[s, a]) rAll += r s = s1 if d is True: break print( 'Training | Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}'.format( i + 1, num_episodes, rAll, time.time() - t0 ) ) if i == 0: all_episode_reward.append(rAll) else: all_episode_reward.append(all_episode_reward[-1] * 0.9 + rAll * 0.1) # save path = os.path.join('model', '_'.join([alg_name, env_id])) if not os.path.exists(path): os.makedirs(path) np.save(os.path.join(path, 'Q_table.npy'), Q) plt.plot(all_episode_reward) if not os.path.exists('image'): os.makedirs('image') plt.savefig(os.path.join('image', '_'.join([alg_name, env_id]))) # print("Final Q-Table Values:/n %s" % Q) if args.test: path = os.path.join('model', '_'.join([alg_name, env_id])) Q = np.load(os.path.join(path, 'Q_table.npy')) for i in range(num_episodes): ## Reset environment and get first new observation s = env.reset() rAll = 0 ## The Q-Table learning algorithm for j in range(99): ## Choose an action by greedily (with noise) picking from Q table a = np.argmax(Q[s, :]) ## Get new state and reward from environment s1, r, d, _ = env.step(a) ## Update Q-Table with new knowledge rAll += r s = s1 if d is True: break print( 'Testing | Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}'.format( i + 1, num_episodes, rAll, time.time() - t0 ) ) **a = np.argmax(Q[s, :] + np.random.randn(1, env.action_space.n) * (1. / (i + 1))) IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices**
open
2024-10-19T07:17:48Z
2024-10-19T07:18:33Z
https://github.com/tensorlayer/TensorLayer/issues/1166
[]
guest-oo
0
GibbsConsulting/django-plotly-dash
plotly
461
Make code robust against internal method name
As per #460 the 2.10 release of Dash appears to have changed the name of an internal method. There is a quick fix - restrict the dash version - and a better fix that is to handle both variants of the name (or not depend on an internal API if possible)
open
2023-05-28T17:27:52Z
2023-05-28T17:27:52Z
https://github.com/GibbsConsulting/django-plotly-dash/issues/461
[ "bug" ]
GibbsConsulting
0
miguelgrinberg/Flask-Migrate
flask
384
Flask db migrate/upgrade not responding
Hi, I deleted the migrations folder, then ran `flask db init`, then `flask db migrate -m 'Test'`, but nothing happened, only got some messages: ``` INFO [alembic.runtime.migration] Context impl MySQLImpl. INFO [alembic.runtime.migration] Will assume non-transactional DDL. ``` The command `flask db upgrade` also shows the same message but nothing else.
closed
2021-02-08T00:26:37Z
2024-02-27T18:18:42Z
https://github.com/miguelgrinberg/Flask-Migrate/issues/384
[ "question" ]
Victor7095
10
Lightning-AI/pytorch-lightning
pytorch
20,604
PyTorchProfiler does not profile GPU
### Bug description Using PyTorchProfiler I don't get GPU profiling in Tensorboard view, the logs indicate that GPU is being used. ![Image](https://github.com/user-attachments/assets/8029e8b9-3689-49b4-9411-9de0fc2d8aca) ### What version are you seeing the problem on? v2.5 ### How to reproduce the bug ```python Conda env name: lightning_tutorials channels: - conda-forge dependencies: - python=3.12 - lightning - torchvision=0.21.0=cuda126_py312_h361dbbe_0 - tensorboard - torch-tb-profiler train.py import lightning as L import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data import torchvision as tv from lightning.pytorch.loggers import TensorBoardLogger from lightning.pytorch.profilers import PyTorchProfiler # -------------------------------- # Step 1: Define a LightningModule # -------------------------------- # A LightningModule (nn.Module subclass) defines a full *system* # (ie: an LLM, diffusion model, autoencoder, or simple image classifier). class LitAutoEncoder(L.LightningModule): def __init__(self): super().__init__() self.encoder = nn.Sequential( nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3) ) self.decoder = nn.Sequential( nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28) ) def forward(self, x): # in lightning, forward defines the prediction/inference actions embedding = self.encoder(x) return embedding def training_step(self, batch, batch_idx): # training_step defines the train loop. It is independent of forward x, _ = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) self.log("train_loss", loss) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer # ------------------- # Step 2: Define data # ------------------- dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor()) train, val = data.random_split(dataset, [55000, 5000]) # ------------------- # Step 3: Train # ------------------- autoencoder = LitAutoEncoder() logger = TensorBoardLogger(save_dir="tb_logs") profiler = PyTorchProfiler() trainer = L.Trainer(logger=logger, profiler=profiler, max_epochs=2) trainer.fit(autoencoder, data.DataLoader(train), data.DataLoader(val)) ``` ### Error messages and logs ``` (lightning_tutorials) PS C:\Users\anguzo\Projects\work\Machine-Learning-Collection> & C:/Users/anguzo/.local/share/mamba/envs/lightning_tutorials/python.exe "c:/Users/anguzo/Projects/work/Machine-Learning-Collection/ML/Pytorch/pytorch_lightning/9.1 Prof/train.py" GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores HPU available: False, using: 0 HPUs C:\Users\anguzo\.local\share\mamba\envs\lightning_tutorials\Lib\site-packages\lightning\pytorch\trainer\configuration_validator.py:68: You passed in a `val_dataloader` but have no `validation_step`. Skipping val loop. LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] | Name | Type | Params | Mode ----------------------------------------------- 0 | encoder | Sequential | 100 K | train 1 | decoder | Sequential | 101 K | train ----------------------------------------------- 202 K Trainable params 0 Non-trainable params 202 K Total params 0.810 Total estimated model params size (MB) 8 Modules in train mode 0 Modules in eval mode C:\Users\anguzo\.local\share\mamba\envs\lightning_tutorials\Lib\site-packages\lightning\pytorch\trainer\connectors\data_connector.py:425: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=15` in the `DataLoader` to improve performance. Epoch 0: 0%| | 4/55000 [00:00<39:03, 23.47it/s, v_num=0][W226 15:37:54.000000000 collection.cpp:647] Warning: Optimizer.step#Adam.step (function operator ()) Epoch 1: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 55000/55000 [03:34<00:00, 256.89it/s, v_num=0]`Trainer.fit` stopped: `max_epochs=2` reached. Epoch 1: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 55000/55000 [03:34<00:00, 256.88it/s, v_num=0] FIT Profiler Report Profile stats for: records ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ProfilerStep* 18.41% 10.089ms 60.02% 32.896ms 10.965ms 8.532ms 15.48% 32.903ms 10.968ms 3 [pl][profile]run_training_batch 0.22% 118.400us 27.99% 15.341ms 7.670ms 107.000us 0.19% 15.349ms 7.675ms 2 [pl][profile][LightningModule]LitAutoEncoder.optimiz... 0.13% 70.600us 27.77% 15.222ms 7.611ms 48.000us 0.09% 15.242ms 7.621ms 2 Optimizer.step#Adam.step 20.39% 11.178ms 27.64% 15.152ms 7.576ms 11.207ms 20.33% 15.194ms 7.597ms 2 [pl][profile][Strategy]SingleDeviceStrategy.backward... 19.32% 10.590ms 20.25% 11.099ms 3.700ms 10.435ms 18.93% 11.136ms 3.712ms 3 [pl][profile][Strategy]SingleDeviceStrategy.training... 3.26% 1.788ms 10.56% 5.790ms 1.930ms 1.524ms 2.77% 5.809ms 1.936ms 3 autograd::engine::evaluate_function: AddmmBackward0 1.48% 812.100us 5.97% 3.271ms 272.583us 473.000us 0.86% 3.406ms 283.833us 12 AddmmBackward0 1.47% 806.000us 4.16% 2.280ms 189.967us 578.000us 1.05% 2.577ms 214.750us 12 aten::t 1.95% 1.066ms 3.62% 1.986ms 34.840us 1.088ms 1.97% 2.560ms 44.912us 57 [pl][profile][_TrainingEpochLoop].train_dataloader_n... 0.21% 113.100us 3.95% 2.167ms 722.333us 94.000us 0.17% 2.214ms 738.000us 3 enumerate(DataLoader)#_SingleProcessDataLoaderIter._... 