repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
psf/requests
python
6,530
Automatically Close Requests Session After Specified Timeout, Even with Retries
**Desc** Currently, when using the requests library in Python to create a session with a timeout and there are retries implemented within the request, the session remains open even after the specified timeout has elapsed. This behavior can lead to resource leakage and unexpected behavior when managing sessions with timeouts. **Proposal:** Add functionality to automatically close a requests session after a specified timeout, even if there are retries in the request itself. This enhancement would improve the library's usability and ensure that sessions are properly managed, even in cases involving retries. **Use Case:** As a developer, I often need to make HTTP requests with retries in case of transient errors. However, I also need to ensure that the session is closed after a certain timeout to prevent resource leaks. This feature would enable me to have both retry functionality and automatic session closure without having to implement custom solutions. **Suggested Implementation:** One way to implement this feature is to introduce an optional session_timeout parameter when creating a session or making requests. This parameter would specify the maximum duration the session can remain open, and if the timeout is reached, the session would be closed automatically, regardless of ongoing retries.
closed
2023-09-14T10:34:35Z
2024-09-15T00:04:22Z
https://github.com/psf/requests/issues/6530
[]
shoval-c
1
raphaelvallat/pingouin
pandas
262
Support for Bayesian Credible Intervals
Hello, is there an implementation for Bayesian credible intervals as there is for frequentist confidence intervals? https://en.wikipedia.org/wiki/Credible_interval Helpful Literature: 1. https://jakevdp.github.io/blog/2014/06/12/frequentism-and-bayesianism-3-confidence-credibility/
closed
2022-04-15T10:22:07Z
2023-11-13T19:30:39Z
https://github.com/raphaelvallat/pingouin/issues/262
[ "feature request :construction:" ]
filipmarkoski
2
AutoViML/AutoViz
scikit-learn
61
No plot visible in local Jupiter
from autoviz.AutoViz_Class import AutoViz_Class %matplotlib AV = AutoViz_Class() df = AV.AutoViz(filename='',dfte=train,depVar='Species',verbose=1) Using matplotlib backend: Qt5Agg Shape of your Data Set loaded: (150, 5) ############## C L A S S I F Y I N G V A R I A B L E S #################### Classifying variables in data set... Number of Numeric Columns = 4 Number of Integer-Categorical Columns = 0 Number of String-Categorical Columns = 0 Number of Factor-Categorical Columns = 0 Number of String-Boolean Columns = 0 Number of Numeric-Boolean Columns = 0 Number of Discrete String Columns = 0 Number of NLP String Columns = 0 Number of Date Time Columns = 0 Number of ID Columns = 0 Number of Columns to Delete = 0 4 Predictors classified... No variables removed since no ID or low-information variables found in data set ################ Multi_Classification VISUALIZATION Started ##################### Data Set Shape: 150 rows, 5 cols Data Set columns info: * SepalLengthCm: 0 nulls, 35 unique vals, most common: {5.0: 10, 5.1: 9} * SepalWidthCm: 0 nulls, 23 unique vals, most common: {3.0: 26, 2.8: 14} * PetalLengthCm: 0 nulls, 43 unique vals, most common: {1.5: 14, 1.4: 12} * PetalWidthCm: 0 nulls, 22 unique vals, most common: {0.2: 28, 1.3: 13} * Species: 0 nulls, 3 unique vals, most common: {'Iris-setosa': 50, 'Iris-versicolor': 50} -------------------------------------------------------------------- Columns to delete: ' []' Boolean variables %s ' []' Categorical variables %s ' []' Continuous variables %s " ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']" Discrete string variables %s ' []' Date and time variables %s ' []' ID variables %s ' []' Target variable %s ' Species' Total Number of Scatter Plots = 10 No categorical or boolean vars in data set. Hence no pivot plots... No categorical or numeric vars in data set. Hence no bar charts. Time to run AutoViz = 2 seconds ###################### AUTO VISUALIZATION Completed ######################## but no plot. In kaggle it' was working fine https://www.kaggle.com/gauravduttakiit/multi-classification-problem-iris/notebook
closed
2022-02-03T15:42:44Z
2022-02-15T13:12:26Z
https://github.com/AutoViML/AutoViz/issues/61
[]
GDGauravDutta
2
modoboa/modoboa
django
2,510
Missing requirement: asgiref
See https://github.com/modoboa/modoboa/discussions/2509
closed
2022-05-09T13:17:40Z
2022-05-10T14:45:51Z
https://github.com/modoboa/modoboa/issues/2510
[ "bug" ]
tonioo
0
paulpierre/RasaGPT
fastapi
31
PDF integration
Thank you for the awesome repo. Is it also possible to add a pdf and use the chatbot to answer questions from that PDF?
open
2023-06-13T10:28:12Z
2023-06-13T10:28:12Z
https://github.com/paulpierre/RasaGPT/issues/31
[]
kargarisaac
0
Anjok07/ultimatevocalremovergui
pytorch
711
Eerror
Last Error Received: Process: Ensemble Mode If this error persists, please contact the developers with the error details. Raw Error Details: ZeroDivisionError: "float division by zero" Traceback Error: " File "UVR.py", line 4716, in process_start File "separate.py", line 672, in seperate File "separate.py", line 803, in inference_vr File "separate.py", line 767, in _execute " Error Time Stamp [2023-08-01 18:42:08] Full Application Settings: vr_model: Choose Model aggression_setting: 10 window_size: 512 batch_size: 4
open
2023-08-01T16:42:28Z
2023-08-01T16:42:28Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/711
[]
TheDencker
0
mlfoundations/open_clip
computer-vision
740
Fine tuning on a pretrained model can lead to poor performance
When I used the laion400M dataset on ViT-B-16_ Laion2b_ S34b_ b88k when fine-tuning it, I found that the zero-shot performance of Imagenet decreased by more than 20% with training. And the more you train, the more performance will decrease
closed
2023-11-15T13:58:55Z
2023-11-16T15:09:11Z
https://github.com/mlfoundations/open_clip/issues/740
[]
lyc200522
6
scikit-optimize/scikit-optimize
scikit-learn
716
Integrated acquistion function
In the following paper https://arxiv.org/pdf/1206.2944.pdf, the authors introduced the integrated acquisition function. Would people be interested in this new feature to scikit-opt?
open
2018-08-29T02:11:07Z
2020-03-06T12:41:29Z
https://github.com/scikit-optimize/scikit-optimize/issues/716
[ "Enhancement" ]
aritrasen
1
holoviz/panel
matplotlib
7,113
'katex' extension was not loaded
I was trying to improve the LaTeX reference guide using the Panel `main` branch. When serving the example below I see ```bash WARNING:param.main: pn.extension was initialized but 'katex' extension was not loaded. In order for the required resources to be initialized ensure the extension is loaded with the following argument(s): ``` This is confusing for users and should not be shown. ---- ```python import sympy as sp import panel as pn pn.extension("mathjax") # Define a symbol and a symbolic expression using SymPy x = sp.symbols('x') expression = sp.integrate(sp.sin(x)**2, x) # Create a LaTeX pane to display the expression latex_pane = pn.pane.LaTeX(expression, styles={'font-size': '20px'}) # Serve the panel pn.Column( "# A sympy expression rendered in Panel: ", latex_pane ).servable() ```
closed
2024-08-09T18:20:41Z
2024-08-27T09:05:43Z
https://github.com/holoviz/panel/issues/7113
[]
MarcSkovMadsen
0
2noise/ChatTTS
python
190
ๅฆ‚ไฝ•ไฝฟ็”จ่‡ชๅทฑ็š„ๅฃฐ้Ÿณๅ‘ข๏ผŸ
ๅฆ‚ไฝ•ไฝฟ็”จ่‡ชๅทฑ็š„้Ÿณ่‰ฒๆฅๅฎž็ŽฐTTSๅ‘ข๏ผŸ่ฟ™ไธชๅบ“ๆ˜ฏๅฆๆไพ›ๆ นๆฎๅฝ•้Ÿณ้‡‡ๆ ทๆฅๅš่ฎญ็ปƒ็š„ๅŠŸ่ƒฝ๏ผŸ ๅฆๅค–๏ผŒ้žๅธธๆ„Ÿ่ฐขไฝœ่€…
closed
2024-06-02T03:34:28Z
2024-07-20T08:34:05Z
https://github.com/2noise/ChatTTS/issues/190
[ "stale" ]
alamise
5
Anjok07/ultimatevocalremovergui
pytorch
1,093
[SOLVED] Error when using MDX23C-8KFFT-InstVoc_HQ model
UVR version: latest (for Mac Silicon) OS: Sonoma latest revision Input file: WAV stereo (about 25 minutes long) ``` Last Error Received: Process: MDX-Net If this error persists, please contact the developers with the error details. Raw Error Details: NotImplementedError: "convolution_overrideable not implemented. You are likely triggering this with tensor backend other than CPU/CUDA/MKLDNN, if this is intended, please use TORCH_LIBRARY_IMPL to override this function " Traceback Error: " File "UVR.py", line 6584, in process_start File "separate.py", line 623, in seperate File "separate.py", line 742, in demix File "torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "lib_v5/tfc_tdf_v3.py", line 232, in forward File "torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "lib_v5/tfc_tdf_v3.py", line 139, in forward File "torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/conv.py", line 460, in forward return self._conv_forward(input, self.weight, self.bias) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/conv.py", line 456, in _conv_forward return F.conv2d(input, weight, bias, self.stride, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ " Error Time Stamp [2024-01-09 11:58:52] Full Application Settings: vr_model: UVR-DeEcho-DeReverb aggression_setting: 5 window_size: 512 mdx_segment_size: 8192 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: 0.99 overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: MDX23C-InstVoc HQ chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: 32-bit Float cuda_set: Default help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: Vocals ```
open
2024-01-09T09:01:01Z
2024-01-10T08:33:16Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1093
[]
COOLak
1
plotly/dash-cytoscape
plotly
85
[Feature request]: Integration with maps
Hi Cytoscape team. First of all: Great work! It would also be great if there was an easy way to overlay cytoscape elements on a map, e.g. like the integration of Mapbox with Plotly Scatter plots. Or is there already a documented or undocumented way to do this?
open
2020-04-29T10:23:54Z
2021-05-19T10:38:45Z
https://github.com/plotly/dash-cytoscape/issues/85
[ "suggestion" ]
optimulate
3
jina-ai/serve
machine-learning
5,362
Batch indexing documents on a CPU within a docker container fails
**Describe the bug** The test case below where a flow is initiated and bulk documents 10000> are indexed spits out the error below after briefly running on CPU machines. **To reproduce** **Build image:** docker build -t jina-app . **Run image:** docker run -t -p 8080:8080 jina-app **Dockerfile:** ` FROM jinaai/jina:3.9-standard ADD . /app ENV JINA_LOG_LEVEL=DEBUG WORKDIR /app ENTRYPOINT ["python", "/app/server.py"] EXPOSE 8080 ` **server.py:** ```python from docarray import DocumentArray, Document from jina import Flow, Executor, requests import re f = ( Flow(port_expose=8080) .add( name="encoder", uses="jinahub://TransformerTorchEncoder", # replicas=8, uses_with={ "traversal_paths": "@r, c, cc, ccc", 'pretrained_model_name_or_path': 'sentence-transformers/all-MiniLM-L6-v2' }, install_requirements=True, ) ) da = [] for x in range(10000): da.append(Document(id=str(x + 1), text="Hello World i am a text", chunks=[Document(text="Hello World i am a large text. "*100) for i in range(10)])) with f: d = f.index(inputs=DocumentArray(da), show_progress=True, return_responses = True) ``` **ERROR LOG:** ``` DEBUG encoder/rep-0@33 start listening on 0.0.0.0:60841 DEBUG encoder/rep-0@ 1 ready and listening [11/07/22 19:28:28] โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ๏ฟฝ Flow is ready to serve! โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ๐Ÿ”— Endpoint โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ โ”‚ โ›“ Protocol GRPC โ”‚ โ”‚ ๐Ÿ  Local 0.0.0.0:8080 โ”‚ โ”‚ ๐Ÿ”’ Private x.x.x.x:8080 โ”‚ โ”‚ ๐ŸŒ Public x.x.x.x.:8080 โ”‚ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ DEBUG Flow@ 1 2 Deployments (i.e. 2 Pods) are running in this Flow [11/07/22 19:28:28] โ  Working... โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0:00:00 0% ETA: -:--:-- DEBUG encoder/rep-0@33 got an endpoint discovery request [11/07/22 19:28:29] DEBUG encoder/rep-0@33 recv DataRequest at /index with id: 20e78aa694094f58a3300ad3c935b798 โ ผ Working... โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0:01:43 0% ETA: -:--:-- DEBUG encoder/rep-0@33 recv DataRequest at /index with id: 42a6446d695d418d9f075815f51f394f [11/07/22 19:30:12] โ ด Working... โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0:01:50 0% ETA: -:--:-- INFO: 127.0.0.1:39024 - "POST /post HTTP/1.1" 200 OK โ ง Working... โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0:03:31 1% ETA: -:--:-- DEBUG encoder/rep-0@33 recv DataRequest at /index with id: 7aadb347dc2f4931b9b5bcea5c85fa90 [11/07/22 19:31:59] โ ‡ Working... โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0:03:39 1% ETA: -:--:-- INFO: 127.0.0.1:39026 - "POST /post HTTP/1.1" 200 OK โ  Working... โ•ธโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0:05:00 2% ETA: -:--:-- DEBUG gateway/rep-0@ 1 waiting for ready or shutdown signal from runtime [11/07/22 19:33:29] DEBUG gateway/rep-0@ 1 terminate DEBUG gateway/rep-0@ 1 terminating the runtime process DEBUG gateway/rep-0@ 1 runtime process properly terminated INFO: Shutting down INFO: 127.0.0.1:39182 - "POST /post HTTP/1.1" 500 Internal Server Error ERROR: Exception in ASGI application Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/uvicorn/protocols/http/httptools_impl.py", line 405, in run_asgi self.scope, self.receive, self.send File "/usr/local/lib/python3.7/site-packages/uvicorn/middleware/proxy_headers.py", line 78, in __call__ return await self.app(scope, receive, send) File "/usr/local/lib/python3.7/site-packages/fastapi/applications.py", line 270, in __call__ await super().__call__(scope, receive, send) File "/usr/local/lib/python3.7/site-packages/starlette/applications.py", line 124, in __call__ await self.middleware_stack(scope, receive, send) File "/usr/local/lib/python3.7/site-packages/starlette/middleware/errors.py", line 184, in __call__ raise exc File "/usr/local/lib/python3.7/site-packages/starlette/middleware/errors.py", line 162, in __call__ await self.app(scope, receive, _send) File "/usr/local/lib/python3.7/site-packages/starlette/middleware/exceptions.py", line 75, in __call__ raise exc File "/usr/local/lib/python3.7/site-packages/starlette/middleware/exceptions.py", line 64, in __call__ await self.app(scope, receive, sender) File "/usr/local/lib/python3.7/site-packages/fastapi/middleware/asyncexitstack.py", line 21, in __call__ raise e File "/usr/local/lib/python3.7/site-packages/fastapi/middleware/asyncexitstack.py", line 18, in __call__ await self.app(scope, receive, send) File "/usr/local/lib/python3.7/site-packages/starlette/routing.py", line 680, in __call__ await route.handle(scope, receive, send) File "/usr/local/lib/python3.7/site-packages/starlette/routing.py", line 275, in handle await self.app(scope, receive, send) File "/usr/local/lib/python3.7/site-packages/starlette/routing.py", line 65, in app response = await func(request) File "/usr/local/lib/python3.7/site-packages/fastapi/routing.py", line 232, in app dependant=dependant, values=values, is_coroutine=is_coroutine File "/usr/local/lib/python3.7/site-packages/fastapi/routing.py", line 160, in run_endpoint_function return await dependant.call(**values) File "/usr/local/lib/python3.7/site-packages/jina/serve/runtimes/gateway/http/app.py", line 199, in post request_generator(**req_generator_input) File "/usr/local/lib/python3.7/site-packages/jina/serve/runtimes/gateway/http/app.py", line 380, in _get_singleton_result async for k in streamer.stream(request_iterator=request_iterator): File "/usr/local/lib/python3.7/site-packages/jina/serve/stream/__init__.py", line 73, in stream async for response in async_iter: File "/usr/local/lib/python3.7/site-packages/jina/serve/stream/__init__.py", line 202, in _stream_requests response = self._result_handler(future.result()) concurrent.futures._base.CancelledError INFO: 127.0.0.1:39180 - "POST /post HTTP/1.1" 500 Internal Server Error ERROR: Exception in ASGI application ``` --- **Docker images used:** jinaai/jina:3.9-standard jinaai/jina:3.10.1-py39-standard
closed
2022-11-07T16:36:45Z
2022-11-09T00:37:30Z
https://github.com/jina-ai/serve/issues/5362
[]
dpanpat
11
gradio-app/gradio
deep-learning
10,742
[BUG] when uploading image for inpainting
### Describe the bug When i click on run, getting error: the size of file is less then 1 kb ### Have you searched existing issues? ๐Ÿ”Ž - [x] I have searched and found no existing issues ### Reproduction clone repo: ``` https://huggingface.co/spaces/Himanshu806/fluxInpaint-testing ``` and setup .env then run app.py file It is working in docker image. but when i run it using python venv, getting error ### Screenshot <img width="1680" alt="Image" src="https://github.com/user-attachments/assets/fcda4724-c290-4fa7-aed0-88e22a27e80d" /> ### Logs ```shell logging set to debug: * Running on public URL: https://a5814071f4d9704665.gradio.live This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces) 2025-03-06 11:13:40 - DEBUG - Starting new HTTPS connection (1): huggingface.co:443 2025-03-06 11:13:40 - DEBUG - https://huggingface.co:443 "HEAD /api/telemetry/gradio/launched HTTP/1.1" 200 0 2025-03-06 11:14:01 - DEBUG - Calling on_part_begin with no data 2025-03-06 11:14:01 - DEBUG - Calling on_header_field with data[42:61] 2025-03-06 11:14:01 - DEBUG - Calling on_header_value with data[63:89] 2025-03-06 11:14:01 - DEBUG - Calling on_header_end with no data 2025-03-06 11:14:01 - DEBUG - Calling on_headers_finished with no data 2025-03-06 11:14:01 - DEBUG - Calling on_part_data with data[93:94] 2025-03-06 11:14:01 - DEBUG - Calling on_part_end with no data 2025-03-06 11:14:01 - DEBUG - Calling on_part_begin with no data 2025-03-06 11:14:01 - DEBUG - Calling on_header_field with data[138:157] 2025-03-06 11:14:01 - DEBUG - Calling on_header_value with data[159:185] 2025-03-06 11:14:01 - DEBUG - Calling on_header_end with no data 2025-03-06 11:14:01 - DEBUG - Calling on_headers_finished with no data 2025-03-06 11:14:01 - DEBUG - Calling on_part_data with data[189:190] 2025-03-06 11:14:01 - DEBUG - Calling on_part_end with no data 2025-03-06 11:14:01 - DEBUG - Calling on_end with no data 2025-03-06 11:14:33 - DEBUG - Calling on_part_begin with no data 2025-03-06 11:14:33 - DEBUG - Calling on_header_field with data[42:61] 2025-03-06 11:14:33 - DEBUG - Calling on_header_value with data[63:110] 2025-03-06 11:14:33 - DEBUG - Calling on_header_end with no data 2025-03-06 11:14:33 - DEBUG - Calling on_header_field with data[112:124] 2025-03-06 11:14:33 - DEBUG - Calling on_header_value with data[126:150] 2025-03-06 11:14:33 - DEBUG - Calling on_header_end with no data 2025-03-06 11:14:33 - DEBUG - Calling on_headers_finished with no data 2025-03-06 11:14:33 - DEBUG - Calling on_part_data with data[154:44530] 2025-03-06 11:14:33 - DEBUG - Calling on_part_end with no data 2025-03-06 11:14:33 - DEBUG - Calling on_end with no data versions: (venv) ubuntu@ip-172-31-24-219:~/fluxinpaint$ pip3 show gradio Name: gradio Version: 5.14.0 Summary: Python library for easily interacting with trained machine learning models Home-page: https://github.com/gradio-app/gradio Author: Author-email: Abubakar Abid <gradio-team@huggingface.co>, Ali Abid <gradio-team@huggingface.co>, Ali Abdalla <gradio-team@huggingface.co>, Dawood Khan <gradio-team@huggingface.co>, Ahsen Khaliq <gradio-team@huggingface.co>, Pete Allen <gradio-team@huggingface.co>, ร–mer Faruk ร–zdemir <gradio-team@huggingface.co>, Freddy A Boulton <gradio-team@huggingface.co>, Hannah Blair <gradio-team@huggingface.co> License: Location: /home/ubuntu/fluxinpaint/venv/lib/python3.12/site-packages Requires: aiofiles, anyio, fastapi, ffmpy, gradio-client, httpx, huggingface-hub, jinja2, markupsafe, numpy, orjson, packaging, pandas, pillow, pydantic, pydub, python-multipart, pyyaml, ruff, safehttpx, semantic-version, starlette, tomlkit, typer, typing-extensions, uvicorn Required-by: (venv) ubuntu@ip-172-31-24-219:~/fluxinpaint$ python3 --version Python 3.12.6 (venv) ubuntu@ip-172-31-24-219:~/fluxinpaint$ ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.14.0 gradio_client version: 1.7.0 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.8.0 audioop-lts is not installed. fastapi: 0.115.11 ffmpy: 0.5.0 gradio-client==1.7.0 is not installed. httpx: 0.28.1 huggingface-hub: 0.29.2 jinja2: 3.1.6 markupsafe: 2.1.5 numpy: 2.2.3 orjson: 3.10.15 packaging: 24.2 pandas: 2.2.3 pillow: 11.1.0 pydantic: 2.10.6 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.2 ruff: 0.9.9 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.46.0 tomlkit: 0.13.2 typer: 0.15.2 typing-extensions: 4.12.2 urllib3: 2.3.0 uvicorn: 0.34.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2025.2.0 httpx: 0.28.1 huggingface-hub: 0.29.2 packaging: 24.2 typing-extensions: 4.12.2 websockets: 14.2 ``` ### Severity Blocking usage of gradio
closed
2025-03-06T11:16:49Z
2025-03-07T14:12:39Z
https://github.com/gradio-app/gradio/issues/10742
[ "bug", "needs repro" ]
Himasnhu-AT
2
alirezamika/autoscraper
automation
41
Won't find special characters
When trying to find anything that contains a `.` in it I get no results. ``` url = 'https://pastebin.com/APSMFRLL' # We can add one or multiple candidates here. # You can also put urls here to retrieve urls. wanted_list = ["."] scraper = AutoScraper() result = scraper.build(url, wanted_list) print(result) ``` I would've expected to get: ``` one.two three.four five.six seven.eight ``` Maybe I'm not doing something correctly perhaps.