2.32% 1.273ms 3.75% 2.054ms 684.633us 924.000us 1.68% 2.120ms 706.667us 3 [pl][module]torch.nn.modules.container.Sequential: e... 0.58% 315.500us 3.02% 1.653ms 551.067us 300.000us 0.54% 1.691ms 563.667us 3 aten::transpose 1.61% 880.300us 1.68% 919.700us 16.135us 1.056ms 1.92% 1.472ms 25.825us 57 autograd::engine::evaluate_function: torch::autograd... 0.49% 267.800us 2.12% 1.161ms 48.367us 425.000us 0.77% 1.408ms 58.667us 24 aten::linear 0.42% 232.500us 2.34% 1.285ms 107.042us 233.000us 0.42% 1.398ms 116.500us 12 [pl][profile][Callback]TQDMProgressBar.on_train_batc... 2.27% 1.246ms 2.34% 1.284ms 427.967us 1.278ms 2.32% 1.333ms 444.333us 3 aten::item 1.50% 821.700us 1.53% 836.700us 16.406us 818.000us 1.48% 1.254ms 24.588us 51 [pl][module]torch.nn.modules.container.Sequential: d... 0.48% 265.400us 2.17% 1.191ms 397.033us 201.000us 0.36% 1.201ms 400.333us 3 aten::detach 1.34% 737.000us 1.46% 802.700us 17.838us 737.000us 1.34% 1.142ms 25.378us 45 aten::result_type 0.03% 14.100us 0.03% 14.100us 0.117us 997.000us 1.81% 997.000us 8.308us 120 ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ Self CPU time total: 54.812ms Self CUDA time total: 55.115ms ``` ### Environment <details> <summary>Current environment</summary> * CUDA: - GPU: - NVIDIA GeForce GTX 1080 - available: True - version: 12.6 * Lightning: - lightning: 2.5.0.post0 - lightning-utilities: 0.12.0 - pytorch-lightning: 2.5.0.post0 - torch: 2.6.0 - torch-tb-profiler: 0.4.3 - torchmetrics: 1.6.1 - torchvision: 0.21.0 * Packages: - absl-py: 2.1.0 - autocommand: 2.2.2 - backports.tarfile: 1.2.0 - brotli: 1.1.0 - certifi: 2025.1.31 - charset-normalizer: 3.4.1 - colorama: 0.4.6 - filelock: 3.17.0 - fsspec: 2025.2.0 - grpcio: 1.67.1 - idna: 3.10 - importlib-metadata: 8.6.1 - inflect: 7.3.1 - jaraco.collections: 5.1.0 - jaraco.context: 5.3.0 - jaraco.functools: 4.0.1 - jaraco.text: 3.12.1 - jinja2: 3.1.5 - lightning: 2.5.0.post0 - lightning-utilities: 0.12.0 - markdown: 3.6 - markupsafe: 3.0.2 - more-itertools: 10.3.0 - mpmath: 1.3.0 - networkx: 3.4.2 - numpy: 2.2.3 - optree: 0.14.0 - packaging: 24.2 - pandas: 2.2.3 - pillow: 11.1.0 - pip: 25.0.1 - platformdirs: 4.2.2 - protobuf: 5.28.3 - pybind11: 2.13.6 - pybind11-global: 2.13.6 - pysocks: 1.7.1 - python-dateutil: 2.9.0.post0 - pytorch-lightning: 2.5.0.post0 - pytz: 2024.1 - pyyaml: 6.0.2 - requests: 2.32.3 - setuptools: 75.8.0 - six: 1.17.0 - sympy: 1.13.3 - tensorboard: 2.19.0 - tensorboard-data-server: 0.7.0 - tomli: 2.0.1 - torch: 2.6.0 - torch-tb-profiler: 0.4.3 - torchmetrics: 1.6.1 - torchvision: 0.21.0 - tqdm: 4.67.1 - typeguard: 4.3.0 - typing-extensions: 4.12.2 - tzdata: 2025.1 - urllib3: 2.2.2 - werkzeug: 3.1.3 - wheel: 0.45.1 - win-inet-pton: 1.1.0 - zipp: 3.21.0 * System: - OS: Windows - architecture: - 64bit - WindowsPE - processor: AMD64 Family 25 Model 116 Stepping 1, AuthenticAMD - python: 3.12.9 - release: 11 - version: 10.0.22631 </details> ### More info _No response_
open
2025-02-26T14:04:33Z
2025-03-24T16:10:02Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20604
[ "bug", "needs triage", "ver: 2.5.x" ]
anguzo
1
Miserlou/Zappa
django
1,896
FastAPI incompatibility
## Context I get a 500 response code when I try to deploy a simple application. ```python from fastapi import FastAPI app = FastAPI() @app.get("/") def read_root(): return {"Hello": "World"} ``` Zappa tail says `[1562665728357] __call__() missing 1 required positional argument: 'send'`. When I go to the api gateway url, I see this message: > "{'message': 'An uncaught exception happened while servicing this request. You can investigate this with the `zappa tail` command.', 'traceback': ['Traceback (most recent call last):\\n', ' File \"/var/task/handler.py\", line 531, in handler\\n with Response.from_app(self.wsgi_app, environ) as response:\\n', ' File \"/var/task/werkzeug/wrappers/base_response.py\", line 287, in from_app\\n return cls(*_run_wsgi_app(app, environ, buffered))\\n', ' File \"/var/task/werkzeug/test.py\", line 1119, in run_wsgi_app\\n app_rv = app(environ, start_response)\\n', ' File \"/var/task/zappa/middleware.py\", line 70, in __call__\\n response = self.application(environ, encode_response)\\n', \"TypeError: __call__() missing 1 required positional argument: 'send'\\n\"]}" ## Steps to Reproduce ```bash zappa init zappa deploy dev # Error: Warning! Status check on the deployed lambda failed. A GET request to '/' yielded a 500 response code. ``` ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: 0.48.2 * Operating System and Python version: macOS Mojave | Python 3.6.5 * The output of `pip freeze`: ``` Package Version ------------------- --------- aiofiles 0.4.0 aniso8601 6.0.0 argcomplete 1.9.3 boto3 1.9.184 botocore 1.12.184 certifi 2019.6.16 cfn-flip 1.2.1 chardet 3.0.4 Click 7.0 dataclasses 0.6 dnspython 1.16.0 docutils 0.14 durationpy 0.5 email-validator 1.0.4 fastapi 0.31.0 future 0.16.0 graphene 2.1.6 graphql-core 2.2 graphql-relay 0.4.5 h11 0.8.1 hjson 3.0.1 httptools 0.0.13 idna 2.8 itsdangerous 1.1.0 Jinja2 2.10.1 jmespath 0.9.3 kappa 0.6.0 lambda-packages 0.20.0 MarkupSafe 1.1.1 pip 19.1.1 placebo 0.9.0 promise 2.2.1 pydantic 0.29 python-dateutil 2.6.1 python-multipart 0.0.5 python-slugify 1.2.4 PyYAML 5.1.1 requests 2.22.0 Rx 1.6.1 s3transfer 0.2.1 setuptools 39.0.1 six 1.12.0 starlette 0.12.0 toml 0.10.0 tqdm 4.19.1 troposphere 2.4.9 ujson 1.35 Unidecode 1.1.1 urllib3 1.25.3 uvicorn 0.8.3 uvloop 0.12.2 websockets 7.0 Werkzeug 0.15.4 wheel 0.33.4 wsgi-request-logger 0.4.6 zappa 0.48.2 ``` * Your `zappa_settings.py`: ``` { "dev": { "app_function": "app.main.app", "aws_region": "ap-northeast-2", "profile_name": "default", "project_name": "myprojectname", "runtime": "python3.6", "s3_bucket": "mybucketname" } } ```
open
2019-07-09T10:06:07Z
2020-02-09T21:40:56Z
https://github.com/Miserlou/Zappa/issues/1896
[]
sunnysid3up
11
LAION-AI/Open-Assistant
python
3,131
Chat plugin alignment
The text should be in the middle instead of top ![image](https://github.com/LAION-AI/Open-Assistant/assets/33456881/1e4e316d-f6d2-4bc3-81d0-c8e9b4fe2c18)
closed
2023-05-11T23:35:21Z
2023-05-15T07:07:30Z
https://github.com/LAION-AI/Open-Assistant/issues/3131
[ "bug", "website", "good first issue", "UI/UX" ]
notmd
1
davidteather/TikTok-Api
api
392
[BUG] - TikTok sent invalid JSON back
# Read Below!!! If this doesn't fix your issue delete these two lines **You may need to install chromedriver for your machine globally. Download it [here](https://sites.google.com/a/chromium.org/chromedriver/) and add it to your path.** **Describe the bug** TikTok sent invalid JSON back. **The buggy code** Please insert the code that is throwing errors or is giving you weird unexpected results. ``` from TikTokApi import TikTokApi import random import os api = TikTokApi.get_instance(custom_verifyFp=os.environ.get("verifyFp", None)) did = str(random.randint(10000, 999999999)) t = api.byUsername('therock', did=did, custom_verifyFp='your_verify_fp')[0] print(t) v_bytes = api.get_Video_By_TikTok(t, did=did, custom_verifyFp='your_verify_fp') with open("test.mp4", 'wb') as o: o.write(v_bytes) ``` **Expected behavior** A clear and concise description of what you expected to happen. **Error Trace (if any)** Put the error trace below if there's any error thrown. ``` # Error Trace Here ``` ERROR:root:TikTok response: illegal request... ERROR:root:Converting response to JSON failed ERROR:root:Expecting value: line 1 column 1 (char 0) Traceback (most recent call last): File "C:\Users\john\anaconda3\envs\tiktok_new\lib\site-packages\TikTokApi\tiktok.py", line 173, in getData json = r.json() File "C:\Users\john\anaconda3\envs\tiktok_new\lib\site-packages\requests\models.py", line 900, in json return complexjson.loads(self.text, **kwargs) File "C:\Users\john\anaconda3\envs\tiktok_new\lib\json\__init__.py", line 348, in loads return _default_decoder.decode(s) File "C:\Users\john\anaconda3\envs\tiktok_new\lib\json\decoder.py", line 337, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "C:\Users\john\anaconda3\envs\tiktok_new\lib\json\decoder.py", line 355, in raw_decode raise JSONDecodeError("Expecting value", s, err.value) from None json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "temp.py", line 6, in <module> t = api.byUsername('therock', did=did, custom_verifyFp='your_verify_fp')[0] File "C:\Users\john\anaconda3\envs\tiktok_new\lib\site-packages\TikTokApi\tiktok.py", line 493, in byUsername **kwargs, File "C:\Users\john\anaconda3\envs\tiktok_new\lib\site-packages\TikTokApi\tiktok.py", line 451, in userPosts res = self.getData(url=api_url, **kwargs) File "C:\Users\john\anaconda3\envs\tiktok_new\lib\site-packages\TikTokApi\tiktok.py", line 191, in getData raise JSONDecodeFailure() from e TikTokApi.exceptions.JSONDecodeFailure: TikTok sent invalid JSON back **Desktop (please complete the following information):** - OS: [e.g. Windows 10] - TikTokApi Version [e.g. 3.3.1] - 3.8.1 **Additional context** Referred to #374 for bugfix. Add any other context about the problem here.
closed
2020-11-24T02:14:43Z
2023-02-28T05:57:17Z
https://github.com/davidteather/TikTok-Api/issues/392
[ "bug" ]
JohnTYH
9
dfm/corner.py
data-visualization
208
multiple line style for quantiles
I want to thank the author first for the excellent tool, corner.py. It does help me a lot plotting MCMC results. I usually plot five quantiles: median, 1-sigma, and 2-sigma. So, it is not easy to catch the median immediately when seeing the histograms since all the quantiles are indicated with dashed lines. It will be great if corner.py provides an option to set the line style of quantiles; for example, quantiles=[0.16, 0.5, 0.84], q_ls=['dotted', 'dashed', 'dotted'] Thanks in advance for your consideration-
open
2022-09-08T01:06:57Z
2023-07-20T13:13:57Z
https://github.com/dfm/corner.py/issues/208
[ "enhancement" ]
jhshinn
2
recommenders-team/recommenders
data-science
1,832
[FEATURE] Test benchmark utils
### Description <!--- Describe your expected feature in detail --> Related to https://github.com/microsoft/recommenders/pull/1831. We want to programmatically test the movielens benchmark ### Expected behavior with the suggested feature <!--- For example: --> <!--- *Adding algorithm xxx will help people understand more about xxx use case scenarios. --> ### Other Comments branch: miguel/bench_tests
closed
2022-10-20T09:59:43Z
2022-11-17T10:13:21Z
https://github.com/recommenders-team/recommenders/issues/1832
[ "enhancement" ]
miguelgfierro
7
dmlc/gluon-cv
computer-vision
1,759
-+++++++++++++++++++++++
closed
2022-09-30T06:48:52Z
2023-01-06T06:33:43Z
https://github.com/dmlc/gluon-cv/issues/1759
[ "Stale" ]
mkkim007
1
exaloop/codon
numpy
250
When trying to run django's manage.py, get an indendation error
$ codon run manage.py manage.py:10:1: error: unexpected indentation This file is properly formatted according to normal python 🤷‍♂️
closed
2023-03-16T06:01:58Z
2024-11-26T18:58:02Z
https://github.com/exaloop/codon/issues/250
[]
TechNickAI
1
dynaconf/dynaconf
flask
761
Question - Ability to Avoid Forced Upper Case Keys
Given an environment variable with a lower-case key like `TEST_my_key`, and a dynaconf `LazySettings` instance configured like `settings = LazySettings(ENVVAR_PREFIX='TEST')`, the result is that the key is converted to `MY_KEY` instead of `my_key`. While this is fine in most situations due to being able to access both upper and lower case keys from the DynaConf instance, I am using it to parse and provide configuration for a tool that requires lower case config variables (celery specifically). So, is there some way to bypass/disable the case conversion that happens when DynaConf loads the values? Also, I apologize in advance if this is in the docs, they are not currently accessible due to dynaconf.com being down.
open
2022-06-23T23:20:35Z
2024-07-09T18:17:30Z
https://github.com/dynaconf/dynaconf/issues/761
[ "question", "hacktoberfest", "RFC", "typed_dynaconf", "4.0-breaking-change" ]
mrname
9
encode/httpx
asyncio
2,139
Response not closed when timeout/cancel reading response stream, which cause RuntimeError: The connection pool was closed while 1 HTTP requests/responses were still in-flight.
Response not closed when timeout/cancel reading response stream, which cause `RuntimeError: The connection pool was closed while 1 HTTP requests/responses were still in-flight.` #### Reproduce: ```python import asyncio import httpx async def main(): url = "https://httpbin.org/drip?delay=0&duration=5" # Or use local httpbin server: # docker run -ti -p 8088:80 kennethreitz/httpbin:latest url = "http://127.0.0.1:8088/drip?delay=0&duration=5" async with httpx.AsyncClient(timeout=10, trust_env=False) as client: try: coro = client.get(url) response = await asyncio.wait_for(coro, 3) except Exception as ex: print(type(ex), repr(ex)) else: print(response) if __name__ == "__main__": asyncio.run(main()) ``` #### Output: ```python <class 'asyncio.exceptions.TimeoutError'> TimeoutError() Traceback (most recent call last): File "/Users/kk/dev/zhuwen/httpx/http_error2.py", line 22, in <module> asyncio.run(main()) File "/Users/kk/.pyenv/versions/3.9.7/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/asyncio/runners.py", line 44, in run return loop.run_until_complete(main) File "/Users/kk/.pyenv/versions/3.9.7/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/asyncio/base_events.py", line 642, in run_until_complete return future.result() File "/Users/kk/dev/zhuwen/httpx/http_error2.py", line 18, in main print(response) File "/Users/kk/dev/zhuwen/httpx/httpx/_client.py", line 1978, in __aexit__ await self._transport.__aexit__(exc_type, exc_value, traceback) File "/Users/kk/dev/zhuwen/httpx/httpx/_transports/default.py", line 332, in __aexit__ await self._pool.__aexit__(exc_type, exc_value, traceback) File "/Users/kk/.pyenv/versions/3.9.7/envs/httpx/lib/python3.9/site-packages/httpcore/_async/connection_pool.py", line 326, in __aexit__ await self.aclose() File "/Users/kk/.pyenv/versions/3.9.7/envs/httpx/lib/python3.9/site-packages/httpcore/_async/connection_pool.py", line 312, in aclose raise RuntimeError( RuntimeError: The connection pool was closed while 1 HTTP requests/responses were still in-flight. ``` #### Root cause: It's because use `except Exception` in _client.py which will not catch asyncio CancelledError, so except branch will not executed. https://github.com/encode/httpx/blob/master/httpx/_client.py#L1604 ```python try: if not stream: await response.aread() # will raise CancelledError return response except Exception as exc: # pragma: no cover await response.aclose() # will not executed raise exc ``` Change all `except Exception` in _client.py to `except BaseException` can resolve the issue.