closed
2020-11-26T04:43:00Z
2020-12-06T09:28:05Z
https://github.com/alirezamika/autoscraper/issues/41
[]
BeenHijacked
1
NullArray/AutoSploit
automation
1,278
Unhandled Exception (7db0a1a1d)
Autosploit version: `2.2.3` OS information: `Linux-4.14.94+-armv8l-with-libc` Running context: `/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/autosploit.py` Error meesage: `[Errno 17] File exists: '/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/autosploit_out/2020-07-02_11h55m44s/'` Error traceback: ``` Traceback (most recent call): File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/autosploit/main.py", line 123, in main terminal.terminal_main_display(loaded_exploits) File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/lib/term/terminal.py", line 331, in terminal_main_display self.custom_host_list(loaded_mods) File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/lib/term/terminal.py", line 277, in custom_host_list self.exploit_gathered_hosts(mods, hosts=provided_host_file) File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/lib/term/terminal.py", line 266, in exploit_gathered_hosts exploiter.start_exploit() File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/lib/exploitation/exploiter.py", line 102, in start_exploit makedirs(current_host_path) File "/data/data/com.thecrackertechnology.andrax/ANDRAX/python2/lib/python2.7/os.py", line 157, in makedirs mkdir(name, mode) OSError: [Errno 17] File exists: '/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/autosploit_out/2020-07-02_11h55m44s/' ``` Metasploit launched: `True`
open
2020-07-02T08:56:35Z
2020-07-02T08:56:35Z
https://github.com/NullArray/AutoSploit/issues/1278
[]
AutosploitReporter
0
reloadware/reloadium
django
17
No files are watched.
**Describe the bug** When I try to debug the python file, I get an error and can not hot reload the file. It tells me that I do not watch this file. The details could be found in the picture. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** ![image](https://user-images.githubusercontent.com/44992796/170597461-8b6c2d5c-f3ab-4686-bd2e-7d786dceb34d.png) **Desktop (please complete the following information):** - OS: [Windows] - OS version: [22] - Reloadium package version: [0.8.8] - PyCharm plugin version: [ 0.8.2 ] - Editor: [PyCharm] - Run mode: [Debug] **Additional context** Add any other context about the problem here.
closed
2022-05-26T23:41:03Z
2022-06-16T10:20:49Z
https://github.com/reloadware/reloadium/issues/17
[]
Easilifer
4
taverntesting/tavern
pytest
44
No handlers could be found for logger "tavern.core"
When excecuting `(env) @math:tavern $ tavern-ci minimal_test.tavern.yaml` an error is printed on console and the test doesn't run. Contents from `minimal_test.tavern.yaml` is the 'Simple test' from: https://taverntesting.github.io/examples ![tavern](https://user-images.githubusercontent.com/689275/36900161-eb6ffd94-1e00-11e8-9db9-59c61d910ac7.png) I instaled tavern with: `pip install tavern` Error doesnt happen when using python3.6.
closed
2018-03-02T13:03:41Z
2018-03-05T11:21:08Z
https://github.com/taverntesting/tavern/issues/44
[]
edvm
1
JaidedAI/EasyOCR
deep-learning
697
Integrate TorchMetrics for faster computation
I noticed `edit_distance` is being used from NLTK package for model evaluation which can be migrated to use `TorchMetrics` for faster computation. With using [TM metrics](https://torchmetrics.readthedocs.io/en/stable/) you may rely on the widely tested correctness (testing against good standard scikit-learn in multiple OS environments and all PyTorch versions above v1.4) and later you can use nn.Module to leverage update and compute. Feel free to get in touch and let us know what you think about this, and if you need any help with the PR. Thanks! ๐Ÿ˜„
open
2022-04-01T09:35:59Z
2022-04-01T09:35:59Z
https://github.com/JaidedAI/EasyOCR/issues/697
[]
aniketmaurya
0
nolar/kopf
asyncio
1,087
Handle large resource spec being annotated to `last-handled-configuration`
### Keywords annotation, spec, last-handled-configuration, finalizers ### Problem When dealing with a resource that has a large `spec`, the operator is throwing an error ``` APIClientError('Pod \"<REDACTED>\" is invalid: metadata.annotations: Too long: must have at most 262144 bytes' ``` This is due to the fact that it is trying to store the spec in the `last-handled-configuration` annotation. It is especially problematic during deletion as it blocks the deletion using the finalizer, which never gets removed. So, how does one go about configuring the operator to handle such a scenario? Note: As per the doc [Troubleshooting](https://kopf.readthedocs.io/en/stable/troubleshooting/) Restarting the operator doesn't solve the problem. Only running this command unblocks it. ```bash kubectl patch kopfexample kopf-example-1 -p '{"metadata": {"finalizers": []}}' --type merge ```
open
2024-01-09T20:44:13Z
2024-06-24T09:49:47Z
https://github.com/nolar/kopf/issues/1087
[ "question" ]
Bharat23
3
Kinto/kinto
api
2,866
Kinto does not start when auth policy is not available
I create a docker-compose file with Keycloak as the Identity Provider and Keycloak. As Keycloak takes some time to start, Kinto does not start and exists with this message: <class 'json.decoder.JSONDecodeError'>: Expecting value: line 1 column 1 (char 0) Im pretty sure this is as the issuer does not provide a valid json file. In Previous versions of docker-compose it was possible to make the kinto container depended. But this is no longer recommended. "There's been a move away from specifying container dependencies in compose. They're only valid at startup time and don't work when dependent containers are restarted at run time. Instead, each container should include mechanism to retry to reconnect to dependent services when the connection is dropped. Many libraries to connect to databases or REST API services have configurable built-in retries. I'd look into that. It is needed for production code anyway." What is the best way to handle this ?
open
2021-09-21T08:38:27Z
2024-07-23T20:04:48Z
https://github.com/Kinto/kinto/issues/2866
[ "bug", "stale" ]
SimonKlausLudwig
3
flairNLP/flair
nlp
3,000
Training
Hi, I want to use tag_format = 'B' in the flair sequence tagger instead of using "BIOES". How can I do this?
closed
2022-11-26T10:38:32Z
2023-05-21T15:37:15Z
https://github.com/flairNLP/flair/issues/3000
[ "question", "wontfix" ]
shrimonmuke0202
2
huggingface/datasets
computer-vision
6,829
Load and save from/to disk no longer accept pathlib.Path
Reported by @vttrifonov at https://github.com/huggingface/datasets/pull/6704#issuecomment-2071168296: > This change is breaking in > https://github.com/huggingface/datasets/blob/f96e74d5c633cd5435dd526adb4a74631eb05c43/src/datasets/arrow_dataset.py#L1515 > when the input is `pathlib.Path`. The issue is that `url_to_fs` expects a `str` and cannot deal with `Path`. `get_fs_token_paths` converts to `str` so it is not a problem This change was introduced in: - #6704
open
2024-04-23T09:44:45Z
2024-04-23T09:44:46Z
https://github.com/huggingface/datasets/issues/6829
[ "bug" ]
albertvillanova
0
psf/requests
python
6,915
HTTPDigestAuth add optional Realm parameter to the authentication
I noticed that urllib allows to specify the realm of a HTTPDigestAuth but the requests library doesn't allow it. Is it possible to add it on the standard requests library? There are many devices that specify the realm where it is not the url domain name. It is possible to do it with the urllib library that requests uses underneath. Example (A Hickvision network camera): ========================== #0000: GET /ISAPI/notification/alertStream HTTP/1.1 #002e: Host: 192.168.10.64 #0043: Authorization: Digest username="admin",realm="iDS-TCM403-BI",non #0083: ce="4e45497a4d4459774e45553659544d334d6d55344d7a6b3d",uri="/ISAP #00c3: I/notification/alertStream",cnonce="c9bc93c864ef47d8e6879678ad85 #0103: 511c",nc=00000001,algorithm=MD5,response="ffeaecca50dc4b23a7bc68 #0143: 6c0200c339",qop="auth" #015b: User-Agent: curl/8.10.1 #0174: Accept: */* #0181: Connection: keep-alive Where it would be a good idea to implement it: ==================================== from requests.auth import HTTPDigestAuth At the auth.py file It now only accepts two parameters: https://requests.readthedocs.io/en/latest/user/authentication/ Use example with urllib without the requests library: ======================================= import urllib import urllib.request # Examples: Username="oneusername" Password="onepassword" Realm ="iDS-TCM403-BI" password_mgr = urllib.request.HTTPPasswordMgrWithDefaultRealm() password_mgr.add_password(Realm, "http://192.168.10.64/", Username, Password) handler = urllib.request.HTTPDigestAuthHandler(password_mgr) opener = urllib.request.build_opener(handler) urllib.request.install_opener(opener) response = urllib.request.urlopen(URL) =========================================
closed
2025-03-18T15:04:14Z
2025-03-18T15:04:27Z
https://github.com/psf/requests/issues/6915
[ "Feature Request", "actions/autoclose-feat" ]
ideechaniz
1
deepfakes/faceswap
machine-learning
1,059
crash when launching faceswap gui on windows
**Describe the bug** When launching gui using command "python faceswap.py gui", the gui pops up and then goes away by itself almost immediately. **To Reproduce** run python faceswap.py gui command **Expected behavior** GUI shows up normally. **Desktop (please complete the following information):** - OS: [e.g. iOS] Windows 10 - Python Version [e.g. 3.5, 3.6] 3.8 - Conda Version [e.g. 4.5.12] 4.8.4 - Commit ID [e.g. e83819f] e6d62b8 - **Additional context** Add any other context about the problem here. **Crash Report** 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: extract) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'options_panel_width') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 30) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'console_panel_height') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 20) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'icon_size') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 14) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'font') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: default) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'font_size') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 9) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'autosave_last_session') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: prompt) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'timeout') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 120) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'auto_load_model_stats') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'bool'>, value: True) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'fullscreen') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'bool'>, value: False) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'tab') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: extract) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'options_panel_width') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 30) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'console_panel_height') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 20) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'icon_size') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 14) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'font') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: default) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'font_size') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 9) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'autosave_last_session') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: prompt) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'timeout') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 120) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'auto_load_model_stats') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'bool'>, value: True) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'fullscreen') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'bool'>, value: False) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'tab') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: extract) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'options_panel_width') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 30) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'console_panel_height') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 20) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'icon_size') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 14) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'font') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: default) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'font_size') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 9) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'autosave_last_session') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: prompt) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'timeout') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 120) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'auto_load_model_stats') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'bool'>, value: True) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'fullscreen') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'bool'>, value: False) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'tab') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: extract) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'options_panel_width') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 30) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'console_panel_height') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 20) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'icon_size') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 14) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'font') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: default) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'font_size') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 9) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'autosave_last_session') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'str'>, value: prompt) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'timeout') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'int'>, value: 120) 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Getting config item: (section: 'global', option: 'auto_load_model_stats') 09/04/2020 11:35:18 MainProcess MainThread config get DEBUG Returning item: (type: <class 'bool'>, value: True) 09/04/2020 11:35:18 MainProcess MainThread utils set_geometry DEBUG Geometry: 1602x854 09/04/2020 11:35:18 MainProcess MainThread wrapper __init__ DEBUG Initializing ProcessWrapper 09/04/2020 11:35:18 MainProcess MainThread wrapper set_callbacks DEBUG Setting tk variable traces 09/04/2020 11:35:18 MainProcess MainThread wrapper __init__ DEBUG Initializing FaceswapControl 09/04/2020 11:35:18 MainProcess MainThread wrapper __init__ DEBUG Initialized FaceswapControl 09/04/2020 11:35:18 MainProcess MainThread wrapper __init__ DEBUG Initialized ProcessWrapper 09/04/2020 11:35:18 MainProcess MainThread utils delete_preview DEBUG Deleting previews 09/04/2020 11:35:18 MainProcess MainThread utils _clear_image_cache DEBUG Clearing image cache 09/04/2020 11:35:18 MainProcess MainThread utils __init__ DEBUG Initializing: PreviewTrigger 09/04/2020 11:35:18 MainProcess MainThread utils __init__ DEBUG Initialized: PreviewTrigger (trigger_file: E:\Code\python\deepfakes_new\lib\gui\.cache\.preview_trigger) 09/04/2020 11:35:18 MainProcess MainThread gui build_gui DEBUG Building GUI 09/04/2020 11:35:18 MainProcess MainThread menu __init__ DEBUG Initializing MainMenuBar 09/04/2020 11:35:18 MainProcess MainThread menu __init__ DEBUG Initializing FileMenu 09/04/2020 11:35:18 MainProcess MainThread menu build DEBUG Building File menu 09/04/2020 11:35:18 MainProcess MainThread menu build DEBUG Built File menu 09/04/2020 11:35:18 MainProcess MainThread menu __init__ DEBUG Initialized FileMenu 09/04/2020 11:35:18 MainProcess MainThread menu __init__ DEBUG Initializing SettingsMenu 09/04/2020 11:35:18 MainProcess MainThread menu scan_for_plugin_configs DEBUG Scanning path: 'e:\Code\python\deepfakes_new\plugins' 09/04/2020 11:35:18 MainProcess MainThread config __init__ DEBUG Initializing: Config 09/04/2020 11:35:18 MainProcess MainThread config get_config_file DEBUG Config File location: 'e:\Code\python\deepfakes_new\config\convert.ini' 09/04/2020 11:35:18 MainProcess MainThread _config set_defaults DEBUG Setting defaults 09/04/2020 11:35:18 MainProcess MainThread _config load_module DEBUG Adding defaults: (filename: color_transfer_defaults.py, module_path: Code.python.deepfakes_new.plugins.convert.color, plugin_type: color 09/04/2020 11:35:18 MainProcess MainThread _config load_module DEBUG Importing defaults module: Code.python.deepfakes_new.plugins.convert.color.color_transfer_defaults Traceback (most recent call last): File "e:\Code\python\deepfakes_new\lib\cli\launcher.py", line 155, in execute_script process = script(arguments) File "e:\Code\python\deepfakes_new\scripts\gui.py", line 193, in __init__ self.root = FaceswapGui(arguments.debug) File "e:\Code\python\deepfakes_new\scripts\gui.py", line 35, in __init__ self.build_gui() File "e:\Code\python\deepfakes_new\scripts\gui.py", line 66, in build_gui self.configure(menu=MainMenuBar(self)) File "e:\Code\python\deepfakes_new\lib\gui\menu.py", line 44, in __init__ self.settings_menu = SettingsMenu(self) File "e:\Code\python\deepfakes_new\lib\gui\menu.py", line 59, in __init__ self.configs = self.scan_for_plugin_configs() File "e:\Code\python\deepfakes_new\lib\gui\menu.py", line 73, in scan_for_plugin_configs config = self.load_config(plugin_type) File "e:\Code\python\deepfakes_new\lib\gui\menu.py", line 90, in load_config config = module.Config(None) File "e:\Code\python\deepfakes_new\lib\config.py", line 27, in __init__ self.set_defaults() File "e:\Code\python\deepfakes_new\plugins\convert\_config.py", line 31, in set_defaults self.load_module(filename, import_path, plugin_type) File "e:\Code\python\deepfakes_new\plugins\convert\_config.py", line 40, in load_module mod = import_module("{}.{}".format(module_path, module)) File "C:\Users\abcdef\Anaconda3\envs\deepfakes\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1014, in _gcd_import File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 961, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1014, in _gcd_import File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 961, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1014, in _gcd_import File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 961, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1014, in _gcd_import File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 961, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1014, in _gcd_import File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 961, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1014, in _gcd_import File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 961, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "<frozen importlib._bootstrap>", line 1014, in _gcd_import File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 973, in _find_and_load_unlocked ModuleNotFoundError: No module named 'Code' ============ System Information ============ encoding: cp1252 git_branch: master git_commits: e6d62b8 Bugfixes: - dfl_h128 Legacy Weights update - lib.faces_detect - Logging fix. 35b6cd1 Merge branch 'staging'. 