closed
2022-03-22T10:07:42Z
2022-09-08T13:25:29Z
https://github.com/encode/httpx/issues/2139
[ "bug" ]
guyskk
9
sinaptik-ai/pandas-ai
data-science
834
Langchain LLM
### System Info Python: 3.10.6 Pandasai: 1.5.11 ### 🐛 Describe the bug I have to replace some log info for privacy reasons. ```py from langchain.llms import OpenAI custom_llm = OpenAI(model=<MODEL_NAME>", api_key=<API KEY>", base_url=<URL>, verbose=True, temperature=0.0) df_smart = SmartDataframe('data2.csv', config={"llm":custom_llm, "verbose":True}) response = df_smart.chat('Return maximal amount') ``` After this the log outputs ``` 2023-12-22 08:41:32 [INFO] Question: Return maximal amount 2023-12-22 08:41:32 [INFO] Running PandasAI with langchain_openai LLM... 2023-12-22 08:41:32 [INFO] Prompt ID <ID> 2023-12-22 08:41:32 [INFO] Executing Step 0: CacheLookup 2023-12-22 08:41:32 [INFO] Using cached response 2023-12-22 08:41:32 [INFO] Executing Step 1: PromptGeneration 2023-12-22 08:41:32 [INFO] Executing Step 2: CodeGenerator 2023-12-22 08:41:32 [INFO] Executing Step 3: CachePopulation 2023-12-22 08:41:32 [INFO] Executing Step 4: CodeExecution 2023-12-22 08:41:32 [INFO] Saving charts to <PATH> 2023-12-22 08:41:32 [INFO] Code running: 2023-12-22 08:41:32 [WARNING] Failed to execute code with a correction framework [retry number: 1] 2023-12-22 08:41:32 [ERROR] Failed with error: Traceback (most recent call last): File "/opt/conda/lib/python3.10/site-packages/pandasai/pipelines/smart_datalake_chat/code_execution.py", line 46, in execute result = pipeline_context.query_exec_tracker.execute_func( File "/opt/conda/lib/python3.10/site-packages/pandasai/helpers/query_exec_tracker.py", line 128, in execute_func result = function(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/pandasai/helpers/code_manager.py", line 212, in execute_code raise NoResultFoundError("No result returned") pandasai.exceptions.NoResultFoundError: No result returned . Retrying 2023-12-22 08:41:32 [INFO] Using prompt: <dataframe> The user asked the following question: Q: Return maximal amount You generated this python code: # TODO: import the required dependencies import pandas as pd # Write code here # Declare result var: type (possible value "string", "number", "dataframe", "plot"). Examples: { "type": "string", "value": f"The highest salary is {highest_salary}." } or { "type": "number", "value": 125 } or { "type": "dataframe", "value": pd.DataFrame({...}) } or { "type": "plot", "value": "temp_chart.png" } It fails with the following error: Traceback (most recent call last): File "/opt/conda/lib/python3.10/site-packages/pandasai/pipelines/smart_datalake_chat/code_execution.py", line 46, in execute result = pipeline_context.query_exec_tracker.execute_func( File "/opt/conda/lib/python3.10/site-packages/pandasai/helpers/query_exec_tracker.py", line 128, in execute_func result = function(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/pandasai/helpers/code_manager.py", line 212, in execute_code raise NoResultFoundError("No result returned") pandasai.exceptions.NoResultFoundError: No result returned Fix the python code above and return the new python code: 2023-12-22 08:41:36 [INFO] HTTP Request: POST<LINK> "HTTP/1.1 200 OK" 2023-12-22 08:41:36 [ERROR] Pipeline failed on step 4: No code found in the response ```
closed
2023-12-22T08:44:30Z
2024-06-01T00:20:20Z
https://github.com/sinaptik-ai/pandas-ai/issues/834
[]
danielstankw
2
tiangolo/uvicorn-gunicorn-fastapi-docker
fastapi
55
set root-path to uvicorn
I'm trying to set `root_path` to _uvicorn_ as suggested [1] using this image, but don't see any options to pass arguments: uvicorn main:app --root-path /api/v1 How can I do it? **Refs:** 1. https://fastapi.tiangolo.com/advanced/behind-a-proxy/#providing-the-root_path
closed
2020-08-08T14:39:22Z
2024-08-25T04:05:07Z
https://github.com/tiangolo/uvicorn-gunicorn-fastapi-docker/issues/55
[ "investigate" ]
0anton
6
gradio-app/gradio
python
10,052
Edit: deleted - found the issue
Edit: deleted - found the issue
closed
2024-11-27T15:32:19Z
2024-11-27T15:40:53Z
https://github.com/gradio-app/gradio/issues/10052
[ "bug" ]
GhostlyScript
0
microsoft/unilm
nlp
1,473
E5 Base Model Can't Use GPU
**Describe the bug** Model I am using (UniLM, MiniLM, LayoutLM ...): multilingual-e5-base The problem arises when using: * [x] the official example scripts: (give details below) * [ ] my own modified scripts: (give details below) I would like to move e5 model to GPU but I get an error when I try to do that. A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: ![image](https://github.com/microsoft/unilm/assets/20232088/50e2cdd0-902d-4f38-8e2f-abe6039a9c98) **Expected behavior** A clear and concise description of what you expected to happen. - Platform: Ubuntu/Google Colab - Python version: 3.10.12 - PyTorch version (GPU?): 2.1.0+cu121
closed
2024-03-07T15:36:07Z
2024-03-09T23:32:30Z
https://github.com/microsoft/unilm/issues/1473
[]
lordsoffallen
1
dpgaspar/Flask-AppBuilder
rest-api
1,456
[Question] pre_add/pre_update method exception should redirect to same page with filled form
Using Basic view create and edit form, I want to do some additional check before adding/updating entry to db. For this I am using `pre_add` or `pre_update` method. But exception raised from both of these method end up redirecting page back and showing flash error. I want to stay on the same page and show error, so that user can modify the form without re-entering all the details of Form. ### Environment Flask-Appbuilder version: Flask-AppBuilder==2.3.4 Python 3.7.5 Sorry for asking basic question, new to flask_appbuilder. Thanks in advance.