074f305 Update losses unit tests. 1e86299 Update INSTALL.md. 24c45f9 Update INSTALL.md gpu_cuda: 10.1 gpu_cudnn: No global version found. Check Conda packages for Conda cuDNN gpu_devices: GPU_0: GeForce RTX 2070 gpu_devices_active: GPU_0 gpu_driver: 452.06 gpu_vram: GPU_0: 8192MB os_machine: AMD64 os_platform: Windows-10-10.0.19041-SP0 os_release: 10 py_command: faceswap.py gui py_conda_version: conda 4.8.4 py_implementation: CPython py_version: 3.8.5 py_virtual_env: True sys_cores: 12 sys_processor: Intel64 Family 6 Model 158 Stepping 10, GenuineIntel sys_ram: Total: 65379MB, Available: 58612MB, Used: 6766MB, Free: 58612MB =============== Pip Packages =============== absl-py==0.10.0 astunparse==1.6.3 cachetools==4.1.1 certifi==2020.6.20 chardet==3.0.4 cycler==0.10.0 fastcluster==1.1.26 ffmpy==0.2.3 gast==0.3.3 google-auth==1.21.1 google-auth-oauthlib==0.4.1 google-pasta==0.2.0 grpcio==1.31.0 h5py==2.10.0 idna==2.10 imageio @ file:///tmp/build/80754af9/imageio_1594161405741/work imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1589202782679/work joblib @ file:///tmp/build/80754af9/joblib_1594236160679/work Keras-Preprocessing==1.1.2 kiwisolver==1.2.0 Markdown==3.2.2 matplotlib @ file:///C:/ci/matplotlib-base_1592837548929/work mkl-fft==1.1.0 mkl-random==1.1.1 mkl-service==2.3.0 numpy @ file:///C:/ci/numpy_and_numpy_base_1596215850360/work nvidia-ml-py3 @ git+https://github.com/deepfakes/nvidia-ml-py3.git@6fc29ac84b32bad877f078cb4a777c1548a00bf6 oauthlib==3.1.0 olefile==0.46 opencv-python==4.4.0.42 opt-einsum==3.3.0 pathlib==1.0.1 Pillow @ file:///C:/ci/pillow_1594298230227/work protobuf==3.13.0 psutil @ file:///C:/ci/psutil_1598370330503/work pyasn1==0.4.8 pyasn1-modules==0.2.8 pyparsing==2.4.7 python-dateutil==2.8.1 pywin32==227 requests==2.24.0 requests-oauthlib==1.3.0 rsa==4.6 scikit-learn @ file:///C:/ci/scikit-learn_1598377018496/work scipy==1.4.1 sip==4.19.13 six==1.15.0 tensorboard==2.2.2 tensorboard-plugin-wit==1.7.0 tensorflow-gpu==2.2.0 tensorflow-gpu-estimator==2.2.0 termcolor==1.1.0 threadpoolctl @ file:///tmp/tmp9twdgx9k/threadpoolctl-2.1.0-py3-none-any.whl tornado==6.0.4 tqdm @ file:///tmp/build/80754af9/tqdm_1596810128862/work urllib3==1.25.10 Werkzeug==1.0.1 wincertstore==0.2 wrapt==1.12.1 ============== Conda Packages ============== # packages in environment at C:\Users\abcdef\Anaconda3\envs\deepfakes: # # Name Version Build Channel absl-py 0.10.0 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi blas 1.0 mkl ca-certificates 2020.7.22 0 cachetools 4.1.1 pypi_0 pypi certifi 2020.6.20 py38_0 chardet 3.0.4 pypi_0 pypi cudatoolkit 10.1.243 h74a9793_0 cudnn 7.6.5 cuda10.1_0 cycler 0.10.0 py38_0 fastcluster 1.1.26 py38hbe40bda_1 conda-forge ffmpeg 4.3.1 ha925a31_0 conda-forge ffmpy 0.2.3 pypi_0 pypi freetype 2.10.2 hd328e21_0 gast 0.3.3 pypi_0 pypi google-auth 1.21.1 pypi_0 pypi google-auth-oauthlib 0.4.1 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi grpcio 1.31.0 pypi_0 pypi h5py 2.10.0 pypi_0 pypi icc_rt 2019.0.0 h0cc432a_1 icu 58.2 ha925a31_3 idna 2.10 pypi_0 pypi imageio 2.9.0 py_0 imageio-ffmpeg 0.4.2 py_0 conda-forge intel-openmp 2020.2 254 joblib 0.16.0 py_0 jpeg 9b hb83a4c4_2 keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.2.0 py38h74a9793_0 libpng 1.6.37 h2a8f88b_0 libtiff 4.1.0 h56a325e_1 lz4-c 1.9.2 h62dcd97_1 markdown 3.2.2 pypi_0 pypi matplotlib 3.2.2 0 matplotlib-base 3.2.2 py38h64f37c6_0 mkl 2020.2 256 mkl-service 2.3.0 py38hb782905_0 mkl_fft 1.1.0 py38h45dec08_0 mkl_random 1.1.1 py38h47e9c7a_0 numpy 1.19.1 py38h5510c5b_0 numpy-base 1.19.1 py38ha3acd2a_0 nvidia-ml-py3 7.352.1 pypi_0 pypi oauthlib 3.1.0 pypi_0 pypi olefile 0.46 py_0 opencv-python 4.4.0.42 pypi_0 pypi openssl 1.1.1g he774522_1 opt-einsum 3.3.0 pypi_0 pypi pathlib 1.0.1 py_1 pillow 7.2.0 py38hcc1f983_0 pip 20.2.2 py38_0 anaconda protobuf 3.13.0 pypi_0 pypi psutil 5.7.2 py38he774522_0 pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pyparsing 2.4.7 py_0 pyqt 5.9.2 py38ha925a31_4 python 3.8.5 he1778fa_0 anaconda python-dateutil 2.8.1 py_0 python_abi 3.8 1_cp38 conda-forge pywin32 227 py38he774522_1 qt 5.9.7 vc14h73c81de_0 requests 2.24.0 pypi_0 pypi requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.6 pypi_0 pypi scikit-learn 0.23.2 py38h47e9c7a_0 scipy 1.4.1 pypi_0 pypi setuptools 49.6.0 py38_0 anaconda sip 4.19.13 py38ha925a31_0 six 1.15.0 py_0 sqlite 3.33.0 h2a8f88b_0 anaconda tensorboard 2.2.2 pypi_0 pypi tensorboard-plugin-wit 1.7.0 pypi_0 pypi tensorflow-gpu 2.2.0 pypi_0 pypi tensorflow-gpu-estimator 2.2.0 pypi_0 pypi termcolor 1.1.0 pypi_0 pypi threadpoolctl 2.1.0 pyh5ca1d4c_0 tk 8.6.10 he774522_0 tornado 6.0.4 py38he774522_1 tqdm 4.48.2 py_0 urllib3 1.25.10 pypi_0 pypi vc 14.1 h0510ff6_4 anaconda vs2015_runtime 14.16.27012 hf0eaf9b_3 anaconda werkzeug 1.0.1 pypi_0 pypi wheel 0.35.1 py_0 anaconda wincertstore 0.2 py38_0 anaconda wrapt 1.12.1 pypi_0 pypi xz 5.2.5 h62dcd97_0 zlib 1.2.11 vc14h1cdd9ab_1 [vc14] anaconda zstd 1.4.5 h04227a9_0 ================= Configs ================== --------- .faceswap --------- backend: nvidia --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.box_blend] type: gaussian distance: 11.0 radius: 5.0 passes: 1 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 [scaling.sharpen] method: unsharp_mask amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto skip_mux: False [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False jpg_quality: 75 png_compress_level: 3 [writer.pillow] format: png draw_transparent: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: False [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 scalefactor: 0.709 batch-size: 8 [detect.s3fd] confidence: 70 batch-size: 4 [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] coverage: 68.75 icnr_init: False conv_aware_init: False optimizer: adam learning_rate: 5e-05 reflect_padding: False allow_growth: False mixed_precision: False convert_batchsize: 16 [global.loss] loss_function: ssim mask_loss_function: mse l2_reg_term: 100 eye_multiplier: 12 mouth_multiplier: 8 penalized_mask_loss: True mask_type: extended mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 clipnorm: True architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False clipnorm: True nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4
closed
2020-09-04T16:45:19Z
2020-09-05T18:51:23Z
https://github.com/deepfakes/faceswap/issues/1059
[]
walkingmu
1
vitalik/django-ninja
pydantic
946
How can I convert dictionary instances into python objects in ninja Schema? (Never experienced that issue before major release)
Before the recent update, ProfileSchema looked like: ``` class ProfileSchema(Schema): current_profile_pic: str = None current_profile_cover_pic: str = None class Config: allow_population_by_field_name = True @staticmethod def resolve_current_profile_pic(obj) -> str: return obj.current_profile_pic.x1080 ``` Whether I would pass dictionary to it, or python object both used to work. I just checked my deployed project it is working fine. After the major update: ``` class ProfileSchema(Schema): model_config = ConfigDict(populate_by_name=True) current_profile_pic: str = None current_profile_cover_pic: str = None @staticmethod def resolve_current_profile_pic(obj) -> str: try: return obj.current_profile_pic.x1080 except Exception as exception: print(exception) ``` For python objects this works, but if I pass dictionary I get `'dict' object has no attribute 'current_profile_pic'` How is it possible to handle this?
closed
2023-11-21T23:20:44Z
2023-11-24T13:47:03Z
https://github.com/vitalik/django-ninja/issues/946
[]
ssandr1kka
2
ets-labs/python-dependency-injector
flask
642
Async dependency in __init__
Hello, Hello, I'm at a dead point with the following case. I need to inject an async dependency in a constructor `__init__`, and I am not able to do it. I have read all the documentation (several times) and I don't know how to achieve it. I would appreciate your help. I'm using the latest version `4.40.0` The key point is that I don't want use `init` and `shutdown` https://python-dependency-injector.ets-labs.org/providers/resource.html#asynchronous-initializers I'm looking for a way to achieve that the following statement works directly `obj = ClassWithAnAsyncDependency()` An example: ```python import asyncio from dependency_injector import providers from dependency_injector.containers import DeclarativeContainer from dependency_injector.wiring import Provide, inject, Closing async def _create_async_dependency_using_resource_provider(): print("Before") yield "foo" print("After") @inject class ClassWithAnAsyncDependencyUsingResourceProvider: def __init__(self, a_async_dependency: str = Closing[Provide["async_dependency_using_resource_provider"]]): self.a_async_dependency = a_async_dependency class Container(DeclarativeContainer): async_dependency_using_resource_provider = providers.Resource(_create_async_dependency_using_resource_provider) async def main(): # TODO Here it's the problem obj = ClassWithAnAsyncDependencyUsingResourceProvider() # <Task pending name='Task-2' coro=<<async_generator_asend without __name__>()> cb=[Resource._async_init_callback(shutdowner=<built-in met...002B2A3299A40>)()]> # Before print(obj.a_async_dependency) if __name__ == '__main__': container = Container() container.wire(modules=["__main__"]) asyncio.run(main()) ``` I have seen that if instead of a class I use a function, `Resource` provider works at expected, but I cannot change a class by a function in my code base. ```python import asyncio from dependency_injector import providers from dependency_injector.containers import DeclarativeContainer from dependency_injector.wiring import Provide, inject, Closing async def _create_async_dependency_using_resource_provider(): print("Before") yield "foo" print("After") @inject async def fn_with_an_async_dependency_using_resource_provider( a_async_dependency: str = Closing[Provide["async_dependency_using_resource_provider"]]): print(a_async_dependency) class Container(DeclarativeContainer): async_dependency_using_resource_provider = providers.Resource(_create_async_dependency_using_resource_provider) async def main(): await fn_with_an_async_dependency_using_resource_provider() # Before # foo # After if __name__ == '__main__': container = Container() container.wire(modules=["__main__"]) asyncio.run(main()) ``` Regards.
closed
2022-12-10T17:31:15Z
2022-12-10T19:25:01Z
https://github.com/ets-labs/python-dependency-injector/issues/642
[]
panicoenlaxbox
1
dynaconf/dynaconf
flask
972
[RFC] Make dynaconf CLI configurable for file to look at and validator to apply
**Is your feature request related to a problem? Please describe.** I have several configuration files in a project used for different purposes. I would like to have separate text-based validator schemas for these. Right now it seems as though there is exactly one configuration file that is support (`config.toml`) with exactly one validator schema (`dynaconf_validators.toml`). It seems ironic to me that `dynaconf` itself is not configurable as to which configuration file to validate and with which validation/schema file. **Describe the solution you'd like** ``` dynaconf -c path/to/my_special_config.toml validate --schema etc/config_schemas/my_special_validator_schema.toml ``` **Describe alternatives you've considered** * Patching the code * Writing a wrapper script that will copy the validator and all config files into a temporary working directory with files renamed to the expected (apparently hard-coded) filenames, and executing `dynaconf validate` there. **Additional context** None. But overall: Dynaconf is great, and I'm happily using it *except* for this one point which is an annoyance.
open
2023-07-31T17:24:11Z
2023-08-21T19:47:52Z
https://github.com/dynaconf/dynaconf/issues/972
[ "Not a Bug", "RFC" ]
ianstokesrees-gamma
0
mljar/mljar-supervised
scikit-learn
177
Change docstring style to google-style
Right now there is numpy-style in docstring. Please change to google-style (https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) because I would like to integrate this doc with mkdocs-material and the only reasonable package to do this in automated way (mkdocstrings) works only with google-style docstring.
closed
2020-09-09T16:31:39Z
2020-09-15T13:43:43Z
https://github.com/mljar/mljar-supervised/issues/177
[ "help wanted", "good first issue", "docs" ]
pplonski
1
sunscrapers/djoser
rest-api
316
Disable browsable api
Hi, the list of uri endpoints (eg: accessible at mydomain.com/auth/) is very usefull when debbugging, but not in production, since I would like to hide them. So...is there a way to disable browsable api?
closed
2018-10-16T08:45:06Z
2018-11-12T11:35:31Z
https://github.com/sunscrapers/djoser/issues/316
[]
lorisgir
2
thp/urlwatch
automation
320
GMail: Send email with OAuth2
Provide OAuth2 support for email report for better security. Users won't have to check "Allow less secure apps" in their Google account. The simplest way to do this is probably via [GMail API](https://developers.google.com/gmail/api/guides). I already have some rough code that can send email this way. The downside is that other mail services aren't covered. A more general way would be to use SMTP, but this seems more difficult.
open
2018-11-12T03:22:54Z
2020-07-30T18:25:59Z
https://github.com/thp/urlwatch/issues/320
[ "enhancement" ]
cfbao
0
numpy/numpy
numpy
28,155
polygrid2d and similars not computing cartesian product
### Describe the issue: I'm writing code that requires 2D polynomial interpolation. I realized while working that, contrary to the documentation, functions like polygrid2d or leggrid2d do NOT compute cartesian product of x and y before evaluation, giving the same output as polyval2 and leggrid2d. I have not checked other subclasses of numpy.polynomial but I suppose they might be affected too. The code example takes two vector of 3 elements and outputs a vector of 3 elements, while according to the documentations it should output a vector of 3*3=9 elements. (For completion purposes, the coefficients describe the function x**2-y**2 and the output is[0. 0. 0.] while I expected [ 0. 0. 0. 0. 0. 0. 0. 0. 0.]) ### Reproduce the code example: ```python import numpy as np x = np.linspace(-1, 1, 3) y = np.linspace(-1, 1, 3) c = [ 0., 0., -1., 0., 0., -0., 1., -0., 0.] print(np.polynomial.polynomial.polygrid2d(x, y, c)) ``` ### Error message: ```shell ``` ### Python and NumPy Versions: Python 3.10.12, checked with numpy 2.0.2 and numpy 2.2.1 ### Runtime Environment: _No response_ ### Context for the issue: Consider this as a nuisance, as falling back to manual computation of cartesian product and evaluation with polyval2d and similars is an option. Yet, beginners might be confused by these issues.
closed
2025-01-15T10:27:58Z
2025-01-15T15:40:20Z
https://github.com/numpy/numpy/issues/28155
[ "00 - Bug" ]
theBelpo
0
streamlit/streamlit
deep-learning
10,744
Add an optimized search input widget
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Add a specialized text input widget optimized for search usecases. Potential features: - Search icon on the left side - Clear icon on the right side - Support for autocompletion - Allows file upload (similar to `st.chat_input`) ### Why? _No response_ ### How? Option 1: `st.search_input` widget Option 2: `st.text_input(โ€ฆ, type=โ€searchโ€)` ### Additional Context Inspirations: ![Image](https://github.com/user-attachments/assets/d65c0233-d1a5-45dc-bad6-58ea4ce0cb90) ![Image](https://github.com/user-attachments/assets/422b9e6b-7868-452d-a39b-b2a95c406ebf) ![Image](https://github.com/user-attachments/assets/dd4180f1-469e-4a97-bdff-24c1ca73f700) ![Image](https://github.com/user-attachments/assets/c6621d2b-5a37-4a5e-ae6e-6a2f5d90fd48) - This Streamlit forum post has 45k views: https://discuss.streamlit.io/t/creating-a-nicely-formatted-search-field/1804 - [Component gallery page](https://component.gallery/components/search-input/)
open
2025-03-12T15:14:57Z
2025-03-14T15:55:04Z
https://github.com/streamlit/streamlit/issues/10744
[ "type:enhancement", "area:widgets", "feature:st.text_input" ]
lukasmasuch
1
FactoryBoy/factory_boy
sqlalchemy
321
Update "fake-factory" dependency to point at "faker"
Per joke2k/faker#331, the Faker project is switching pypi package names from "fake-factory" to "faker". Between now and Dec 15, they plan to push the same code to both names, and on Dec 15 they plan to deprecate the fake-factory name.
closed
2016-09-16T18:36:01Z
2016-09-16T22:51:37Z
https://github.com/FactoryBoy/factory_boy/issues/321
[]
folz
1
swisskyrepo/GraphQLmap
graphql
59
unable to run in windows
after running setup.py, it creates a file in bin named ``graphqlmap`` that cannot be executed
open
2024-07-18T10:21:47Z
2025-02-07T06:55:19Z
https://github.com/swisskyrepo/GraphQLmap/issues/59
[]
AlizerUncaged
1
gradio-app/gradio
data-visualization
9,937
Column names don't wrap with gradio==5.5.0
### Describe the bug When I make a DataFrame with newer versions of Gradio, there is no way to wrap column names into multiple lines. If I set `wrap==True` , nothing happens with the column names, nor if I set column widths. ### Have you searched existing issues? ๐Ÿ”Ž - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr import pandas as pd df = pd.DataFrame( { "Very long column name, something I would want to wrap into multiple lines": [ "value1", "value2", "value3", "value4", ], "Another long column name, something I would want to wrap into multiple lines": [ "value1", "value2", "value3", "value4", ], "A third long column name, something I would want to wrap into multiple lines": [ "value1", "value2", "value3", "value4", ], } ) with gr.Blocks() as demo: gr.DataFrame(df) # If I set wrap=True, then the columns fit on screen but the names don't get wrapped # If I set column_widths=["50px", "50px", "50px"], nothing happens, not even when wrap=True demo.launch() ``` ### Screenshot ![image](https://github.com/user-attachments/assets/74357641-2ad2-4912-8c13-f0b55d5a5d2f) ### Logs _No response_ ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.5.0 gradio_client version: 1.4.2 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.4.0 audioop-lts is not installed. fastapi: 0.115.4 ffmpy: 0.4.0 gradio-client==1.4.2 is not installed. httpx: 0.27.2 huggingface-hub: 0.26.1 jinja2: 3.1.3 markupsafe: 2.1.5 numpy: 1.25.2 orjson: 3.10.7 packaging: 24.0 pandas: 2.2.2 pillow: 10.3.0 pydantic: 2.7.0 pydub: 0.25.1 python-multipart==0.0.12 is not installed. pyyaml: 6.0.1 ruff: 0.3.7 safehttpx: 0.1.1 semantic-version: 2.10.0 starlette: 0.41.2 tomlkit==0.12.0 is not installed. typer: 0.12.5 typing-extensions: 4.11.0 urllib3: 2.2.1 uvicorn: 0.30.6 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.2.0 httpx: 0.27.2 huggingface-hub: 0.26.1 packaging: 24.0 typing-extensions: 4.11.0 websockets: 12.0 ``` ``` ### Severity Blocking usage of gradio
closed
2024-11-11T13:51:16Z
2024-11-15T21:08:39Z
https://github.com/gradio-app/gradio/issues/9937
[ "bug", "๐Ÿ’พ Dataframe" ]
x-tabdeveloping
1
sinaptik-ai/pandas-ai
data-science
1,464
I see there is a context.memory attribute in the local_llm.py file, so what if I add memory?
I see there is a context.memory attribute in the local_llm.py file, so what if I add memory?
closed
2024-12-10T03:19:23Z
2024-12-13T10:17:43Z
https://github.com/sinaptik-ai/pandas-ai/issues/1464
[]
lwdnxu
5
SkalskiP/courses
nlp
36
Order of Traversal for Beginners
First of all thank you so much for creating this repo, I would like to suggest that you create a small roadmap that people can follow so that they know a rough order to view them in.
closed
2023-05-31T06:04:46Z
2023-05-31T15:21:40Z
https://github.com/SkalskiP/courses/issues/36
[]
ordaz00
2
mitmproxy/pdoc
api
507
Folding large constants?
First of all, thanks for `pdoc`! I'm a very happy user, both on my hobby projects and professionally. #### Problem Description I'm working to port a handful of repositories away from `pdoc3`, for well-trodden reasons. Most of the differences between the two are minor, but one that I'm currently running into is how `pdoc` renders large constants: it renders the entire constant, rather than either truncating or folding it. For example, this render: ![](https://thing-in-itself.net/u/pnrXNJLfNhk.png) ...becomes this in `pdoc`: ![](https://thing-in-itself.net/u/RPVnXTfGjvk.png) (it goes on for quite a bit after that :slightly_smiling_face:) #### Proposal It'd be nice to have either a default or a configurable option for truncating or folding large constants! I'm not sure if there's a great heuristic for this, so offering folding (i.e., requiring the user to click a `<details>` element to unfurl) might be slightly better for UX. #### Alternatives I assume I could do this with some template hackery on my own, but I figured this would be a reasonable thing to raise upstream! #### Additional context No other context. If this is functionality that you'd be interested in, I'd be willing to make an attempt at implementing it. Thanks again!
closed
2023-02-17T04:18:04Z
2023-02-19T18:00:45Z
https://github.com/mitmproxy/pdoc/issues/507
[ "enhancement" ]
woodruffw
2
zappa/Zappa
django
516
[Migrated] Zip file - Windows paths
Originally from: https://github.com/Miserlou/Zappa/issues/1358 by [pgpgpg](https://github.com/pgpgpg) <!--- Provide a general summary of the issue in the Title above --> ## Context When deploying a Django app (over 50mb) from a Windows 10 machine the tarball retains the Windows directory separators '\\\\', when deployed to Lambda this causes the error "No module named 'django.core.wsgi': ModuleNotFoundError" ## Expected Behavior 1. tarball should keep Unix directory separators ## Actual Behavior 1. tarball retains Windows directory separators ## Possible Fix In core.py, line 683 can be replaced with: `tarinfo = tarfile.TarInfo(posixpath.join(root.replace(temp_project_path, '').lstrip(os.sep).replace('\\', '/'), filename))` Which fixed it for me but is quite hacky and probably not that robust. ## Steps to Reproduce <!--- Provide a link to a live example, or an unambiguous set of steps to --> <!--- reproduce this bug include code to reproduce, if relevant --> 1.` zappa deploy dev ` on Windows 10 machine with app over 50mb ## Your Environment * Zappa version used: 0.45.1 * Operating System and Python version: Windows 10, Python 3.6 * Your `zappa_settings.py`: ``` { "dev": { "aws_region": "us-east-2", "django_settings": "<redacted>", "profile_name": "default", "project_name": "<redacted>", "runtime": "python3.6", "s3_bucket": "<redacted>", "exclude": ["*.env", "*.jpg", "*.png", "media*", "archive*", "node_*", ], "slim_handler": true, "timeout_seconds": 300, } } ```
closed
2021-02-20T09:43:48Z
2024-07-13T08:17:55Z
https://github.com/zappa/Zappa/issues/516
[ "no-activity", "auto-closed" ]
jneves
2
benbusby/whoogle-search
flask
226
feature request: output http error code if searching has been ratelimited.
basically, since i run a public instance, i'd love to be able to check if the instance is ratelimited by checking http status using curl or something like that. it's not very important, but it'd be nice.
closed
2021-03-18T04:32:02Z
2021-03-21T01:59:43Z
https://github.com/benbusby/whoogle-search/issues/226
[ "enhancement" ]
ghost
4
iterative/dvc
data-science
10,104
Parallel File Download Support in DVCFileSystem
I track my YOLOv5 dataset in git repository with DVC remote being Azure Blob container. The dataset contains many small text files and the structure is the following: ```bash . โ”œโ”€โ”€ images โ”‚ย ย  โ”œโ”€โ”€ train โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 4691.jpg โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 4692.jpg โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ ... โ”‚ย ย  โ”‚ย ย  โ””โ”€โ”€ 5028.jpg โ”‚ย ย  โ””โ”€โ”€ val โ”‚ย ย  โ”œโ”€โ”€ 4753.jpg โ”‚ย ย  โ”œโ”€โ”€ 4808.jpg โ”‚ย ย  โ”œโ”€โ”€ ... โ”‚ย ย  โ””โ”€โ”€ 5014.jpg โ”œโ”€โ”€ labels โ”‚ย ย  โ”œโ”€โ”€ train โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 4691.txt โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 4692.txt โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ ... โ”‚ย ย  โ”‚ย ย  โ””โ”€โ”€ 5028.txt โ”‚ย ย  โ””โ”€โ”€ val โ”‚ย ย  โ”œโ”€โ”€ 4753.txt โ”‚ย ย  โ”œโ”€โ”€ 4808.txt โ”‚ย ย  โ”œโ”€โ”€ ... โ”‚ย ย  โ””โ”€โ”€ 5014.txt โ””โ”€โ”€ settings.yaml 7 directories, 357 files ``` In my python training pipeline I would like to recursively download the tree of files to a local machine at the beginning of the training. I tried to use the `DVCFileSystem.get` from `dvc.api` as [in the documentation](https://dvc.org/doc/api-reference/dvcfilesystem#downloading-a-file-or-a-directory), but the files seem to be downloaded sequentially, which is slow, when the dataset contains a lot of small files. When I fetch the files manually with multiple parallel workers, the speedup on my machine with this demo dataset is approximately 4x. Here's the code I used for the benchmark. ```python from dvc.api import DVCFileSystem import time import os import shutil from concurrent.futures import ThreadPoolExecutor, as_completed from fsspec import AbstractFileSystem import tqdm download_dir = "test_dvc_speed" our_impl_dir = download_dir + "/our_impl" original_impl_dir = download_dir + "/original_impl" shutil.rmtree(download_dir, ignore_errors=True) os.makedirs(download_dir, exist_ok=True) repo_url = f"<github-repo_url>" remote_path = "<path-to-remote-dir>" def download_paralel(fs: AbstractFileSystem, dest: str, rpath: str, num_workers): dest = str(dest) os.makedirs(dest) if fs.isfile(rpath): # download single file fs.get_file(rpath, dest) return # download directory recursively in parallel remote_paths = fs.glob(os.path.join(rpath, "**")) files = [f for f in remote_paths if fs.isfile(f)] dirs = [d for d in remote_paths if fs.isdir(d)] # make dirs for d in dirs: os.makedirs(os.path.join(dest, os.path.relpath(d, rpath)), exist_ok=True) # type: ignore # download files in parallel print(f"Downloading {len(files)} files to {dest}") with ThreadPoolExecutor(max_workers=num_workers) as executor: futures = [] for rfile in files: file_dest = os.path.join(dest, os.path.relpath(rfile, rpath)) # type: ignore futures.append(executor.submit(fs.get_file, rfile, file_dest)) for future in tqdm.tqdm(as_completed(futures), total=len(futures)): _ = future.result() pass t = time.time() fs = DVCFileSystem(repo_url) download_paralel(fs, our_impl_dir, remote_path, num_workers=100) print("Our impl:", time.time() - t) t = time.time() fs = DVCFileSystem(repo_url) fs.get(rpath=remote_path, lpath=original_impl_dir, recursive=True) print("Original impl:", time.time() - t) ### # Our impl: 4.03s # Original impl: 15.33s ``` I've been told by @tibor-mach, that `dvc get` uses `DVCFileSystem` behind the scenes and that `dvc get` fetches the remote files in parallel. Is this a bug or is there another way to fetch the directory tree using `dvc` python API?
closed
2023-11-23T09:33:46Z
2024-09-03T08:11:40Z
https://github.com/iterative/dvc/issues/10104
[]
jakubhejhal
4
matplotlib/matplotlib
data-visualization
28,833
[MNT]: Data size consistency checks in _CollectionsWithSizes
### Summary Extracted from https://github.com/matplotlib/matplotlib/issues/12021#issuecomment-530086713. This is a tracking issue so that we can close #12021 but the idea is not lost. It does not need immediate action (and may even be hard to act upon). There is no built-in size check for the data in _CollectionWithSizes subclasses. For example, for `PathCollection`, one can have 10 paths, 4 sizes and 2 edgecolors. ``` import matplotlib.pyplot as plt from matplotlib.collections import PathCollection from matplotlib.path import Path paths = [Path([(0, 0), (0.5, i), (1, 0)]) for i in range(10)] # 10 paths, 4 sizes, 2 edgecolors: pc = PathCollection(paths, sizes=s, facecolor='none', edgecolors=['r', 'g']) ax = plt.gca() ax.add_collection(pc) ax.set(xlim=(0, 3), ylim=(0, 20)) ``` ![image](https://github.com/user-attachments/assets/f56b881f-ae42-4050-9460-2fd315b18815) The behavior is largely undocumented (though some plotting functions mention cycling over properties like colors). AFAICS: The paths effectively define the number of elements sizes and facecolor etc. are cycled through to match the paths (if there are more sizes that paths, the additional sizes are simply unused. If there are less sizes, the sizes are cycled). Central question: Is this behavior desired? On the one hand, it can be convenient. On the other hand it can be confusing and lead to unnoticed errors. Note: I suspect that changing the behavior is difficult. (i) would need deprecation, which is cumbersome but possible, (ii) *thing* (e.g. paths) and properties (sizes, facecolors) are currently decoupled. They are brought together at draw-time. If we do size checks, they likely can also happen only at draw-time. We have the individual `set_*` method and size checks in there would prevent any later change of the number of elments: `set_paths(paths); set_sizes(sizes)` would mutually exclude changing the number of elements. Note that this is similar to #26410, but I think we cannot get away with a collective `set_XYUVC` style solution here. ### Proposed fix _No response_
open
2024-09-18T09:04:25Z
2024-09-18T09:15:26Z
https://github.com/matplotlib/matplotlib/issues/28833
[ "Difficulty: Hard", "Maintenance" ]
timhoffm
0
feder-cr/Jobs_Applier_AI_Agent_AIHawk
automation
1,075
[BUG]: Chorme browsers open up, displays resume for 2 seconds, & closes. Nothing happens after that
### Describe the bug After running the command python mai.py in the terminal, the Chrome browser opens briefly, displays resume for 1seconds, and then closes immediately. No further action or output happens after the browser closes. ### Steps to reproduce ### Observed Behavior: - Chrome browser opens. - Displays a brief set of data. - Closes immediately without further action. - No further output in the terminal. ### STEPS TO REPRODUCE: ### python main.py ## Logs ### OpenAI API Response: The OpenAI API responds successfully with a "200 OK" status. Here's the relevant log excerpt from the terminal: <img width="1077" alt="Image" src="https://github.com/user-attachments/assets/df4b45f1-b394-41df-b360-e4409ec19209" /> ### Browser Automation Logs: The browser session was initiated, but it was immediately closed after performing the following: <img width="1303" alt="Image" src="https://github.com/user-attachments/assets/529d2e1a-06ca-4cfa-9d2f-f7ce93255ae3" /> DEBUG:openai._base_client:request_id: req_24e671307cd94db203874672e0da4bc7 DEBUG:urllib3.connectionpool:http://localhost:49216 "POST /session/2213c4d143e20a8c7af7f635a1a29ae0/url HTTP/1.1" 200 0 DEBUG:urllib3.connectionpool:http://localhost:49216 "POST /session/2213c4d143e20a8c7af7f635a1a29ae0/goog/cdp/execute HTTP/1.1" 200 0 DEBUG:urllib3.connectionpool:http://localhost:49216 "DELETE /session/2213c4d143e20a8c7af7f635a1a29ae0 HTTP/1.1" 200 0 DEBUG:httpcore.connection:close.started DEBUG:httpcore.connection:close.complete ### Expected behavior The browser should open up show resume, and apply to jobs ### Actual behavior The browser closes instantly ### Branch None ### Branch name main ### Python version 3.12.7 ### LLM Used CHATGPT ### Model used GPT-40-mini ### Additional context _No response_
open
2025-01-24T19:09:20Z
2025-03-15T23:11:46Z
https://github.com/feder-cr/Jobs_Applier_AI_Agent_AIHawk/issues/1075
[ "bug" ]
ShrutikaSingh
2
laughingman7743/PyAthena
sqlalchemy
61
larger than memory queries?
I'm hoping to use Athena with Dask, performing queries which return 10-30 GB and then training some distributed ML algorithms. Any suggestions for concurrent/distributed io for such a task? I've been quite happy with the pandas cursor for smaller local use, following the examples in the pyAthena documentation, but I still have no idea what I am actually doing-- does the pandas cursor do concurrent io, or is it limited to one core? I apologize in advance if this question belongs on some other forum-- let me know and I'll gladly move the conversation there. Thanks!
open
2019-01-17T17:32:18Z
2022-10-06T20:45:31Z
https://github.com/laughingman7743/PyAthena/issues/61
[]
mckeown12
8
iperov/DeepFaceLab
machine-learning
5,728
traceback(most recent call last)
![Screenshot 2023-09-23 122437](https://github.com/iperov/DeepFaceLab/assets/145894376/941aa802-8226-4cd2-97de-a35294e8e310) how do i solve this. Running DeepFaceLive. Traceback (most recent call last): File "_internal\DeepFaceLive\main.py", line 95, in <module> main() File "_internal\DeepFaceLive\main.py", line 88, in main args.func(args) File "_internal\DeepFaceLive\main.py", line 30, in run_DeepFaceLive from apps.DeepFaceLive.DeepFaceLiveApp import DeepFaceLiveApp File "C:\Users\HP Victus\Documents\met\DeepFaceLive_DirectX12\_internal\DeepFaceLive\apps\DeepFaceLive\DeepFaceLiveApp.py", line 11, in <module> from . import backend File "C:\Users\HP Victus\Documents\met\DeepFaceLive_DirectX12\_internal\DeepFaceLive\apps\DeepFaceLive\backend\__init__.py", line 1, in <module> from .BackendBase import (BackendConnection, BackendConnectionData, BackendDB, File "C:\Users\HP Victus\Documents\met\DeepFaceLive_DirectX12\_internal\DeepFaceLive\apps\DeepFaceLive\backend\BackendBase.py", line 7, in <module> from xlib import time as lib_time File "C:\Users\HP Victus\Documents\met\DeepFaceLive_DirectX12\_internal\DeepFaceLive\xlib\time\__init__.py", line 1, in <module> from .time_ import timeit, measure, FPSCounter, AverageMeasurer File "C:\Users\HP Victus\Documents\met\DeepFaceLive_DirectX12\_internal\DeepFaceLive\xlib\time\time_.py", line 11, in <module> if not kernel32.QueryPerformanceFrequency(_perf_freq): File "C:\Users\HP Victus\Documents\met\DeepFaceLive_DirectX12\_internal\DeepFaceLive\xlib\api\win32\wintypes\wintypes.py", line 37, in wrapper raise RuntimeError(f'Unable to load {dll_name} library.') RuntimeError: Unable to load kernel32 library.
open
2023-09-24T07:54:11Z
2023-11-04T06:03:37Z
https://github.com/iperov/DeepFaceLab/issues/5728
[]
Ujah0
1
horovod/horovod
deep-learning
3,606
torch.utils.ffi was removed but is still used in horovod
**Environment:** 1. Framework: PyTorch 2. Framework version: 1.12.0 3. Horovod version: 0.25.0 4. MPI version: OpenMPI 4.1.4 5. CUDA version: N/A 6. NCCL version: N/A 7. Python version: 3.9.13 8. Spark / PySpark version: N/A 9. Ray version: N/A 10. OS and version: macOS 12.4 11. GCC version: Apple Clang 13.1.6 12. CMake version: 3.23.1 **Checklist:** 1. Did you search issues to find if somebody asked this question before? 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? **Bug report:** Please describe erroneous behavior you're observing and steps to reproduce it. In `torch/mpi_lib/__init__.py` and `torch/mpi_lib_impl/__init__.py`, horovod imports `torch.utils.ffi`. But this module was deprecated in PyTorch 1.0 (https://github.com/pytorch/pytorch/pull/12122) almost 5 years ago and finally removed completely in PyTorch 1.12.