closed
2020-08-20T14:33:22Z
2020-12-04T22:01:19Z
https://github.com/dpgaspar/Flask-AppBuilder/issues/1456
[ "stale" ]
aksswami
1
ludwig-ai/ludwig
data-science
3,583
Out of Memory Error Running llama2_7b_finetuning_4bit Example
**Describe the bug** Running the "Llama2-7b Fine-Tuning with 4bit Quantization" example notebook in Colab fails with the following error: `OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB (GPU 0; 14.75 GiB total capacity; 13.37 GiB already allocated; 80.81 MiB free; 13.79 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF` I am new to Ludwig and AI in general so this may be user error. **To Reproduce** Steps to reproduce the behavior: 1. Open the notebook in Colab - https://colab.research.google.com/drive/1c3AO8l_H6V_x37RwQ8V7M6A-RmcBf2tG?usp=sharing 2. Add my HUGGING_FACE_HUB_TOKEN to code frame 2 3. Run the notebook 4. Run ends in error ``` INFO:ludwig.trainers.trainer:Starting with step 0, epoch: 0 Training: 18%|█▊ | 1935/10920 [17:45<1:13:32, 2.04it/s, loss=0.081] --------------------------------------------------------------------------- OutOfMemoryError Traceback (most recent call last) <ipython-input-4-f24794477812> in <cell line: 6>() 4 5 model = LudwigModel(config=config, logging_level=logging.INFO) ----> 6 results = model.train(dataset="ludwig://alpaca") 7 print(results) 27 frames /usr/local/lib/python3.10/dist-packages/bitsandbytes/functional.py in dequantize_4bit(A, quant_state, absmax, out, blocksize, quant_type) 906 907 if out is None: --> 908 out = torch.empty(shape, dtype=dtype, device=A.device) 909 910 n = out.numel() OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB (GPU 0; 14.75 GiB total capacity; 13.37 GiB already allocated; 80.81 MiB free; 13.79 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF ``` After 3 runs in new Colab sessions it consistently fails at the same point. ``` INFO:ludwig.trainers.trainer:Starting with step 0, epoch: 0 Training: 18%|█▊ | 1935/10920 ``` Running the [example notebook](https://ludwig.ai/latest/examples/llms/llm_finetuning/) out the box. No other changes were made to the notebook or config. ``` model_type: llm base_model: meta-llama/Llama-2-7b-hf quantization: bits: 4 adapter: type: lora prompt: template: | ### Instruction: {instruction} ### Input: {input} ### Response: input_features: - name: prompt type: text output_features: - name: output type: text trainer: type: finetune learning_rate: 0.0001 batch_size: 1 gradient_accumulation_steps: 16 epochs: 3 learning_rate_scheduler: warmup_fraction: 0.01 preprocessing: sample_ratio: 0.1 ``` **Expected behavior** After watching [video](https://www.youtube.com/watch?v=g68qlo9Izf0) by Ludwig team that explained how to fine-tune Llama-2-7b on a single T4 GPU, I tried running the [example notebook](https://github.com/ludwig-ai/ludwig/tree/master/examples/llama2_7b_finetuning_4bit) linked in the Ludwig GitHub repository and expected the model to be fine-tuned for instruction on the Alpaca dataset. *FYI, the notebook from the video worked fine for me, but it uses a smaller data set - https://colab.research.google.com/drive/1Ly01S--kUwkKQalE-75skalp-ftwl0fE?usp=sharing.* **Environment (please complete the following information):** - OS: Google Colab - Linux Ubuntu - Python version: 3.10 - Ludwig version: 0.8.2 **Additional context** Add any other context about the problem here. - Random seed: 42 - Dataset: ludwig://alpaca - Data format: ludwig - Torch version: 2.0.1+cu118 - Compute: - GPU Type: Tesla T4 - GPUs per node: 1 - Number of nodes: 1 - System RAM: 51.0 GB - GPU RAM: 15.0 GB - Disk: 166.8 GB
closed
2023-09-03T23:26:57Z
2023-10-23T23:17:58Z
https://github.com/ludwig-ai/ludwig/issues/3583
[ "bug" ]
charleslbryant
6
iperov/DeepFaceLab
machine-learning
5,475
RTM WF faceset
rtm wf faceset file does not open
closed
2022-02-11T19:12:59Z
2022-02-14T11:34:48Z
https://github.com/iperov/DeepFaceLab/issues/5475
[]
notname956
0
sherlock-project/sherlock
python
2,198
Permission denied
### Description I had problems ![17194188548984482685354609087698](https://github.com/sherlock-project/sherlock/assets/173940435/b0adebc9-b991-460e-b626-53f394ad1307) ### Code of Conduct - [X] I agree to follow this project's Code of Conduct
closed
2024-06-26T16:22:05Z
2024-06-26T18:04:12Z
https://github.com/sherlock-project/sherlock/issues/2198
[ "invalid" ]
Hjgkcgf35
2
pydantic/FastUI
fastapi
218
Unable to pass a BaseModel into component from subfolder (Pydantic V1 issue)
I was attempting to create a simple pydantic object as below ``` class User(BaseModel): name: str = Field(title='Name', max_lengh=200) ``` But I face some issues: ### Scenario 1 - Having the Pydantic Base Model define on the same page as entry point (i.e. `main.py`) In this scenario, the BaseModel is implemented on the same file as the entry point file as below: ``` component = [ # Blah, other components c.ModelForm(model=User), # Blah.... ] ``` This works fine and it shows the form as expected on UI. Here's the problem: ### Scenario 2 - The Pydantic object is imported from somewhere else ``` from model.blah import User ... component = [ # Blah, other components c.ModelForm(model=User), # Blah.... ] ``` When I run this, I receive an exception of ``` Input should be a subclass of BaseModel [type=is_subclass_of, input_value=<class 'model.blah.User'>, input_type=ModelMetaclass] For further information visit https://errors.pydantic.dev/2.6/v/is_subclass_of ``` Not entirely sure what happened here, will continue to investigate but will raise this problem I bumped into.
closed
2024-02-26T13:57:51Z
2024-02-26T14:26:54Z
https://github.com/pydantic/FastUI/issues/218
[]
edwardmfho
2
CorentinJ/Real-Time-Voice-Cloning
deep-learning
817
telling me to install pretrained models even tho i already have
i've extracted both versions of the pretrained .zip multiple times but it keeps telling me they arent there
closed
2021-08-11T23:24:20Z
2021-08-25T08:48:28Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/817
[]
kneegobbler
1
lk-geimfari/mimesis
pandas
1,463
Add please connected data support
# Feature request I think it is needed to have related data during schema generation. ## Thesis For example, we have simple schema ``` python schema_definition = lambda: { 'full_name': field('name', gender=Gender.MALE), 'surname': field('person.surname', gender=Gender.MALE) } >>> {'full_name': 'Irvin Savage', 'surname': 'Delgado'} ``` ## Reasoning It would be better to have related data during schema generation process, when attribure **full_name** connected to **surname** and return the same data. In my example with full_name = 'Irvin Savage', surname should return 'Savage', not generated new value.
open
2024-01-11T11:30:41Z
2024-03-31T09:08:38Z
https://github.com/lk-geimfari/mimesis/issues/1463
[]
DarkwingDuck48
5
plotly/dash
dash
3,094
Allow_duplicate=True Fails with More Than Two Duplicate Callbacks
## Bug Report: `allow_duplicate=True` Fails with More Than Two Duplicate Callbacks **Description:** The `allow_duplicate=True` parameter does not function correctly when there are more than two duplicate callbacks. **Reproducible Example:** The following examples demonstrate the issue: **Working Examples (Two Duplicate Callbacks):** ```python # Example 1: Works Output("layout_ctx-train", "children") Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button2', 'n_clicks'), ... ``` ```python # Example 2: Works Output("layout_ctx-train", "children", allow_duplicate=True) Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button2', 'n_clicks'), ... ``` ```python # Example 3: Works Output("layout_ctx-train", "children", allow_duplicate=True) Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button2', 'n_clicks'), ... ``` **Failing Examples (More Than Two Duplicate Callbacks):** ```python # Example 4: Fails Output("layout_ctx-train", "children", allow_duplicate=True) Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button2', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button3', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button4', 'n_clicks'), ... ``` ```python # Example 5: Fails Output("layout_ctx-train", "children") Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button2', 'n_clicks'), ... Output("layout_ctx-train", "children") Input('button3', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button4', 'n_clicks'), ... ``` ```python # Example 6: Fails Output("layout_ctx-train", "children", allow_duplicate=True) Input('button1', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button2', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button3', 'n_clicks'), ... Output("layout_ctx-train", "children", allow_duplicate=True) Input('button4', 'n_clicks'), ... ``` **Expected Behavior:** Duplicate callbacks should function correctly when at least one of the components has `allow_duplicate=True` set. **Additional Comments:** This functionality worked correctly in Dash version 2.9.1 for more than two duplicate callbacks as long as `allow_duplicate=True` was present on all relevant components. The issue was encountered in Dash versions 2.17.1+.
closed
2024-11-26T12:01:25Z
2024-11-27T15:35:24Z
https://github.com/plotly/dash/issues/3094
[ "bug", "P2" ]
Kissabi
1
Kanaries/pygwalker
pandas
29
HEX support
Hi magic people, I don't know if it is up to the HEX developers or you, but it would be nice if the library could work on HEX notebooks as well. For now it only prints the following: ![Screenshot 2023-02-22 at 16 47 10](https://user-images.githubusercontent.com/108722480/220677455-63e09796-f93c-4250-a0e9-945569df79dc.png) Thank you very much!
closed
2023-02-22T15:49:14Z
2023-04-11T04:36:05Z
https://github.com/Kanaries/pygwalker/issues/29
[ "fixed but needs feedback" ]
giov-bs
4
horovod/horovod
tensorflow
3,670
UnicodeDecodeError in horovod
**Environment:** 1. Framework: TensorFlow 2. Framework version: 2.7 3. Horovod version: 0.23 4. MPI version: None 5. CUDA version: 11.4 6. NCCL version: 11.4 7. Python version: 3.6.8 8. Spark / PySpark version: 9. Ray version: 10. OS and version: 11. GCC version: 8.3.1 12. CMake version: 3.23.3 **Bug report:** When I run my model with horovodrun command I found this error: Exception in thread Thread-5: Traceback (most recent call last): File "/usr/local/lib/python3.8/threading.py", line 932, in _bootstrap_inner self.run() File "/usr/local/lib/python3.8/threading.py", line 870, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.8/site-packages/horovod/runner/common/util/safe_shell_exec.py", line 126, in prefix_connection text = decoder.decode(buf or b'', final=not buf) File "/usr/local/lib/python3.8/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8a in position 91: invalid start byte File "/usr/local/lib/python3.8/site-packages/horovod/runner/common/util/safe_shell_exec.py", line 126 -- this is mentioned in https://github.com/horovod/horovod/issues/2367 and it is regarded as a solution. how to solve this error?