closed
2022-07-16T07:08:51Z
2022-08-11T07:09:57Z
https://github.com/horovod/horovod/issues/3606
[ "bug" ]
adamjstewart
2
explosion/spaCy
machine-learning
12,270
Entity ruler doesn't catch multi-token entities
Hello! First off: Thanks for the great package! I however, encountered some unexpected behavior while implementing my custom entity ruler. The entity ruler is made to recognize dutch first names and last names ("achternaam"). However, the code below doesn't catch last names consisting of multiple tokens, while this does work in the regular NER component. Moreover, the code below does work with singe-token last names. What I already checked: 1) There are no other entities overwriting the names ruler. 2) When adding the NER pipeline in the last part, it sees "Andre van walderveen" correctly as a single person. 3) When changing the name to Lepelaar, it tags correctly. ``` # Load base model nlp= sp.load("nl_core_news_lg", exclude=["tok2vec", "morphologizer", "tagger", "parser", "lemmatizer", "attribute_ruler"]) # Set split on "-" infixes = nlp.Defaults.infixes + [r'-'] + [r'\('] + [r'\)'] infix_regex = sp.util.compile_infix_regex(infixes) nlp.tokenizer.infix_finditer = infix_regex.finditer # Get available pipelines nlp.pipe_names config_names = { "validate": False, "overwrite_ents": True, "ent_id_sep": "||", } ruler_names = nlp.add_pipe( "entity_ruler", "names_ruler", before="ner", config=config_names ) with nlp.select_pipes(enable="ner"): ruler_names.add_patterns( [ {"label": "ACHTERNAAM", "pattern": [{"LOWER": "Lepelaar"}]}, {"label": "ACHTERNAAM", "pattern": [{"LOWER": "van Walderveen"}]} ] ) # OR with nlp.select_pipes(enable="ner"): ruler_names.add_patterns( [ {"label": "ACHTERNAAM", "pattern": [{"LOWER": "Lepelaar"}]}, {"label": "ACHTERNAAM", "pattern": [{"LOWER": "van"}, {"LOWER": "Walderveen"}]} ] ) with nlp.select_pipes(enable=["sentencizer", "names_ruler"]): doc1 = nlp("Ik ben Andre van Walderveen") for ents in doc1.ents: print(ents, ents.label_) ```
closed
2023-02-10T13:42:07Z
2023-02-10T14:27:45Z
https://github.com/explosion/spaCy/issues/12270
[ "feat / spanruler" ]
SjoerdBraaksma
3
remsky/Kokoro-FastAPI
fastapi
161
Pause insertion request
Would it be possible to add a feature to support the addition of pauses when encountering e.g. [PAUSE 1.0] , which could introduce in this case a 1 second pause before continuing with the next section of text?
open
2025-02-11T20:25:14Z
2025-03-14T06:25:07Z
https://github.com/remsky/Kokoro-FastAPI/issues/161
[]
riqbelcher
6
seleniumbase/SeleniumBase
pytest
3,005
Upgrade the default `geckodriver` version to `0.35.0`
## Upgrade the default `geckodriver` version to `0.35.0` There's a new `geckodriver`: https://github.com/mozilla/geckodriver/releases/tag/v0.35.0 * `sbase get geckodriver` should now download that version by default, (if tests pass)
closed
2024-08-07T02:23:47Z
2024-08-07T03:42:58Z
https://github.com/seleniumbase/SeleniumBase/issues/3005
[ "enhancement", "requirements" ]
mdmintz
1
ExpDev07/coronavirus-tracker-api
fastapi
45
I'm using your API
Hi, Thanks for the API I'm using your API to build a simple android app. https://github.com/itsamirrezah/COVID-19
closed
2020-03-15T02:14:52Z
2020-04-19T17:57:02Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/45
[ "user-created" ]
itsamirrezah
0
ymcui/Chinese-LLaMA-Alpaca
nlp
797
run_pt.sh output couldnt be merged with base model
### Check before submitting issues - [X] Make sure to pull the latest code, as some issues and bugs have been fixed. - [X] Due to frequent dependency updates, please ensure you have followed the steps in our [Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki) - [X] I have read the [FAQ section](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/FAQ) AND searched for similar issues and did not find a similar problem or solution - [X] Third-party plugin issues - e.g., [llama.cpp](https://github.com/ggerganov/llama.cpp), [text-generation-webui](https://github.com/oobabooga/text-generation-webui), [LlamaChat](https://github.com/alexrozanski/LlamaChat), we recommend checking the corresponding project for solutions - [X] Model validity check - Be sure to check the model's [SHA256.md](https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/SHA256.md). If the model is incorrect, we cannot guarantee its performance ### Type of Issue Model conversion and merging ### Base Model LLaMA-7B ### Operating System Linux ### Describe your issue in detail The following configs are used to start run_pt.sh ``` lr=2e-4 lora_rank=8 lora_alpha=32 lora_trainable="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj" modules_to_save="embed_tokens,lm_head" lora_dropout=0.05 pretrained_model=/data/llama/decapoda-research_7b-hf-model chinese_tokenizer_path=/data/llama/merged_tokenizer_hf-25k hugginface_cache_dir=/data/huggingface_cache dataset_dir=/data/datasets/tokenizer_text_dir data_cache=/data/llama/Chinese-LLaMA-Alpaca/scripts/training/temp_data_cache_dir per_device_train_batch_size=32 per_device_eval_batch_size=16 gradient_accumulation_steps=16 output_dir=/data/llama/Chinese-LLaMA-Alpaca/scripts/training/pt_output_dir deepspeed_config_file=ds_zero2_no_offload.json export NCCL_DEBUG=INFO export NCCL_SOCKET_IFNAME=team0 torchrun --nnodes 1 --nproc_per_node 2 run_clm_pt_with_peft.py \ --deepspeed ${deepspeed_config_file} \ --model_name_or_path ${pretrained_model} \ --tokenizer_name_or_path ${chinese_tokenizer_path} \ --dataset_dir ${dataset_dir} \ --data_cache_dir ${data_cache} \ --validation_split_percentage 0.001 \ --per_device_train_batch_size ${per_device_train_batch_size} \ --per_device_eval_batch_size ${per_device_eval_batch_size} \ --gradient_accumulation_steps ${gradient_accumulation_steps} \ --do_train \ --seed $RANDOM \ --fp16 \ --num_train_epochs 1 \ --max_train_samples 600 \ --max_eval_samples 100 \ --lr_scheduler_type cosine \ --learning_rate ${lr} \ --warmup_ratio 0.05 \ --weight_decay 0.01 \ --logging_strategy steps \ --logging_steps 5 \ --save_strategy steps \ --modules_to_save ${modules_to_save} \ --gradient_checkpointing \ --save_total_limit 3 \ --save_steps 5 \ --preprocessing_num_workers 32 \ --block_size 1024 \ --output_dir ${output_dir} \ --overwrite_output_dir \ --ddp_timeout 30000 \ --logging_first_step True \ --lora_rank ${lora_rank} \ --lora_alpha ${lora_alpha} \ --trainable ${lora_trainable} \ --lora_dropout ${lora_dropout} \ --torch_dtype float16 \ --ddp_find_unused_parameters False ``` The following code is used to merge with base model: ``` python merge_llama_with_chinese_lora.py \ --base_model /data/llama/decapoda-research_7b-hf-model \ --lora_model /data/llama/Chinese-LLaMA-Alpaca/scripts/training/pt_output_dir/pt_lora_model \ --output_type huggingface \ --output_dir /data/llama/Chinese-LLaMA-Alpaca/scripts/merge_dir/llama-merge-hf-test ``` ### Dependencies (must be provided for code-related issues) ``` Package Version Editable project location ----------------------------- ----------- ----------------------------------- accelerate 0.21.0 aiohttp 3.8.4 aiosignal 1.3.1 anyio 3.7.1 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 asttokens 2.2.1 async-lru 2.0.4 async-timeout 4.0.2 attrs 23.1.0 Babel 2.12.1 backcall 0.2.0 backports.functools-lru-cache 1.6.5 beautifulsoup4 4.12.2 bitsandbytes 0.41.0 bleach 6.0.0 boltons 23.0.0 brotlipy 0.7.0 certifi 2023.7.22 cffi 1.15.1 charset-normalizer 2.0.4 cmake 3.26.4 comm 0.1.3 conda 23.7.2 conda-content-trust 0.1.3 conda-package-handling 2.0.2 conda_package_streaming 0.7.0 cryptography 39.0.1 datasets 2.14.1 debugpy 1.6.7 decorator 5.1.1 deepspeed 0.10.0 defusedxml 0.7.1 dill 0.3.6 entrypoints 0.4 exceptiongroup 1.1.2 executing 1.2.0 fastjsonschema 2.18.0 filelock 3.12.2 flit_core 3.9.0 frozenlist 1.3.3 fsspec 2023.6.0 hjson 3.1.0 huggingface-hub 0.15.1 idna 3.4 importlib-metadata 6.8.0 importlib-resources 6.0.0 iniconfig 2.0.0 ipykernel 6.23.2 ipython 8.14.0 ipython-genutils 0.2.0 ipywidgets 8.0.7 jedi 0.18.2 Jinja2 3.1.2 joblib 1.2.0 json5 0.9.14 jsonpatch 1.32 jsonpointer 2.1 jsonschema 4.17.3 jupyter_client 8.3.0 jupyter_core 5.3.1 jupyter-events 0.6.3 jupyter-lsp 2.2.0 jupyter_server 2.7.0 jupyter_server_terminals 0.4.4 jupyterlab 4.0.3 jupyterlab-pygments 0.2.2 jupyterlab_server 2.24.0 jupyterlab-widgets 3.0.7 lit 16.0.6 MarkupSafe 2.1.3 matplotlib-inline 0.1.6 mistune 3.0.0 mpmath 1.3.0 multidict 6.0.4 multiprocess 0.70.14 nbclient 0.8.0 nbconvert 7.7.3 nbformat 5.9.1 nest-asyncio 1.5.6 networkx 3.1 ninja 1.11.1 notebook_shim 0.2.3 numpy 1.25.0 nvidia-cublas-cu11 11.10.3.66 nvidia-cuda-cupti-cu11 11.7.101 nvidia-cuda-nvrtc-cu11 11.7.99 nvidia-cuda-runtime-cu11 11.7.99 nvidia-cudnn-cu11 8.5.0.96 nvidia-cufft-cu11 10.9.0.58 nvidia-curand-cu11 10.2.10.91 nvidia-cusolver-cu11 11.4.0.1 nvidia-cusparse-cu11 11.7.4.91 nvidia-nccl-cu11 2.14.3 nvidia-nvtx-cu11 11.7.91 overrides 7.3.1 packaging 23.0 pandas 2.0.2 pandocfilters 1.5.0 parso 0.8.3 peft 0.3.0.dev0 /data/llama/peft_13e53fc pexpect 4.8.0 pickleshare 0.7.5 Pillow 9.5.0 pip 23.0.1 pkgutil_resolve_name 1.3.10 platformdirs 3.9.1 pluggy 1.0.0 prometheus-client 0.17.1 prompt-toolkit 3.0.39 protobuf 4.23.4 psutil 5.9.5 ptyprocess 0.7.0 pure-eval 0.2.2 py-cpuinfo 9.0.0 pyarrow 12.0.1 pycosat 0.6.4 pycparser 2.21 pydantic 1.10.9 Pygments 2.15.1 pyOpenSSL 23.0.0 pyrsistent 0.18.0 PySocks 1.7.1 pytest 7.4.0 python-dateutil 2.8.2 python-json-logger 2.0.7 pytz 2023.3 PyYAML 6.0 pyzmq 25.1.0 regex 2023.6.3 requests 2.28.1 rfc3339-validator 0.1.4 rfc3986-validator 0.1.1 ruamel.yaml 0.17.21 ruamel.yaml.clib 0.2.6 safetensors 0.3.1 scikit-learn 1.3.0 scipy 1.11.1 Send2Trash 1.8.2 sentencepiece 0.1.99 setuptools 65.6.3 six 1.16.0 sniffio 1.3.0 soupsieve 2.3.2.post1 stack-data 0.6.2 sympy 1.12 terminado 0.17.1 threadpoolctl 3.1.0 tinycss2 1.2.1 tokenizers 0.13.3 tomli 2.0.1 toolz 0.12.0 torch 2.0.1 torchaudio 2.0.2 torchvision 0.15.2 tornado 6.3.2 tqdm 4.65.0 traitlets 5.9.0 transformers 4.30.0 triton 2.0.0 typing_extensions 4.7.1 typing-utils 0.1.0 tzdata 2023.3 urllib3 1.26.15 wcwidth 0.2.6 webencodings 0.5.1 websocket-client 1.6.1 wheel 0.38.4 widgetsnbextension 4.0.7 xxhash 3.2.0 yarl 1.9.2 zipp 3.16.2 zstandard 0.19.0 ``` ### Execution logs or screenshots ``` [2023-07-29 16:05:48,295] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect) Base model: /data/llama/decapoda-research_7b-hf-model LoRA model(s) ['/data/llama/Chinese-LLaMA-Alpaca/scripts/training/pt_output_dir/pt_lora_model']: Loading checkpoint shards: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 3/3 [00:08<00:00, 2.68s/it] Peft version: 0.3.0.dev0 Loading LoRA for 7B model Loading LoRA /data/llama/Chinese-LLaMA-Alpaca/scripts/training/pt_output_dir/pt_lora_model... base_model vocab size: 32000 tokenizer vocab size: 53246 Extended vocabulary size to 53246 Loading LoRA weights merging base_model.model.model.embed_tokens.weight merging base_model.model.lm_head.weight merging base_model.model.model.layers.0.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.0.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.0.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.0.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.0.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.0.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.0.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.1.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.1.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.1.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.1.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.1.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.1.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.1.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.2.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.2.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.2.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.2.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.2.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.2.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.2.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.3.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.3.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.3.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.3.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.3.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.3.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.3.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.4.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.4.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.4.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.4.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.4.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.4.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.4.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.5.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.5.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.5.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.5.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.5.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.5.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.5.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.6.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.6.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.6.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.6.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.6.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.6.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.6.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.7.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.7.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.7.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.7.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.7.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.7.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.7.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.8.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.8.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.8.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.8.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.8.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.8.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.8.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.9.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.9.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.9.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.9.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.9.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.9.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.9.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.10.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.10.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.10.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.10.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.10.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.10.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.10.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.11.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.11.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.11.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.11.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.11.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.11.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.11.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.12.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.12.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.12.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.12.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.12.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.12.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.12.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.13.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.13.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.13.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.13.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.13.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.13.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.13.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.14.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.14.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.14.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.14.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.14.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.14.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.14.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.15.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.15.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.15.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.15.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.15.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.15.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.15.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.16.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.16.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.16.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.16.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.16.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.16.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.16.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.17.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.17.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.17.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.17.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.17.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.17.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.17.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.18.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.18.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.18.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.18.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.18.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.18.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.18.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.19.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.19.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.19.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.19.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.19.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.19.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.19.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.20.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.20.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.20.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.20.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.20.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.20.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.20.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.21.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.21.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.21.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.21.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.21.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.21.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.21.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.22.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.22.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.22.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.22.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.22.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.22.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.22.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.23.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.23.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.23.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.23.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.23.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.23.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.23.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.24.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.24.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.24.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.24.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.24.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.24.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.24.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.25.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.25.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.25.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.25.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.25.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.25.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.25.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.26.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.26.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.26.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.26.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.26.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.26.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.26.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.27.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.27.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.27.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.27.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.27.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.27.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.27.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.28.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.28.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.28.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.28.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.28.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.28.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.28.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.29.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.29.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.29.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.29.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.29.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.29.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.29.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.30.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.30.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.30.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.30.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.30.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.30.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.30.mlp.up_proj.lora_A.weight merging base_model.model.model.layers.31.self_attn.q_proj.lora_A.weight merging base_model.model.model.layers.31.self_attn.k_proj.lora_A.weight merging base_model.model.model.layers.31.self_attn.v_proj.lora_A.weight merging base_model.model.model.layers.31.self_attn.o_proj.lora_A.weight merging base_model.model.model.layers.31.mlp.gate_proj.lora_A.weight merging base_model.model.model.layers.31.mlp.down_proj.lora_A.weight merging base_model.model.model.layers.31.mlp.up_proj.lora_A.weight Traceback (most recent call last): File "/data/llama/Chinese-LLaMA-Alpaca/scripts/merge_llama_with_chinese_lora.py", line 327, in <module> assert not torch.allclose(first_weight_old, first_weight) AssertionError ``` Is it possible to merge pretrained lora weights with base model?
closed
2023-07-29T13:22:00Z
2023-11-22T11:13:50Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/797
[ "stale" ]
yusufcakmakk
8
babysor/MockingBird
deep-learning
859
StopIteration: Caught StopIteration in replica 0 on device 0
**Summary[้—ฎ้ข˜็ฎ€่ฟฐ๏ผˆไธ€ๅฅ่ฏ๏ผ‰]** 0.0.1 ็‰ˆๆœฌไปฃ็ ๆŒ‰็…ง่ฎญ็ปƒ่ฎญ็ปƒๅˆๆˆๅ™จๅ‡บ้”™๏ผˆๆœบๅ™จไธŠๆœ‰ๅคšไธชgpu๏ผ‰ **Env & To Reproduce[ๅค็ŽฐไธŽ็Žฏๅขƒ]** ๆ่ฟฐไฝ ็”จ็š„็Žฏๅขƒใ€ไปฃ็ ็‰ˆๆœฌใ€ๆจกๅž‹ ็Žฏๅขƒ๏ผšubuntu 20.04 ไปฃ็ ็‰ˆๆœฌ๏ผš0.0.1 python๏ผš3.9.6 torch.__version__: 2.0.0+cu117 **Screenshots[ๆˆชๅ›พ๏ผˆๅฆ‚ๆœ‰๏ผ‰]** <img width="1595" alt="image" src="https://user-images.githubusercontent.com/29347833/227445578-c2a94c04-7b4a-4efc-ab41-d6809095bd05.png">
open
2023-03-24T06:45:32Z
2023-03-24T06:45:32Z
https://github.com/babysor/MockingBird/issues/859
[]
LZC6244
0
flairNLP/fundus
web-scraping
193
[Bug] A SZ Article crashes fundus during ld construction
The following code snippet crashes fundus while the ld is constructed: ```python from fundus.publishers.de import SZParser from fundus.scraping.scraper import Scraper from fundus.scraping.source import StaticSource test_source = StaticSource([ "https://www.sueddeutsche.de/projekte/artikel/politik/bremen-bremerhaven-wahl-protokolle-e142075/"]) scraper = Scraper(test_source, parser=SZParser()) for article in scraper.scrape(error_handling='raise'): print(article) ``` The traceback is below: ```console Traceback (most recent call last): File "/home/aaron/Code/Python/Fundus/create_test.py", line 14, in <module> for article in scraper.scrape(error_handling='raise'): File "/home/aaron/Code/Python/Fundus/src/fundus/scraping/scraper.py", line 89, in scrape raise err File "/home/aaron/Code/Python/Fundus/src/fundus/scraping/scraper.py", line 82, in scrape extraction = self.parser.parse(article_source.html, error_handling) File "/home/aaron/Code/Python/Fundus/src/fundus/parser/base_parser.py", line 191, in parse self._base_setup(html) File "/home/aaron/Code/Python/Fundus/src/fundus/parser/base_parser.py", line 187, in _base_setup self.precomputed = Precomputed(html, doc, get_meta_content(doc), LinkedDataMapping(collapsed_lds)) File "/home/aaron/Code/Python/Fundus/src/fundus/parser/data.py", line 47, in __init__ self.add_ld(ld) File "/home/aaron/Code/Python/Fundus/src/fundus/parser/data.py", line 58, in add_ld raise ValueError(f"Found no type for LD") ValueError: Found no type for LD Process finished with exit code 1 ```
closed
2023-05-10T15:35:09Z
2023-05-10T18:37:50Z
https://github.com/flairNLP/fundus/issues/193
[]
Weyaaron
2
ultralytics/ultralytics
machine-learning
19,595
Updating from Yolov11 to Yolov12
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question How can I move from using YOLOv11 to YOLOv12? what are the full steps? ### Additional _No response_
open
2025-03-09T08:06:01Z
2025-03-11T21:28:41Z
https://github.com/ultralytics/ultralytics/issues/19595
[ "question" ]
anaduaa
4
svc-develop-team/so-vits-svc
deep-learning
353
[Bug]: Package conflict with numpy
### OS version Windows 11 22H2 ### GPU NVIDIA MX130 ### Python version Python 3.10.6 ### PyTorch version Torch 1.13.1 ### Branch of sovits 4.0(Default) ### Dataset source (Used to judge the dataset quality) UVR-processed ### Where thr problem occurs or what command you executed python inference_main.py -m "logs/44k/G_16000.pth" -c "logs/44k/config.json" -cm "/logs/44k/kmeans_10000.pt" -cr 0.5 -n "2.wav" -t 0 -s "Ado20mdataset" -f0p rmvpe ### Situation description First thing first, somehow there is no choice of choosing 4.1 Stable branch of sovits at that section? I am using the 4.1 Stable, not the 4.0. Anyway, I tried to edit the cluster infer ratio, but I always got the Error 1 ( Look at the Log section ). It said I am missing cluster_model, so I go pip install cluster_model. After installing cluster_model, I run the same command again and this time it show up the Error 2, which is SystemError: initialization of _internal failed without raising an exception. I have check the stack overflow, and it said that it is the numpy issues. So I exchange it from the cluster_model's 1.25.1 to version below 1.24 because I see some compability issues show up. And it have return back Error 1 after the changing. Also it could work without any issues if there is no -cr 0.5 command, I think there is a trouble here. ### Log ```python https://pastebin.com/W5kFS1vx ^ Error 1 https://pastebin.com/u3rtvewA ^ Error 2 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. espnet 202304 requires protobuf<=3.20.1, but you have protobuf 3.20.3 which is incompatible. numba 0.56.4 requires numpy<1.24,>=1.18, but you have numpy 1.25.1 which is incompatible. torchcrepe 0.0.20 requires librosa==0.9.1, but you have librosa 0.9.2 which is incompatible. ^ When installing numpy-1.25.1 ``` ### Supplementary description _No response_
open
2023-07-29T11:20:06Z
2023-07-29T11:32:06Z
https://github.com/svc-develop-team/so-vits-svc/issues/353
[ "bug?" ]
Sewlell
0
iperov/DeepFaceLab
deep-learning
5,580
Does landmark get recalculate during the merger process?
I think i find the way to change the landmark metadata in each jpg file to match the src face.but base on my skill i probably have to code fulltime for a week to achieve that.And im afraid it will be ignore in the merger process. In the merger.py i see this LandmarksProcessor.get_transform_mat and LandmarksProcessor.transform_points.I have no idea how each work but it sound like it will recalculate landmark postions again.
open
2022-11-03T15:52:52Z
2023-06-08T23:19:24Z
https://github.com/iperov/DeepFaceLab/issues/5580
[]
onwan946
1
Neoteroi/BlackSheep
asyncio
81
Support for background tasks
Not really an issue, more of a feature request I guess. I'm wondering if you have thought about adding support for running background tasks in Blacksheep, similar to something like FastApi (Starlette) has. Atm I'm using an `AsyncIOEventEmitter` (pyee) for running stuff in the background but the problem is obviously that it's not integrated with the DI container in any way. What's your thoughts on this?
closed
2021-02-05T09:40:59Z
2021-05-03T14:36:10Z
https://github.com/Neoteroi/BlackSheep/issues/81
[ "question", "document" ]
skivis
4
pydantic/pydantic-settings
pydantic
520
configparser.MissingSectionHeaderError: File contains no section headers.
I encountered a very strange problem. I just used the following code to import pydantic_settings. ```python from pydantic_settings import BaseSettings print("hello world") ``` But the following error was displayed: ``` root@ubuntu:~/projects/SightlessGuide2# python test.py Traceback (most recent call last): File "test.py", line 1, in <module> from pydantic_settings import BaseSettings File "/usr/local/lib/python3.8/dist-packages/pydantic_settings/__init__.py", line 1, in <module> from .main import BaseSettings, CliApp, SettingsConfigDict File "/usr/local/lib/python3.8/dist-packages/pydantic_settings/main.py", line 14, in <module> from .sources import ( File "/usr/local/lib/python3.8/dist-packages/pydantic_settings/sources.py", line 40, in <module> from pydantic import AliasChoices, AliasPath, BaseModel, Json, RootModel, TypeAdapter File "<frozen importlib._bootstrap>", line 1039, in _handle_fromlist File "/usr/local/lib/python3.8/dist-packages/pydantic/__init__.py", line 421, in __getattr__ module = import_module(module_name, package=package) File "/usr/lib/python3.8/importlib/__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "/usr/local/lib/python3.8/dist-packages/pydantic/root_model.py", line 35, in <module> class RootModel(BaseModel, typing.Generic[RootModelRootType], metaclass=_RootModelMetaclass): File "/usr/local/lib/python3.8/dist-packages/pydantic/_internal/_model_construction.py", line 224, in __new__ complete_model_class( File "/usr/local/lib/python3.8/dist-packages/pydantic/_internal/_model_construction.py", line 620, in complete_model_class cls.__pydantic_validator__ = create_schema_validator( File "/usr/local/lib/python3.8/dist-packages/pydantic/plugin/_schema_validator.py", line 38, in create_schema_validator plugins = get_plugins() File "/usr/local/lib/python3.8/dist-packages/pydantic/plugin/_loader.py", line 39, in get_plugins for entry_point in dist.entry_points: File "/usr/lib/python3.8/importlib/metadata.py", line 240, in entry_points return EntryPoint._from_text(self.read_text('entry_points.txt')) File "/usr/lib/python3.8/importlib/metadata.py", line 100, in _from_text config.read_string(text) File "/usr/lib/python3.8/configparser.py", line 723, in read_string self.read_file(sfile, source) File "/usr/lib/python3.8/configparser.py", line 718, in read_file self._read(f, source) File "/usr/lib/python3.8/configparser.py", line 1082, in _read raise MissingSectionHeaderError(fpname, lineno, line) configparser.MissingSectionHeaderError: File contains no section headers. ``` I wanted to look from the bottom to find out which f caused it and what it was. when I added print and reran it, the code was correct. ![image](https://github.com/user-attachments/assets/635d5cf7-2caf-4dd8-9204-4fa4b212ae57)
closed
2025-01-11T02:39:09Z
2025-01-14T09:38:54Z
https://github.com/pydantic/pydantic-settings/issues/520
[ "unconfirmed" ]
yejue
5
netbox-community/netbox
django
17,980
FrontPort count gets wrong when doing bulk create
### Deployment Type Self-hosted ### Triage priority N/A ### NetBox Version v4.1.4 ### Python Version 3.12 ### Steps to Reproduce 1. Create a DeviceType with FrontPorts 2. Create a Device using the DeviceType 3. Delete all FrontPorts, there are now zero FrontPorts 4. Add the add_device_type_components.py script as custom script, https://github.com/netbox-community/customizations/blob/master/scripts/add_device_type_components.py 5. Import DeviceType component via custom script. 6. Check the Device, there is no tab for FronPorts due to "front_port_count" is 0 7. If editing URL to get FrontPorts by appending /front-ports/ to URL you will see them 8. If now deleting them again the number of FronPorts will now be a minus number ### Expected Behavior I expect the front_port_count should be related to the number of front ports on the device ### Observed Behavior Below is output from API for device After running script ``` { < snip snip > "created": "2024-11-11T13:49:51.948244Z", "last_updated": "2024-11-11T13:49:51.948265Z", "console_port_count": 0, "console_server_port_count": 0, "power_port_count": 0, "power_outlet_count": 0, "interface_count": 0, "front_port_count": 0, "rear_port_count": 1, "device_bay_count": 0, "module_bay_count": 0, "inventory_item_count": 0 } ``` After deleting the front ports again ``` { < snip snip > "created": "2024-11-11T13:49:51.948244Z", "last_updated": "2024-11-11T13:49:51.948265Z", "console_port_count": 0, "console_server_port_count": 0, "power_port_count": 0, "power_outlet_count": 0, "interface_count": 0, "front_port_count": -16, "rear_port_count": 1, "device_bay_count": 0, "module_bay_count": 0, "inventory_item_count": 0 } ``` ![image](https://github.com/user-attachments/assets/195bcba4-c101-4d21-a32a-4a32110c278d)
closed
2024-11-11T14:07:29Z
2025-02-11T03:04:25Z
https://github.com/netbox-community/netbox/issues/17980
[]
blipnet
1
autogluon/autogluon
scikit-learn
4,924
[timeseries] Is it possible to get metrics per group/per series id?
### Discussed in https://github.com/autogluon/autogluon/discussions/4920 <div type='discussions-op-text'> <sup>Originally posted by **lucharo** February 22, 2025</sup> As the question says, I'd like to get metrics per series id</div>
open
2025-02-24T09:24:17Z
2025-02-24T09:24:18Z
https://github.com/autogluon/autogluon/issues/4924
[ "enhancement", "module: timeseries" ]
shchur
0
slackapi/bolt-python
fastapi
598
How to use the python bolt decorator function inside a class
Hi, I am using slack_bolt for development, I found that slack commands and events can be handled by passing a decorator function like `@app.events("event_name")` or `@app.command("/command_name")`, I want to module the handler as class methods, but the decorator function seems not supported for the class Methods, I have tried calling it as a function also ``` class A: ..... def calc(): pass ``` app.action("/command_name")(A().calc), but still my endpoint is not hitting. Is there a way I can achieve this?I appreciate any help over here.
closed
2022-02-22T13:21:16Z
2022-03-03T22:47:13Z
https://github.com/slackapi/bolt-python/issues/598
[ "question" ]
mohan-raheja
3
tflearn/tflearn
tensorflow
751
MemoryError when running convnet_cifar10.py
I'm getting a MemoryError when running the convnet_cifar10.py built-in example. It seems like the error is generated by tflearn.data_utils.shuffle(). Is anyone else experiencing this issue when running this example?
closed
2017-05-12T13:53:50Z
2017-05-17T12:39:39Z
https://github.com/tflearn/tflearn/issues/751
[]
octy40
2
AutoGPTQ/AutoGPTQ
nlp
162
ๅŠ ไธŠ็™พๅทๆจกๅž‹
ๅฆ‚้ข˜
closed
2023-06-18T09:01:50Z
2023-06-18T23:26:31Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/162
[]
Minami-su
2
ResidentMario/geoplot
matplotlib
209
what does clip in kdeplot take?
Hi, I'm trying to do a kdeplot of points in the ocean. Naturally the heatmap extends onto land. I want to clip this away using e.g. the shapes from cartopy.feature.LAND or coastline or similar. Whenever I pass in a shape (multipolygon) I get an error about mismatching number of values (there is not the same amount of polygons as rows I am trying to plot). From the boroughs example I see that this is not necessary, but how are they associated. And how can I do this with one giant shape (the ocean)? Thanks for this package!
closed
2020-03-24T10:44:33Z
2020-03-30T00:34:50Z
https://github.com/ResidentMario/geoplot/issues/209
[]
gauteh
1
microsoft/MMdnn
tensorflow
822
Bug report
https://github.com/microsoft/MMdnn/blob/d34caa49d657bba391460decb9575ba228e47721/mmdnn/conversion/caffe/graph.py#L302 if `v=np.array(2.3)` , error raise :`TypeError: reduce() of empty sequence with no initial value`
open
2020-04-14T11:52:24Z
2020-04-15T01:30:42Z
https://github.com/microsoft/MMdnn/issues/822
[]
iamhankai
1
vanna-ai/vanna
data-visualization
312
SQL datetime format returns as integer value in Vanna flask app
while returning query results , Vanna App converts datetime fields into UNIX time format. how can i return the results in readable formats like "dd-MM-yyyy HH:mm:ss". i have tried adding in documentation like `vn.train(documentation="Use dd-MM-yyyy HH:mm:ss format for sql field with type datetime2(0)")` but couldnt find any changes. see attached image ![image](https://github.com/vanna-ai/vanna/assets/16642260/bcede34c-70cf-4ac9-b5e7-b724492031fa)
closed
2024-03-25T05:50:32Z
2024-04-01T21:29:01Z
https://github.com/vanna-ai/vanna/issues/312
[ "bug" ]
akhilvk
2
OpenVisualCloud/CDN-Transcode-Sample
dash
102
[Feature][Q1'20] Write native Kubernetes yaml files to remove the usage of Kompose and docker-compose
closed
2019-11-26T01:58:41Z
2020-06-10T05:03:04Z
https://github.com/OpenVisualCloud/CDN-Transcode-Sample/issues/102
[ "enhancement" ]
wenquan-mao
1
python-gino/gino
asyncio
141
Handle SQLAlchemy prefetch
* GINO version: 0.5, 0.6 * Python version: 3.6 ### Description Some clause element may cause prefetch in SQLAlchemy, for example: ``` User.insert().values(nickname=random_name) ``` (without `returning`)
closed
2018-02-18T09:17:09Z
2018-03-19T08:59:02Z
https://github.com/python-gino/gino/issues/141
[ "bug", "help wanted" ]
fantix
0
ipython/ipython
jupyter
14,082
Produce nightly wheels
We're working on [CI recommendations for projects](https://scientific-python.org/specs/spec-0005/) recommended for projects. One of these is to test against the developer version of their dependencies. In order to do this efficiently, widely-used projects, like ipython, should build and upload nightly wheels to a [somewhat central location](https://anaconda.org/scientific-python-nightly-wheels).
closed
2023-05-22T18:08:08Z
2023-05-22T23:57:34Z
https://github.com/ipython/ipython/issues/14082
[]
bsipocz
1
paperless-ngx/paperless-ngx
machine-learning
7,470
[BUG] User cannot login after upgrade
### Description User cannot login after Upgrade from 2.11.0 to 2.11.4 However, Admin can login. ### Steps to reproduce Load Login page. login as regular user. ### Webserver logs ```bash {"headers":{"normalizedNames":{},"lazyUpdate":null},"status":403,"statusText":"OK","url":"https://docs.my.domain/api/ui_settings/","ok":false,"name":"HttpErrorResponse","message":"Http failure response for https://docs.my.domain/api/ui_settings/: 403 OK","error":{"detail":"Sie sind nicht berechtigt diese Aktion durchzufรผhren."}} ``` ### Browser logs _No response_ ### Paperless-ngx version 2.11.4 ### Host OS Ubuntu 22.04 ### Installation method Bare metal ### System status ```json { "pngx_version": "2.11.4", "server_os": "Linux-6.8.12-1-pve-x86_64-with-glibc2.31", "install_type": "bare-metal", "storage": { "total": 21474836480, "available": 21346254848 }, "database": { "type": "postgresql", "url": "paperless", "status": "OK", "error": null, "migration_status": { "latest_migration": "paperless_mail.0001_initial_squashed_0009_mailrule_assign_tags", "unapplied_migrations": [] } }, "tasks": { "redis_url": "redis://localhost:6379", "redis_status": "OK", "redis_error": null, "celery_status": "OK", "index_status": "OK", "index_last_modified": "2024-07-04T00:00:01.886143+02:00", "index_error": null, "classifier_status": "WARNING", "classifier_last_trained": null, "classifier_error": "Classifier file does not exist (yet). Re-training may be pending." } } ``` ### Browser Edge ### Configuration changes none ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
closed
2024-08-14T19:27:30Z
2024-09-14T03:04:25Z
https://github.com/paperless-ngx/paperless-ngx/issues/7470
[ "not a bug" ]
manuelkamp
3
graphdeco-inria/gaussian-splatting
computer-vision
1,185
The proper way of getting C2W matrix from self.world_view_transform?