closed
2022-08-27T11:21:05Z
2022-08-29T17:54:53Z
https://github.com/horovod/horovod/issues/3670
[ "bug" ]
yinciki
0
pallets/quart
asyncio
382
Updated version Flask, error
In the library requirements new versions of Flask are allowed, so 2 days ago a new version was released that generates the following error. ![image](https://github.com/user-attachments/assets/2bd0122f-b1c3-4bec-822e-f4a5176532b0) To replicate this error, all you have to do is uninstall the Flask and Quart version and reinstall Quart and create an app. Environment: - Python version: 3.9 - Quart version: 0.19.6
closed
2024-11-15T07:41:10Z
2024-11-15T14:03:12Z
https://github.com/pallets/quart/issues/382
[]
DaniMunos95
1
coqui-ai/TTS
pytorch
3,447
[Feature request] Please Make an spacial android release for persian deafs
<!-- Welcome to the 🐸TTS project! We are excited to see your interest, and appreciate your support! ---> **🚀 Feature Description** Persian Deafs need your help to can speak with others. we have not voice functionality in persian in apps like google translate and need your help to make an spacial model to persian language as android offline app. <!--A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] --> **Solution** I hope we have at the end an android app that we can load prebuild models for example for persian and than use it to generate persian voice from persian text also we need an spacial model for persian language <!-- A clear and concise description of what you want to happen. --> **Alternative Solutions** <!-- A clear and concise description of any alternative solutions or features you've considered. --> **Additional context** persian deaf need your help them cant speak and be social please help them.thanks <!-- Add any other context or screenshots about the feature request here. -->
closed
2023-12-20T04:57:52Z
2024-02-23T03:28:15Z
https://github.com/coqui-ai/TTS/issues/3447
[ "wontfix", "feature request" ]
mablue
2
huggingface/peft
pytorch
1,381
wrong model loading after merge_and_unload + save_pretrained
### System Info running sagemaker on a g5.12xlarge machine this is my requirements file: ``` autoawq @ git+https://github.com/casper-hansen/AutoAWQ wandb==0.16.2 transformers==4.36.2 trl @ git+https://github.com/huggingface/trl.git peft==0.7.1 accelerate==0.26.1 bitsandbytes==0.42.0 diffusers==0.24.0 ``` ### Who can help? @pacman100 @younesbelkada @sayakpaul ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [X] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction I'm working with mistralai/Mixtral-8x7B-Instruct-v0.1. I load up a model and train a lora adapter like: ``` bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained( args.model_name, trust_remote_code=True, use_auth_token=True, ) model = AutoModelForCausalLM.from_pretrained( args.model_name, device_map="auto", use_auth_token=True, trust_remote_code=True, quantization_config=bnb_config, use_cache=False if args.gradient_checkpointing else True, ) peft_config = LoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=find_all_linear_names(model), lora_dropout=0.1, bias="none", task_type=TaskType.CAUSAL_LM, ) model = prepare_model_for_kbit_training(model) if args.gradient_checkpointing: model.gradient_checkpointing_enable() model = get_peft_model(model, peft_config) model.print_trainable_parameters() output_dir = "/opt/ml/checkpoints/" training_args = TrainingArguments( do_eval=True, bf16=args.bf16, output_dir=output_dir, max_steps=args.max_steps, warmup_ratio=warmup_ratio, eval_steps=args.eval_steps, evaluation_strategy="steps", learning_rate=learning_rate, logging_steps=args.eval_steps, num_train_epochs=args.n_epochs, lr_scheduler_type=args.lr_scheduler_type, auto_find_batch_size=auto_find_batch_size, per_device_train_batch_size=args.train_batch_size, gradient_checkpointing=args.gradient_checkpointing, gradient_accumulation_steps=args.gradient_accumulation_steps, logging_strategy="steps", overwrite_output_dir=True, logging_dir=f"{output_dir}/logs", ) # Create Trainer instance trainer = Trainer( model=model, args=training_args, eval_dataset=dataset_test, train_dataset=dataset_train, compute_metrics=get_compute_metrics_fn(tokenizer), data_collator=default_data_collator, ) # pre-process the model by upcasting the layer norms in float 32 for name, module in model.named_modules(): if isinstance(module, LoraLayer): if args.bf16: module = module.to(torch.bfloat16) if "norm" in name: module = module.to(torch.float32) if "lm_head" in name or "embed_tokens" in name: if hasattr(module, "weight"): if args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) # Start training trainer.train() ``` then I need to save a 16 bit model with merged adapter, so I save the adapter: ``` model.save_pretrained(output_dir) ``` then I reload the base 16 bit model, mount the adapter, merge_and_unload, and save the merged model: ``` del model del trainer model = AutoModelForCausalLM.from_pretrained( args.model_name, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16, # use_auth_token=True, ) model.eval() model = PeftModel.from_pretrained( model, output_dir, # use_auth_token=True, ) merged_model = model.merge_and_unload() merged_model.save_pretrained(f"{output_dir}_merged") ``` For debugging, here I print merged model and obtain the follwoing output: ``` print('#################################### merged_model ####################################') print(merged_model) ``` ``` #################################### merged_model #################################### MixtralForCausalLM( (model): MixtralModel( (embed_tokens): Embedding(32000, 4096) (layers): ModuleList( (0-31): 32 x MixtralDecoderLayer( (self_attn): MixtralAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=1024, bias=False) (v_proj): Linear(in_features=4096, out_features=1024, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): MixtralRotaryEmbedding() ) (block_sparse_moe): MixtralSparseMoeBlock( (gate): Linear(in_features=4096, out_features=8, bias=False) (experts): ModuleList( (0-7): 8 x MixtralBLockSparseTop2MLP( (w1): Linear(in_features=4096, out_features=14336, bias=False) (w2): Linear(in_features=14336, out_features=4096, bias=False) (w3): Linear(in_features=4096, out_features=14336, bias=False) (act_fn): SiLU() ) ) ) (input_layernorm): MixtralRMSNorm() (post_attention_layernorm): MixtralRMSNorm() ) ) (norm): MixtralRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` As you can see, the model seems to be correctly merged when I save it. At a second time, I load back the model with from_pretrained from the directory I previously used ``` model = AutoModelForCausalLM.from_pretrained( f"{output_dir}_merged", trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16, # use_auth_token=True, ) print('#################################### reloaded merged MODEL #######') print(model) ``` And when I print it, you can see the adapter was loaded back on! ``` #################################### reloaded merged MODEL #################################### MixtralForCausalLM( (model): MixtralModel( (embed_tokens): Embedding(32000, 4096) (layers): ModuleList( (0-31): 32 x MixtralDecoderLayer( (self_attn): MixtralAttention( (q_proj): lora.Linear( (base_layer): Linear(in_features=4096, out_features=4096, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=4096, out_features=16, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=16, out_features=4096, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (k_proj): lora.Linear( (base_layer): Linear(in_features=4096, out_features=1024, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=4096, out_features=16, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=16, out_features=1024, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (v_proj): lora.Linear( (base_layer): Linear(in_features=4096, out_features=1024, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=4096, out_features=16, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=16, out_features=1024, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (o_proj): lora.Linear( (base_layer): Linear(in_features=4096, out_features=4096, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=4096, out_features=16, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=16, out_features=4096, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (rotary_emb): MixtralRotaryEmbedding() ) (block_sparse_moe): MixtralSparseMoeBlock( (gate): lora.Linear( (base_layer): Linear(in_features=4096, out_features=8, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=4096, out_features=16, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=16, out_features=8, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (experts): ModuleList( (0-7): 8 x MixtralBLockSparseTop2MLP( (w1): lora.Linear( (base_layer): Linear(in_features=4096, out_features=14336, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=4096, out_features=16, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=16, out_features=14336, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (w2): lora.Linear( (base_layer): Linear(in_features=14336, out_features=4096, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=14336, out_features=16, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=16, out_features=4096, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (w3): lora.Linear( (base_layer): Linear(in_features=4096, out_features=14336, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=4096, out_features=16, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=16, out_features=14336, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() ) (act_fn): SiLU() ) ) ) (input_layernorm): MixtralRMSNorm() (post_attention_layernorm): MixtralRMSNorm() ) ) (norm): MixtralRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` ### Expected behavior I consider this behaviour as totally unexpected, I wanted to save and load a merged model! Could someone please help me out with this?