Hi, thanks for your amazing code work, we are able to access to W2C matrix(= [self.world_view_transform](https://github.com/graphdeco-inria/gaussian-splatting/blob/main/scene/cameras.py#L86)) here. However, the code for the function ```getWorld2View2``` is very tricky; [The function](https://github.com/graphdeco-inria/gaussian-splatting/blob/main/utils/graphics_utils.py#L38) that I'm confused with the way of getting the proper C2W matrix from ``` self.world_view_transform```. Do I need to 1. transpose 0th and 1st dimension against ``` self.world_view_transform``` and 2. apply the inverse function (just following the exact reverse step)? Thanks, Junyeong Ahn
open
2025-03-10T07:27:49Z
2025-03-11T17:22:33Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/1185
[]
justin4ai
3
serengil/deepface
deep-learning
532
load_image is not same from url or from file
```python # in colab from deepface.commons import functions import numpy as np url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/45/MontreGousset001.jpg/440px-MontreGousset001.jpg" file = "440px-MontreGousset001.jpg" !wget {url} -O {file} -q img_from_url = functions.load_image(url) img_from_file = functions.load_image(file) print(np.abs(img_from_url-img_from_file).mean()) # 98.4184350027692 ``` https://github.com/serengil/deepface/blob/ba9f56755abdc9d1d80777d7680c4267d5d5e0e9/deepface/commons/functions.py#L85-L92 The reason is because you convert the image to RBG with url And for file, you use cv2.imread, the default setting is rgb Please align those two methods
closed
2022-08-10T19:20:50Z
2023-03-01T14:22:21Z
https://github.com/serengil/deepface/issues/532
[ "dependencies" ]
mistake0316
2
errbotio/errbot
automation
994
Enable a hook on unknown_command
### I am... * [ ] Reporting a bug * [x] Suggesting a new feature * [ ] Requesting help with running my bot * [ ] Requesting help writing plugins * [ ] Here about something else ### I am running... * Errbot version: 4.3.7 * OS version: Fedora 25 * Python version: 3.5 * Using a virtual environment: yes ### Issue description I would like to have an option to replace, by a hook system, the unknown_command feature, this will enable a command to handle the unknown command situation. **Rationale**: Check Additional Info. The idea is to let one or more command to hook in the unknown_command to handle it in the desired way, keeping the current default behavior as a last step: The basic idea is to: - Get into the unknown_command. - Dispatch the signal to the registered commands. - The command do their magic as needed. - Each register command can respond with 2 options: - A tuple or dict with: - A "message" string, that "adds" to the final response of the unknown_command response. - A "mask" boolean, that indicate if the default message of the default behavior get masked or not. - A None witch means that the default behavior will be done. Additional explanation in Additional Info. ### Steps to reproduce - None ### Additional info #### Rationale: - Statistics: Let me know how many times the unknown command happens. - Abuse Control: Detect people that coming to "play" with us. - Default behavior change: Modify the current friendly behavior for a custom one. #### Additional explanation: - With one plugin registered only is straightforward how it works. - With two or more plugins the things became a little more complex, so: 1. All the commands make a response in the way it needs to do it, the base unknown_command handler receive all the outputs, making a list of each command response. 2. Check each command response and if anyone "masks" the default output, the output get masked. 3. Also there is a couple of things to account: - There is no ensured order of execution, so each registered command can't rely on this. - The command can't rely on the default behavior as it can be masked by another command. I might start to work on some on this, but **i want to first come with some discussion about the implementation, so, shoot your ideas!.**
closed
2017-04-17T22:36:27Z
2021-08-15T05:41:03Z
https://github.com/errbotio/errbot/issues/994
[ "type: feature" ]
qlixed
1
tqdm/tqdm
jupyter
727
external_write_mode doesn't clear instances on python 2
The following example script output is quite messed up on Python 2.7: ``` from tqdm import tqdm, trange from time import sleep for i in trange(10, desc='outer'): for j in trange(10, desc='inner'): # Print using tqdm class method .write() sleep(0.1) if not (j % 3): tqdm.write("Done task %i.%i" % (i,j)) ``` The issue seems to be the code that locates other instances sharing the same underlying fp -- on Python 2, this gets wrapped by SimpleTextIOWrapper, so then the comparisons of the fps with each other and with stdout never succeed, and the 'clear' code doesn't execute.
closed
2019-05-07T05:12:48Z
2020-03-28T21:57:43Z
https://github.com/tqdm/tqdm/issues/727
[ "to-fix โŒ›", "p2-bug-warning โš " ]
toddlipcon
0
pallets/flask
flask
5,353
Cannot import Markup from flask (v3.0.0)
<!-- This issue tracker is a tool to address bugs in Flask itself. Please use Pallets Discord or Stack Overflow for questions about your own code. Replace this comment with a clear outline of what the bug is. --> <!-- Describe how to replicate the bug. Include a minimal reproducible example that demonstrates the bug. Include the full traceback if there was an exception. --> As [previously reported](https://github.com/pallets/flask/issues/5084). ### A ```python import flask print(flask.Markup('hi')) ``` ```text Traceback (most recent call last): File "/tmp/fl/mu1.py", line 3, in <module> print(flask.Markup('hi')) File "/tmp/fl/.venv/lib/python3.10/site-packages/flask/__init__.py", line 60, in __getattr__ raise AttributeError(name) AttributeError: Markup ``` ### B ```python from flask import Markup print(Markup('hi')) ``` ``` Traceback (most recent call last): File "/tmp/fl/mu2.py", line 1, in <module> from flask import Markup ImportError: cannot import name 'Markup' from 'flask' (/tmp/fl/.venv/lib/python3.10/site-packages/flask/__init__.py) ``` <!-- Describe the expected behavior that should have happened but didn't. --> Environment: - Python version: 3.10.12 - Flask version: 3.0.0 - (and flask-misaka-1.0.0 but I don't think that's relevant)
closed
2023-12-04T18:01:45Z
2023-12-19T00:06:09Z
https://github.com/pallets/flask/issues/5353
[]
unsliced
1
vanna-ai/vanna
data-visualization
315
Support for choosing number of follow-up questions to be generated
**Is your feature request related to a problem? Please describe.** Right now, it does not seem like Vanna chooses how many follow-up questions to be generated by the LLM. As per the code: https://github.com/vanna-ai/vanna/blob/c8201f5d2c3fc1aecb95d47e4c7c6703baf39a7c/src/vanna/base/base.py#L170 It would also make sense to have a default number of follow-up questions to be generated, say 3. **Describe the solution you'd like** An API to choose how many follow-up questions to suggest (could make completion faster if fewer suggestions are of interest). I can make a PR to address this feature request.
closed
2024-03-25T15:26:44Z
2024-04-05T12:30:49Z
https://github.com/vanna-ai/vanna/issues/315
[]
andreped
0
pyg-team/pytorch_geometric
pytorch
8,856
[Bug] HeteroData.to_homogeneous() doesn't handle the train/val/test mask correctly
### ๐Ÿ› Describe the bug When converting a heterogeneous graph to a homogeneous graph using HeteroData.to_homogeneous(), the train/val/test mask is not masking the correct node. The following is an example to reproduce it: ```Python from torch_geometric.datasets import OGB_MAG dataset = OGB_MAG() data = dataset[0] homo = data.to_homogeneous() print(data['paper'].y[data['paper'].train_mask]) # This is the correct masked training set print(homo.y[homo.train_mask]) # You will see -1 in the output label, which means irrelevant node got masked. OGB_MAG has -1 label for those nodes not in the train/val/test set. print(data['paper'].y[data['paper'].train_mask].sum() == homo.y[homo.train_mask].sum()) # And the label sum does not equal ``` The above code snippet generates the following output: ``` tensor([246, 131, 189, ..., 266, 289, 1]) # This is the correct masked training set tensor([246, 131, 189, ..., -1, -1, -1]) # You will see -1 in the output label, which means irrelevant node got masked. OGB_MAG has -1 label for those nodes not in the train/val/test set. tensor(False) # And the label sum does not equal ``` ### Versions PyTorch version: 1.12.1 Is debug build: False CUDA used to build PyTorch: 11.4 ROCM used to build PyTorch: N/A OS: Red Hat Enterprise Linux release 8.3 (Ootpa) (ppc64le) GCC version: (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5) Clang version: Could not collect CMake version: version 3.11.4 Libc version: glibc-2.28 Python version: 3.9.18 (main, Sep 11 2023, 14:34:07) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-240.el8.ppc64le-ppc64le-with-glibc2.28 Is CUDA available: True CUDA runtime version: 11.4.152 CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: Tesla V100-SXM2-32GB GPU 1: Tesla V100-SXM2-32GB GPU 2: Tesla V100-SXM2-32GB GPU 3: Tesla V100-SXM2-32GB Nvidia driver version: 535.86.10 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: False CPU: Architecture: ppc64le Byte Order: Little Endian CPU(s): 160 On-line CPU(s) list: 0,1,4,5,8,9,12,13,16,17,20,21,24,25,28,29,32,33,36,37,40,41,44,45,48,49,52,53,56,57,60,61,64,65,68,69,72,73,76,77,80,81,84,85,88,89,92,93,96,97,100,101,104,105,108,109,112,113,116,117,120,121,124,125,128,129,132,133,136,137,140,141,144,145,148,149,152,153,156,157 Off-line CPU(s) list: 2,3,6,7,10,11,14,15,18,19,22,23,26,27,30,31,34,35,38,39,42,43,46,47,50,51,54,55,58,59,62,63,66,67,70,71,74,75,78,79,82,83,86,87,90,91,94,95,98,99,102,103,106,107,110,111,114,115,118,119,122,123,126,127,130,131,134,135,138,139,142,143,146,147,150,151,154,155,158,159 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 NUMA node(s): 6 Model: 2.1 (pvr 004e 1201) Model name: POWER9, altivec supported CPU max MHz: 3800.0000 CPU min MHz: 2300.0000 L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 10240K NUMA node0 CPU(s): 0,1,4,5,8,9,12,13,16,17,20,21,24,25,28,29,32,33,36,37,40,41,44,45,48,49,52,53,56,57,60,61,64,65,68,69,72,73,76,77 NUMA node8 CPU(s): 80,81,84,85,88,89,92,93,96,97,100,101,104,105,108,109,112,113,116,117,120,121,124,125,128,129,132,133,136,137,140,141,144,145,148,149,152,153,156,157 NUMA node252 CPU(s): NUMA node253 CPU(s): NUMA node254 CPU(s): NUMA node255 CPU(s): Versions of relevant libraries: [pip3] botorch==0.8.5 [pip3] gpytorch==1.10 [pip3] numpy==1.23.5 [pip3] numpydoc==1.6.0 [pip3] performer-pytorch==1.1.4 [pip3] pytorch-lightning==2.1.3 [pip3] torch==1.12.1 [pip3] torch-cluster==1.6.3 [pip3] torch-geometric==2.3.0 [pip3] torch-scatter==2.1.2 [pip3] torch-sparse==0.6.18 [pip3] torchmetrics==0.11.4 [pip3] torchtext==0.13.1a0+35066f2 [pip3] torchvision==0.13.1 [conda] _pytorch_select 2.0 cuda_2 https://ftp.osuosl.org/pub/open-ce/current [conda] botorch 0.8.5 0 pytorch [conda] cudatoolkit 11.4.4 h5d40d8d_10 https://opence.mit.edu [conda] cudatoolkit-dev 11.4.4 h13ae079_2 https://opence.mit.edu [conda] gpytorch 1.10 0 gpytorch [conda] linear_operator 0.4.0 0 gpytorch [conda] numpy 1.23.5 py39h181cc9a_0 [conda] numpy-base 1.23.5 py39h1bde650_0 [conda] numpydoc 1.6.0 pypi_0 pypi [conda] performer-pytorch 1.1.4 pypi_0 pypi [conda] pytorch 1.12.1 cuda11.4_py39_1 https://opence.mit.edu [conda] pytorch-base 1.12.1 cuda11.4_py39_pb3.19_2 https://opence.mit.edu [conda] pytorch-lightning 2.1.3 pypi_0 pypi [conda] pytorch_geometric 2.4.0 pyhd8ed1ab_0 conda-forge [conda] torch-cluster 1.6.3 pypi_0 pypi [conda] torch-geometric 2.3.0 pypi_0 pypi [conda] torch-scatter 2.1.2 pypi_0 pypi [conda] torch-sparse 0.6.18 pypi_0 pypi [conda] torchmetrics 1.1.2 pypi_0 pypi [conda] torchtext-base 0.13.1 cuda11.4_py39_1 https://opence.mit.edu [conda] torchvision-base 0.13.1 cuda11.4_py39_1 https://opence.mit.edu
closed
2024-02-02T21:02:41Z
2024-02-03T20:25:37Z
https://github.com/pyg-team/pytorch_geometric/issues/8856
[ "bug" ]
junhongmit
1
gradio-app/gradio
deep-learning
10,043
gr.Request for ChatInterface
### Describe the bug I can't seem to understand how to get gr.Request working for ChatInterface. I continue to get the error message `Exception: PrivateGptUi._chat() missing 1 required keyword-only argument: 'request'. Please help ### Have you searched existing issues? ๐Ÿ”Ž - [X] I have searched and found no existing issues ### Reproduction """This file should be imported if and only if you want to run the UI locally.""" import base64 import logging import time from collections.abc import Iterable from enum import Enum from pathlib import Path from typing import Any import gradio as gr # type: ignore from fastapi import FastAPI from gradio.themes.utils.colors import slate # type: ignore from injector import inject, singleton from llama_index.core.llms import ChatMessage, ChatResponse, MessageRole from llama_index.core.types import TokenGen from pydantic import BaseModel from private_gpt.constants import PROJECT_ROOT_PATH from private_gpt.di import global_injector from private_gpt.open_ai.extensions.context_filter import ContextFilter from private_gpt.server.chat.chat_service import ChatService, CompletionGen from private_gpt.server.chunks.chunks_service import Chunk, ChunksService from private_gpt.server.ingest.ingest_service import IngestService from private_gpt.server.recipes.summarize.summarize_service import SummarizeService from private_gpt.settings.settings import settings from private_gpt.ui.images import logo_svg logger = logging.getLogger(__name__) THIS_DIRECTORY_RELATIVE = Path(__file__).parent.relative_to(PROJECT_ROOT_PATH) # Should be "private_gpt/ui/avatar-bot.ico" AVATAR_BOT = THIS_DIRECTORY_RELATIVE / "avatar-bot.ico" UI_TAB_TITLE = "My Private GPT" SOURCES_SEPARATOR = "<hr>Sources: \n" class Modes(str, Enum): RAG_MODE = "RAG" SEARCH_MODE = "Search" BASIC_CHAT_MODE = "Basic" SUMMARIZE_MODE = "Summarize" MODES: list[Modes] = [ Modes.RAG_MODE, Modes.SEARCH_MODE, Modes.BASIC_CHAT_MODE, Modes.SUMMARIZE_MODE, ] class Source(BaseModel): file: str page: str text: str class Config: frozen = True @staticmethod def curate_sources(sources: list[Chunk]) -> list["Source"]: curated_sources = [] for chunk in sources: doc_metadata = chunk.document.doc_metadata file_name = doc_metadata.get("file_name", "-") if doc_metadata else "-" page_label = doc_metadata.get("page_label", "-") if doc_metadata else "-" source = Source(file=file_name, page=page_label, text=chunk.text) curated_sources.append(source) curated_sources = list( dict.fromkeys(curated_sources).keys() ) # Unique sources only return curated_sources @singleton class PrivateGptUi: @inject def __init__( self, ingest_service: IngestService, chat_service: ChatService, chunks_service: ChunksService, summarizeService: SummarizeService, ) -> None: self._ingest_service = ingest_service self._chat_service = chat_service self._chunks_service = chunks_service self._summarize_service = summarizeService # Cache the UI blocks self._ui_block = None self._selected_filename = None # Initialize system prompt based on default mode default_mode_map = {mode.value: mode for mode in Modes} self._default_mode = default_mode_map.get( settings().ui.default_mode, Modes.RAG_MODE ) self._system_prompt = self._get_default_system_prompt(self._default_mode) def _chat( self, message: str, history: list[list[str]], mode: Modes, *_: Any ) -> Any: def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]: full_response: str = "" stream = completion_gen.response for delta in stream: if isinstance(delta, str): full_response += str(delta) elif isinstance(delta, ChatResponse): full_response += delta.delta or "" yield full_response time.sleep(0.02) if completion_gen.sources: full_response += SOURCES_SEPARATOR cur_sources = Source.curate_sources(completion_gen.sources) sources_text = "\n\n\n" used_files = set() for index, source in enumerate(cur_sources, start=1): if f"{source.file}-{source.page}" not in used_files: sources_text = ( sources_text + f"{index}. {source.file} (page {source.page}) \n\n" ) used_files.add(f"{source.file}-{source.page}") sources_text += "<hr>\n\n" full_response += sources_text yield full_response def yield_tokens(token_gen: TokenGen) -> Iterable[str]: full_response: str = "" for token in token_gen: full_response += str(token) yield full_response def build_history() -> list[ChatMessage]: history_messages: list[ChatMessage] = [] for interaction in history: history_messages.append( ChatMessage(content=interaction[0], role=MessageRole.USER) ) if len(interaction) > 1 and interaction[1] is not None: history_messages.append( ChatMessage( # Remove from history content the Sources information content=interaction[1].split(SOURCES_SEPARATOR)[0], role=MessageRole.ASSISTANT, ) ) # max 20 messages to try to avoid context overflow return history_messages[:20] new_message = ChatMessage(content=message, role=MessageRole.USER) all_messages = [*build_history(), new_message] # If a system prompt is set, add it as a system message if self._system_prompt: all_messages.insert( 0, ChatMessage( content=self._system_prompt, role=MessageRole.SYSTEM, ), ) match mode: case Modes.RAG_MODE: # Use only the selected file for the query context_filter = None if self._selected_filename is not None: docs_ids = [] for ingested_document in self._ingest_service.list_ingested(): if ( ingested_document.doc_metadata["file_name"] == self._selected_filename ): docs_ids.append(ingested_document.doc_id) context_filter = ContextFilter(docs_ids=docs_ids) query_stream = self._chat_service.stream_chat( messages=all_messages, use_context=True, context_filter=context_filter, ) yield from yield_deltas(query_stream) case Modes.BASIC_CHAT_MODE: llm_stream = self._chat_service.stream_chat( messages=all_messages, use_context=False, ) yield from yield_deltas(llm_stream) case Modes.SEARCH_MODE: response = self._chunks_service.retrieve_relevant( text=message, limit=4, prev_next_chunks=0 ) sources = Source.curate_sources(response) yield "\n\n\n".join( f"{index}. **{source.file} " f"(page {source.page})**\n " f"{source.text}" for index, source in enumerate(sources, start=1) ) case Modes.SUMMARIZE_MODE: # Summarize the given message, optionally using selected files context_filter = None if self._selected_filename: docs_ids = [] for ingested_document in self._ingest_service.list_ingested(): if ( ingested_document.doc_metadata["file_name"] == self._selected_filename ): docs_ids.append(ingested_document.doc_id) context_filter = ContextFilter(docs_ids=docs_ids) summary_stream = self._summarize_service.stream_summarize( use_context=True, context_filter=context_filter, instructions=message, ) yield from yield_tokens(summary_stream) # On initialization and on mode change, this function set the system prompt # to the default prompt based on the mode (and user settings). @staticmethod def _get_default_system_prompt(mode: Modes) -> str: p = "" match mode: # For query chat mode, obtain default system prompt from settings case Modes.RAG_MODE: p = settings().ui.default_query_system_prompt # For chat mode, obtain default system prompt from settings case Modes.BASIC_CHAT_MODE: p = settings().ui.default_chat_system_prompt # For summarization mode, obtain default system prompt from settings case Modes.SUMMARIZE_MODE: p = settings().ui.default_summarization_system_prompt # For any other mode, clear