closed
2024-01-22T13:23:21Z
2025-03-19T09:06:53Z
https://github.com/huggingface/peft/issues/1381
[]
sd3ntato
6
clovaai/donut
computer-vision
113
Train donut on two different downstream tasks simultaneously
Is it possible to train donut on two downstream tasks simultaneously ? document parsing and classification for example. If yes, should the `{"class" : {class_name}}` inside `ground_truth_parse` when the `gt_parse` is as follows `{\"gt_parse\": {ground_truth_parse}}` ?
closed
2022-12-27T14:37:51Z
2023-02-05T09:39:23Z
https://github.com/clovaai/donut/issues/113
[]
Rabie-H
2
FactoryBoy/factory_boy
django
517
FactoryBoy recursive stubs (i.e. SubFactory stubbing)
#### The problem Factory boy is very useful for creating structures with lots of fake data. A design pattern I like to use is to create the stubs, and then use the stubs for checking the resulting model instance at the end of the test. This is really handy for checking integration (e.g. I can convert this data from the stubs, pass into, say, an XML parser, then check the generated instance at the end against the original stubs). The issue that I'm having is that the subfactories are not created as stubs, so I want to either recursively generate stubs, or exclude the subfactories entirely. #### Proposed solution Without knowing much about the factory boys internal, I don't know whether this would even be practical, let alone easy to implement. Even an option to just disable SubFactory and RelatedFactory would do the job as well. I might have a go at seeing if I can add a class override that will let me do this. It may not be too hard. Perhaps I could use the FACTORY_CLASS keyword argument to do some magic. #### Extra notes As stubbing is a strategy, this feature could perhaps deal with allowing recursive strategies in general.
closed
2018-09-13T09:34:45Z
2018-09-13T11:06:42Z
https://github.com/FactoryBoy/factory_boy/issues/517
[]
chriswyatt
1
apache/airflow
machine-learning
47,789
airflow_local_settings.py overriden as an empty string
### Official Helm Chart version 1.15.0 (latest released) ### Apache Airflow version v2.10.4 ### Kubernetes Version 1.32.1 ### Helm Chart configuration ```yaml spec: values: webserverSecretKeySecretName: webserver-secret-key ``` ### Docker Image customizations ```Dockerfile FROM apache/airflow:2.10.4-python3.12 COPY airflow_local_settings.py $AIRFLOW_USER_HOME/config/airflow_local_settings.py ``` ### What happened The `airflow_local_config.py` file is is empty and e.g. cluster policies are not applied (since the file is empty). ### What you think should happen instead Either, if the airflow_local_settings.py exists, it should not be overridden (by the empty configMap value) Or this behavior should be documented and chart users should be able to disable the configMap mounting e.g.: by setting: ```yaml spec: values: airflowLocalSettings: ~ ``` ### How to reproduce I think the reason for that is the templating in the chart values.yaml: ```yaml airflowLocalSettings: |- {{- if semverCompare ">=2.2.0 <3.0.0" .Values.airflowVersion }} {{- if not (or .Values.webserverSecretKey .Values.webserverSecretKeySecretName) }} from airflow.www.utils import UIAlert DASHBOARD_UIALERTS = [ UIAlert( 'Usage of a dynamic webserver secret key detected. We recommend a static webserver secret key instead.' ' See the <a href=' '"https://airflow.apache.org/docs/helm-chart/stable/production-guide.html#webserver-secret-key" ' 'target="_blank" rel="noopener noreferrer">' 'Helm Chart Production Guide</a> for more details.', category="warning", roles=["Admin"], html=True, ) ] {{- end }} {{- end }} ``` If `webserverSecretKey` or `webserverSecretKeySecretName` is defined, the local_airflow_settings.py will be overwritten by mounting an empty configMap. This might be on purpose - in that case, I would extend the documentation to point out this caveat. ### Anything else _No response_ ### Are you willing to submit PR? - [x] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
closed
2025-03-14T14:49:01Z
2025-03-19T14:55:33Z
https://github.com/apache/airflow/issues/47789
[ "kind:bug", "area:helm-chart", "needs-triage" ]
timonviola
2
2noise/ChatTTS
python
107
modelscope中缺少 spk_stat.pt
改成从 modelscope下载模型后,下载成功运行时提示`AssertionError: Missing spk_stat.pt: **/pzc163/chatTTS/asset/spk_stat.pt` 从 https://huggingface.co/2Noise/ChatTTS/blob/main/asset/spk_stat.pt 下载 spk_stat.pt 复制到 asset 目录后问题解决
closed
2024-05-30T15:30:25Z
2024-07-17T04:01:41Z
https://github.com/2noise/ChatTTS/issues/107
[ "stale" ]
jianchang512
6
kornia/kornia
computer-vision
2,534
Allow different filling formats
## 🚀 Feature Warp operators (https://kornia.readthedocs.io/en/latest/geometry.transform.html#warp-operators) should allow fill values for different sizes. For example `warp_perspective` and `warp_affine` should allow filling values for one channel images. ## Motivation Apply data augmentation in 1 channels images such as grayscale or IR. ## Pitch Filling value should match the size of the channels rather than asking always to have size 3
closed
2023-08-31T10:17:28Z
2023-09-25T12:40:16Z
https://github.com/kornia/kornia/issues/2534
[ "help wanted" ]
priba
2
pytorch/vision
computer-vision
8,122
Scheduled workflow failed
Oh no, something went wrong in the scheduled workflow tests/download. Please look into it: https://github.com/pytorch/vision/actions/runs/6919508562 Feel free to close this if this was just a one-off error. cc @pmeier
closed
2023-11-19T09:09:23Z
2023-11-20T16:03:24Z
https://github.com/pytorch/vision/issues/8122
[ "bug", "module: datasets" ]
github-actions[bot]
0
fastapi/sqlmodel
sqlalchemy
10
Unsure how to specify foreign keys when receiving AmbiguousForeignKeysError
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python from typing import Optional from uuid import uuid4 from sqlmodel import Field, Session, SQLModel, create_engine, Relationship class Account(SQLModel, table=True): id: Optional[str] = Field(default=uuid4, primary_key=True) institution_id: str institution_name: str class Transaction(SQLModel, table=True): id: Optional[str] = Field(default=uuid4, primary_key=True) from_account_id: Optional[str] = Field(default=None, foreign_key="account.id") from_account: Account = Relationship() to_account_id: Optional[str] = Field(default=None, foreign_key="account.id") to_account: Account = Relationship() amount: float sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) SQLModel.metadata.create_all(engine) account = Account(institution_id='1', institution_name='Account 1') with Session(engine) as s: s.add(account) ``` ### Description When creating a table with multiple relationships to another table I am receiving the AmbiguousForeignKeysError SQLAlchemy error. There doesn't appear to be a SQLModel argument for the foreign key on `Relationship`. I tried passing the following to SQLAlchemy using `Relationship(sa_relationship_kwargs={'foreign_keys':...})`, but neither are a SQLAlchemy `Column` * the SQLModel/pydantic field (a `FieldInfo` object) * that field's `field_name.sa_column` (a `PydanticUndefined` object at this point in initialization) Not sure how else to pass the right foreign key (possibly using SQLAlchemy's Query API?). Hoping there's a cleaner SQLModel/pydantic way to do this! ### Operating System macOS ### Operating System Details _No response_ ### SQLModel Version 0.0.3 ### Python Version 3.9.5 ### Additional Context Full stack trace: ``` 2021-08-24 22:28:57,351 INFO sqlalchemy.engine.Engine BEGIN (implicit) 2021-08-24 22:28:57,352 INFO sqlalchemy.engine.Engine PRAGMA main.table_info("account") 2021-08-24 22:28:57,352 INFO sqlalchemy.engine.Engine [raw sql] () 2021-08-24 22:28:57,352 INFO sqlalchemy.engine.Engine PRAGMA main.table_info("transaction") 2021-08-24 22:28:57,352 INFO sqlalchemy.engine.Engine [raw sql] () 2021-08-24 22:28:57,352 INFO sqlalchemy.engine.Engine COMMIT Traceback (most recent call last): File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/relationships.py", line 2744, in _determine_joins self.primaryjoin = join_condition( File "<string>", line 2, in join_condition File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/sql/selectable.py", line 1184, in _join_condition cls._joincond_trim_constraints( File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/sql/selectable.py", line 1305, in _joincond_trim_constraints raise exc.AmbiguousForeignKeysError( sqlalchemy.exc.AmbiguousForeignKeysError: Can't determine join between 'transaction' and 'account'; tables have more than one foreign key constraint relationship between them. Please specify the 'onclause' of this join explicitly. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/Users/trippwickersham/Projects/village/gh_issue.py", line 27, in <module> account = Account(institution_id='1', institution_name='Account 1') File "<string>", line 4, in __init__ File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/state.py", line 474, in _initialize_instance manager.dispatch.init(self, args, kwargs) File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/event/attr.py", line 343, in __call__ fn(*args, **kw) File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/mapper.py", line 3565, in _event_on_init instrumenting_mapper._check_configure() File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/mapper.py", line 1873, in _check_configure _configure_registries({self.registry}, cascade=True) File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/mapper.py", line 3380, in _configure_registries _do_configure_registries(registries, cascade) File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/mapper.py", line 3419, in _do_configure_registries mapper._post_configure_properties() File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/mapper.py", line 1890, in _post_configure_properties prop.init() File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/interfaces.py", line 222, in init self.do_init() File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/relationships.py", line 2142, in do_init self._setup_join_conditions() File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/relationships.py", line 2238, in _setup_join_conditions self._join_condition = jc = JoinCondition( File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/relationships.py", line 2633, in __init__ self._determine_joins() File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/orm/relationships.py", line 2796, in _determine_joins util.raise_( File "/Users/trippwickersham/opt/miniconda3/envs/village/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 207, in raise_ raise exception sqlalchemy.exc.AmbiguousForeignKeysError: Could not determine join condition between parent/child tables on relationship Transaction.from_account - there are multiple foreign key paths linking the tables. Specify the 'foreign_keys' argument, providing a list of those columns which should be counted as containing a foreign key reference to the parent table. ```
open
2021-08-25T05:48:09Z
2024-12-06T17:29:27Z
https://github.com/fastapi/sqlmodel/issues/10
[ "question" ]
trippersham
21
python-restx/flask-restx
flask
617
__init__() I'm encountering an error: "got multiple values for argument 'X'"
I'm having trouble transitioning from flask_restful to flask_restx while using the add_resource() method. In flask_restful, everything was working fine, but I'm encountering issues with flask_restx. A clear and concise question Here are the relevant links to the documentation I’m following: - [Flask-RESTx API Documentation](https://flask-restx.readthedocs.io/en/latest/quickstart.html?highlight=Namespace#order-preservation) - [Flask-RESTx Example](https://flask-restx.readthedocs.io/en/latest/example.html) I'm encountering an error: "got multiple values for argument 'rate_limiter'". I have tried removing rate_limiter from resource_class_kwargs, but the error persists. it will then ask "got multiple values for argument 'authentication'". Here’s the code snippet that is causing the issue: ``` from flask import Flask from flask_restx import Api, Resource, reqparse self.app = Flask(__name__) self.api = Api(self.app, version='1.0', title='todo', description='todo') self.products_namespace = self.api.namespace( 'api/products', description='products endpoint' ) self.products_namespace.add_resource(ProductManagement, '/products/management/<string:id>', resource_class_kwargs={ 'rate_limiter': self.rate_limiter, 'authentication': self.authentication, 'product_controller': self.product_controller }) class ProductManagement(Resource): def __init__(self, rate_limiter, authentication, product_controller): self.result = [] self.parser = reqparse.RequestParser() self.parser.add_argument('company_id', type=str) self.rate_limiter = rate_limiter self.authentication = authentication self.product_controller = product_controller self.api.add_namespace(self.products_namespace) ```
closed
2024-09-04T10:58:52Z
2024-09-04T11:31:26Z
https://github.com/python-restx/flask-restx/issues/617
[ "question" ]
KeithYatco
1
falconry/falcon
api
1,596
Improve docs re suffixed responders
- [x] Add an example to the `suffix` kwarg docstring for `add_route()` - [x] Add a section about suffixed responders to the [routing](https://falcon.readthedocs.io/en/stable/api/routing.html) page
closed
2019-10-29T05:48:49Z
2021-03-06T19:55:16Z
https://github.com/falconry/falcon/issues/1596
[ "documentation", "good first issue" ]
kgriffs
3
axnsan12/drf-yasg
django
33
OpenAPI 3 support
The latest version of the [OpenAPI specification](https://swagger.io/specification/) has some interesting new features and could be worth implementing. A great overview of new stuff can be found here: https://blog.readme.io/an-example-filled-guide-to-swagger-3-2/ It would enable support for some features we cannot currently represent: * `write_only` and `allow_null` serializer fields via new [Schema properties](https://swagger.io/specification/#schemaObject) * hostname versioning via [server variables](https://swagger.io/specification/#serverVariableObject) * support for file types via [Encoding objects](https://swagger.io/specification/#encodingObject) * support for more complex multipart/form parameters with the new [Parameter styles](https://swagger.io/specification/#parameterObject) and the new [RequestBody object](https://swagger.io/specification/#requestBodyObject) There are also improvements like support for `anyOf` and `oneOf`, more complete [security schemes](https://swagger.io/specification/#securitySchemeObject), operation [links](https://swagger.io/specification/#linkObject) and other goodies. On the other hand, there are some considerations: 1. it is significantly more complex than OpenAPI 2.0 1. it would require non-trivial changes to both public interfaces and internal code 1. supporting both 2.0 and 3.0 at the same time is a bit complicated, so 2.0 would probably have to be dropped 1. many tools do not yet support 3.0 - the spec itself was just released in September 2017 So, as of now, this is mostly a statement of intent and personal observations - I do not have any plans of starting work on this in the foreseeable future, and certainly not until the tooling situation improves.
open
2018-01-02T14:32:34Z
2025-03-09T10:41:50Z
https://github.com/axnsan12/drf-yasg/issues/33
[ "help wanted", "enhancement", "2.x.x" ]
axnsan12
24
chaoss/augur
data-visualization
2,648
Bus factor metric API
The canonical definition is here: https://chaoss.community/?p=3944
open
2023-11-30T18:07:30Z
2023-11-30T18:19:04Z
https://github.com/chaoss/augur/issues/2648
[ "API", "first-timers-only" ]
sgoggins
0
ckan/ckan
api
7,718
wrong counts in group_list with include_dataset_count=True
## CKAN version all ## Describe the bug Permission labels aren't checked for group or organization dataset counts leading to incorrect counts ### Steps to reproduce Use an IPermissionLabels plugin or package collaborators to give permission to a dataset to a user that wouldn't normally be able to view it. When that user views the group or organization page that dataset isn't included in the package counts shown. ### Expected behavior dataset counts in group_list (and by extension group and organization pages) should match the counts on the dataset search pages ### Additional details https://github.com/ckan/ckan/blob/9956f92925740957b119bd7c6719ee202eb51082/ckan/lib/dictization/model_dictize.py#L326-L333 is performing a solr query that mimics the one in `package_search` but is incomplete. We're better off moving this up to the logic layer and calling `package_search` so we're sure to get correct results.
open
2023-07-26T18:40:12Z
2023-09-21T15:05:44Z
https://github.com/ckan/ckan/issues/7718
[]
wardi
0
django-cms/django-cms
django
7,395
Freenode URLs still lingering in markdown files / IRC
It appears that there used to be an IRC channel on #django-cms on Freenode at some point, and some of the documentation files still seem to mention Freenode, but not visibly. (e.g. https://github.com/django-cms/django-cms/blame/6e4841e4cadc9820b296bbe1b093497bcaf32b99/docs/contributing/code.rst#L203 and https://github.com/django-cms/django-cms/blame/2a19342613ab2ea5147afa1ca29d3af79027de0c/docs/contributing/development-policies.rst#L235 ) Has the project considered moving to or having a channel on libera.chat, where most of Freenode has moved after the network changed hands?
closed
2022-09-16T18:47:29Z
2022-10-23T17:20:16Z
https://github.com/django-cms/django-cms/issues/7395
[ "component: documentation" ]
deliciouslytyped
2