the system prompt case _: p = "" return p @staticmethod def _get_default_mode_explanation(mode: Modes) -> str: match mode: case Modes.RAG_MODE: return "Get contextualized answers from selected files." case Modes.SEARCH_MODE: return "Find relevant chunks of text in selected files." case Modes.BASIC_CHAT_MODE: return "Chat with the LLM using its training data. Files are ignored." case Modes.SUMMARIZE_MODE: return "Generate a summary of the selected files. Prompt to customize the result." case _: return "" def _set_system_prompt(self, system_prompt_input: str) -> None: logger.info(f"Setting system prompt to: {system_prompt_input}") self._system_prompt = system_prompt_input def _set_explanatation_mode(self, explanation_mode: str) -> None: self._explanation_mode = explanation_mode def _set_current_mode(self, mode: Modes) -> Any: self.mode = mode self._set_system_prompt(self._get_default_system_prompt(mode)) self._set_explanatation_mode(self._get_default_mode_explanation(mode)) interactive = self._system_prompt is not None return [ gr.update(placeholder=self._system_prompt, interactive=interactive), gr.update(value=self._explanation_mode), ] def _list_ingested_files(self) -> list[list[str]]: files = set() for ingested_document in self._ingest_service.list_ingested(): if ingested_document.doc_metadata is None: # Skipping documents without metadata continue file_name = ingested_document.doc_metadata.get( "file_name", "[FILE NAME MISSING]" ) files.add(file_name) return [[row] for row in files] def _upload_file(self, files: list[str]) -> None: logger.debug("Loading count=%s files", len(files)) paths = [Path(file) for file in files] # remove all existing Documents with name identical to a new file upload: file_names = [path.name for path in paths] doc_ids_to_delete = [] for ingested_document in self._ingest_service.list_ingested(): if ( ingested_document.doc_metadata and ingested_document.doc_metadata["file_name"] in file_names ): doc_ids_to_delete.append(ingested_document.doc_id) if len(doc_ids_to_delete) > 0: logger.info( "Uploading file(s) which were already ingested: %s document(s) will be replaced.", len(doc_ids_to_delete), ) for doc_id in doc_ids_to_delete: self._ingest_service.delete(doc_id) self._ingest_service.bulk_ingest([(str(path.name), path) for path in paths]) def _delete_all_files(self) -> Any: ingested_files = self._ingest_service.list_ingested() logger.debug("Deleting count=%s files", len(ingested_files)) for ingested_document in ingested_files: self._ingest_service.delete(ingested_document.doc_id) return [ gr.List(self._list_ingested_files()), gr.components.Button(interactive=False), gr.components.Button(interactive=False), gr.components.Textbox("All files"), ] def _delete_selected_file(self) -> Any: logger.debug("Deleting selected %s", self._selected_filename) # Note: keep looping for pdf's (each page became a Document) for ingested_document in self._ingest_service.list_ingested(): if ( ingested_document.doc_metadata and ingested_document.doc_metadata["file_name"] == self._selected_filename ): self._ingest_service.delete(ingested_document.doc_id) return [ gr.List(self._list_ingested_files()), gr.components.Button(interactive=False), gr.components.Button(interactive=False), gr.components.Textbox("All files"), ] def _deselect_selected_file(self) -> Any: self._selected_filename = None return [ gr.components.Button(interactive=False), gr.components.Button(interactive=False), gr.components.Textbox("All files"), ] def _selected_a_file(self, select_data: gr.SelectData) -> Any: self._selected_filename = select_data.value return [ gr.components.Button(interactive=True), gr.components.Button(interactive=True), gr.components.Textbox(self._selected_filename), ] def _build_ui_blocks(self) -> gr.Blocks: logger.debug("Creating the UI blocks") with gr.Blocks( title=UI_TAB_TITLE, theme=gr.themes.Soft(primary_hue=slate), css=".logo { " "display:flex;" "background-color: #C7BAFF;" "height: 80px;" "border-radius: 8px;" "align-content: center;" "justify-content: center;" "align-items: center;" "}" ".logo img { height: 25% }" ".contain { display: flex !important; flex-direction: column !important; }" "#component-0, #component-3, #component-10, #component-8 { height: 100% !important; }" "#chatbot { flex-grow: 1 !important; overflow: auto !important;}" "#col { height: calc(100vh - 112px - 16px) !important; }" "hr { margin-top: 1em; margin-bottom: 1em; border: 0; border-top: 1px solid #FFF; }" ".avatar-image { background-color: antiquewhite; border-radius: 2px; }" ".footer { text-align: center; margin-top: 20px; font-size: 14px; display: flex; align-items: center; justify-content: center; }" ".footer-zylon-link { display:flex; margin-left: 5px; text-decoration: auto; color: var(--body-text-color); }" ".footer-zylon-link:hover { color: #C7BAFF; }" ".footer-zylon-ico { height: 20px; margin-left: 5px; background-color: antiquewhite; border-radius: 2px; }", ) as blocks: with gr.Row(): gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div") with gr.Row(equal_height=False): with gr.Column(scale=3): default_mode = self._default_mode mode = gr.Radio( [mode.value for mode in MODES], label="Mode", value=default_mode, ) explanation_mode = gr.Textbox( placeholder=self._get_default_mode_explanation(default_mode), show_label=False, max_lines=3, interactive=False, ) upload_button = gr.components.UploadButton( "Upload File(s)", type="filepath", file_count="multiple", size="sm", ) ingested_dataset = gr.List( self._list_ingested_files, headers=["File name"], label="Ingested Files", height=235, interactive=False, render=False, # Rendered under the button ) upload_button.upload( self._upload_file, inputs=upload_button, outputs=ingested_dataset, ) ingested_dataset.change( self._list_ingested_files, outputs=ingested_dataset, ) ingested_dataset.render() deselect_file_button = gr.components.Button( "De-select selected file", size="sm", interactive=False ) selected_text = gr.components.Textbox( "All files", label="Selected for Query or Deletion", max_lines=1 ) delete_file_button = gr.components.Button( "๐Ÿ—‘๏ธ Delete selected file", size="sm", visible=settings().ui.delete_file_button_enabled, interactive=False, ) delete_files_button = gr.components.Button( "โš ๏ธ Delete ALL files", size="sm", visible=settings().ui.delete_all_files_button_enabled, ) deselect_file_button.click( self._deselect_selected_file, outputs=[ delete_file_button, deselect_file_button, selected_text, ], ) ingested_dataset.select( fn=self._selected_a_file, outputs=[ delete_file_button, deselect_file_button, selected_text, ], ) delete_file_button.click( self._delete_selected_file, outputs=[ ingested_dataset, delete_file_button, deselect_file_button, selected_text, ], ) delete_files_button.click( self._delete_all_files, outputs=[ ingested_dataset, delete_file_button, deselect_file_button, selected_text, ], ) system_prompt_input = gr.Textbox( placeholder=self._system_prompt, label="System Prompt", lines=2, interactive=True, render=False, ) # When mode changes, set default system prompt, and other stuffs mode.change( self._set_current_mode, inputs=mode, outputs=[system_prompt_input, explanation_mode], ) # On blur, set system prompt to use in queries system_prompt_input.blur( self._set_system_prompt, inputs=system_prompt_input, ) def get_model_label() -> str | None: """Get model label from llm mode setting YAML. Raises: ValueError: If an invalid 'llm_mode' is encountered. Returns: str: The corresponding model label. """ # Get model label from llm mode setting YAML # Labels: local, openai, openailike, sagemaker, mock, ollama config_settings = settings() if config_settings is None: raise ValueError("Settings are not configured.") # Get llm_mode from settings llm_mode = config_settings.llm.mode # Mapping of 'llm_mode' to corresponding model labels model_mapping = { "llamacpp": config_settings.llamacpp.llm_hf_model_file, "openai": config_settings.openai.model, "openailike": config_settings.openai.model, "azopenai": config_settings.azopenai.llm_model, "sagemaker": config_settings.sagemaker.llm_endpoint_name, "mock": llm_mode, "ollama": config_settings.ollama.llm_model, "gemini": config_settings.gemini.model, } if llm_mode not in model_mapping: print(f"Invalid 'llm mode': {llm_mode}") return None return model_mapping[llm_mode] with gr.Column(scale=7, elem_id="col"): # Determine the model label based on the value of PGPT_PROFILES model_label = get_model_label() if model_label is not None: label_text = ( f"LLM: {settings().llm.mode} | Model: {model_label}" ) else: label_text = f"LLM: {settings().llm.mode}" _ = gr.ChatInterface( self._chat, chatbot=gr.Chatbot( label=label_text, show_copy_button=True, elem_id="chatbot", render=False, avatar_images=( None, AVATAR_BOT, ), ), additional_inputs=[mode, upload_button, system_prompt_input], ) with gr.Row(): avatar_byte = AVATAR_BOT.read_bytes() f_base64 = f"data:image/png;base64,{base64.b64encode(avatar_byte).decode('utf-8')}" gr.HTML( f"<div class='footer'><a class='footer-zylon-link' href='https://zylon.ai/'>Maintained by Zylon <img class='footer-zylon-ico' src='{f_base64}' alt=Zylon></a></div>" ) return blocks def get_ui_blocks(self) -> gr.Blocks: if self._ui_block is None: self._ui_block = self._build_ui_blocks() return self._ui_block def mount_in_app(self, app: FastAPI, path: str) -> None: blocks = self.get_ui_blocks() blocks.queue() logger.info("Mounting the gradio UI, at path=%s", path) gr.mount_gradio_app(app, blocks, path=path, favicon_path=AVATAR_BOT) if __name__ == "__main__": ui = global_injector.get(PrivateGptUi) _blocks = ui.get_ui_blocks() _blocks.queue() _blocks.launch(debug=False, show_api=False) ### Screenshot _No response_ ### Logs _No response_ ### System Info ```shell Correct ``` ### Severity I can work around it
closed
2024-11-26T17:43:12Z
2024-11-27T17:47:49Z
https://github.com/gradio-app/gradio/issues/10043
[ "bug" ]
rmuhawieh
1
wkentaro/labelme
computer-vision
808
[BUG]
**Describe the bug** when I was trying to convert labelme annotations into the coco format I am not able to do it successfully. I have 196 json file I am trying to convert all files but the program for that labelme2coc.py executing only one JSON and the process terminated. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** ![image](https://user-images.githubusercontent.com/66372185/100826283-fae90c00-347f-11eb-9732-b29926da5817.png) **Desktop (please complete the following information):** - OS: [e.g. Ubuntu 18.04] - Labelme Version [e.g. 4.2.9] **Additional context** Add any other context about the problem here.
closed
2020-12-02T03:53:17Z
2022-09-26T14:39:40Z
https://github.com/wkentaro/labelme/issues/808
[ "issue::bug" ]
yashwant07
0
mars-project/mars
numpy
3,288
[BUG] xgboost 1.7: ImportError: cannot import name 'rabit' from 'xgboost'
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** A clear and concise description of what the bug is. ```python ctx = {'d115db169882b5c06d671c887024b11f_0': (array([[0.83104541, 0.80554386, 0.3985519 , ..., 0.72182508, 0.77294997, ...f43806cf2fd20aef4b6e34fc0468be5d_0': [b'DMLC_NUM_WORKER=1', b'DMLC_TRACKER_URI=127.0.0.1', b'DMLC_TRACKER_PORT=32911']} op = XGBTrain <key=d2d29ee95452257a278991ec8bb47865> @classmethod def execute(cls, ctx, op: "XGBTrain"): if op.merge: return super().execute(ctx, op) > from xgboost import train, rabit E ImportError: cannot import name 'rabit' from 'xgboost' (/home/vsts/miniconda/envs/test/lib/python3.9/site-packages/xgboost/__init__.py) mars/learn/contrib/xgboost/train.py:167: ImportError ``` **To Reproduce** To help us reproducing this bug, please provide information below: 1. Your Python version 2. The version of Mars you use 3. Versions of crucial packages, such as numpy, scipy and pandas 4. Full stack of the error. 5. Minimized code to reproduce the error. **Expected behavior** A clear and concise description of what you expected to happen. **Additional context** Add any other context about the problem here.
open
2022-11-02T03:41:04Z
2022-11-02T03:41:04Z
https://github.com/mars-project/mars/issues/3288
[ "type: bug" ]
fyrestone
0
piskvorky/gensim
nlp
2,995
Make the link to the Gensim 3.8.3 documentation dynamic
Clicking on the "Gensim 3.8.3 documentation" link in the header of the Gensim 4.0.0 documentation redirects the user to [the index page of the Gensim 3.8.3 documentation](https://radimrehurek.com/gensim_3.8.3/) rather than to the corresponding page, which is an unpleasant user experience. For example, try getting from [the 4.0.0 documentation of `gensim.models.phrases`](https://radimrehurek.com/gensim/models/phrases.html) to its 3.8.3 documentation. A quick fix would be to set an ID attribute on the link and add inline JavaScript code that would update the HREF attribute of the link according to the current value of `location.pathname`. https://github.com/RaRe-Technologies/gensim/blob/60a8f7f5599e241779b82f97d375a5046cb730c9/docs/src/sphinx_rtd_theme/notification.html#L2
closed
2020-11-04T00:03:47Z
2020-11-16T22:51:09Z
https://github.com/piskvorky/gensim/issues/2995
[ "bug", "documentation" ]
Witiko
0
microsoft/Bringing-Old-Photos-Back-to-Life
pytorch
57
Blur vs Motion-Blur on Text Image Restoration.
Hello. At first, Thanks for s sharing this amazing project. You guys have done a really good job. Currently, I'm going through your research paper. As you stated in the paper, the **local branch** targets the unstructured defects, such as noises and blurriness. This inspired me to try it over an ongoing problem about OCR ([here](https://stackoverflow.com/questions/64808986/scene-text-image-super-resolution-for-ocr)). Just to make a quick test, I've tried it on two cases, **gaussian blur** and **motion blur** text (with minimum acute). I've found that the model does a great job of restoring **gaussian blurry** text but not much on **motion blur**. Please see the results below, (`left-side`: normal image; `right-side`: restored image) ![two_soft](https://user-images.githubusercontent.com/17668390/100231334-0fde1080-2f51-11eb-962e-014afbdf8e1e.png) I believe that the model has much potential to restored more complex degraded raw samples. However, I like to know, in training time, was it ensured various blurring effects in the training data set? Or, to generalize the model on various blurry effects, do we need to fine-tune it?
closed
2020-11-25T13:16:25Z
2023-12-31T11:54:25Z
https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/issues/57
[]
innat
2
kennethreitz/records
sqlalchemy
117
query using params fail
![image](https://user-images.githubusercontent.com/12187260/33477756-d192345e-d6c1-11e7-8b2a-e4e06af87216.png)
closed
2017-12-01T10:02:58Z
2018-04-28T22:20:49Z
https://github.com/kennethreitz/records/issues/117
[ "bug" ]
EtheriousNatsu
1
tflearn/tflearn
data-science
636
Can't load checkpoint files with tensorflow version 1.0.0. model.load()
model.load(model_file='/home/murl/faces_expressions/Checkpoints/-191.data-00000-of-00001') does not work with the tf version 1.0.0. I get the error: Data loss: not an sstable (bad magic number): perhaps your file is in a different file format and you need to use a different restore operator? Anyone got a solution for that?
closed
2017-02-27T17:23:05Z
2017-03-14T21:36:15Z
https://github.com/tflearn/tflearn/issues/636
[]
emurina
3
babysor/MockingBird
deep-learning
205
ๆ— ๆณ•ๅ…‹้š†้™ค่‡ชๅธฆ็š„ไน‹ๅค–็š„ๅญ—๏ผŒๆ—ฅๅฟ—ไผšๅ‡บ็Žฐๅพช็Žฏ
![T%@ CPRK`$QY8FJ)NEY)%LK](https://user-images.githubusercontent.com/93983221/140914450-65a6f805-745c-4c6a-9d8a-b5fae4b921bc.png) ![image](https://user-images.githubusercontent.com/93983221/140914642-b266ae4a-0856-488b-a67d-6e6e0462ac13.png)
closed
2021-11-09T11:18:17Z
2021-11-09T13:08:54Z
https://github.com/babysor/MockingBird/issues/205
[ "bug" ]
Zhangyide114514
0
HumanSignal/labelImg
deep-learning
73
"width" and "height" fields in "size" dict is set to zero instead of real img dims
I was trying to fix up some bad VOC2012 annotations and this came up
closed
2017-03-30T08:38:14Z
2017-04-21T14:21:35Z
https://github.com/HumanSignal/labelImg/issues/73
[]
silcowitz
2
reloadware/reloadium
django
116
vscode support
## Describe the bug* extension for vscode
closed
2023-02-28T08:47:03Z
2023-02-28T12:48:32Z
https://github.com/reloadware/reloadium/issues/116
[]
diego351
1
marimo-team/marimo
data-visualization
3,783
Inconsistent data type of `table.value`
### Describe the bug I noticed that the data type of `table.value` changes when I sort the table. This only happens when the data is provided as a dictionary (`Dict[str, ListOrTuple[JSONType]]`), i.e. not when the data is provided as a list of dictionaries (`ListOrTuple[Dict[str, JSONType]]`). https://github.com/user-attachments/assets/1b011b61-fac4-492d-92a6-c3e478c2f126 ### Environment <details> ``` { "marimo": "0.11.2", "OS": "Darwin", "OS Version": "22.6.0", "Processor": "i386", "Python Version": "3.13.1", "Binaries": { "Browser": "133.0.6943.54", "Node": "v21.6.1" }, "Dependencies": { "click": "8.1.8", "docutils": "0.21.2", "itsdangerous": "2.2.0", "jedi": "0.19.2", "markdown": "3.7", "narwhals": "1.26.0", "packaging": "24.2", "psutil": "6.1.1", "pygments": "2.19.1", "pymdown-extensions": "10.14.3", "pyyaml": "6.0.2", "ruff": "0.9.6", "starlette": "0.45.3", "tomlkit": "0.13.2", "typing-extensions": "missing", "uvicorn": "0.34.0", "websockets": "14.2" }, "Optional Dependencies": {}, "Experimental Flags": {} } ``` </details> ### Code to reproduce ```python # /// script # requires-python = ">=3.12" # dependencies = [ # "marimo==0.11.2", # "polars==1.22.0", # "ruff==0.9.6", # ] # /// import marimo __generated_with = "0.11.2" app = marimo.App(width="medium") @app.cell def _(): import marimo as mo return (mo,) @app.cell def _(): import polars as pl return (pl,) @app.cell def _(pl): test_df = pl.DataFrame( { "num": [0, 1], } ) return (test_df,) @app.cell def _(mo, test_df): table = mo.ui.table(test_df.to_dict(as_series=False)) table return (table,) @app.cell def _(table): table.value return ```
closed
2025-02-13T15:23:15Z
2025-02-13T17:29:42Z
https://github.com/marimo-team/marimo/issues/3783
[ "bug" ]
tare
1
man-group/arctic
pandas
101
Future Development? - Java API
Hi there, I have been trialling this out and it looks a great framework for storage retrieval, is there any plans for the Java API or are you looking for contributors to help? I'm testing this out for data storage for zipline/quantopian backtester and also for a JVM based project and was wondering what stage that was at if any?
closed
2016-02-01T10:05:49Z
2022-08-03T22:09:01Z
https://github.com/man-group/arctic/issues/101
[]
michaeljohnbennett
17
django-import-export/django-import-export
django
1,738
Resource is not being created with resource kwargs when showing export fields on admin UI
**Describe the bug** I have a `UserAdmin` class that extends `ExportMixin` and declares the method `get_list_display` to change displayed fields according to the user on request. I want to reflect this on exported data, so the user can only export fields that are displayed to him on admin UI. To do this, I override `get_export_resource_kwargs` method to send the list of displayed fields on admin to my `UserResource` class. All of this worked like a charm since until version 3.3.3. However, on version 3.3.4, this fields are displayed on admin UI alongside export form. The problem is, when you're creating the list of fields to show on admin UI, you instantiate resource classes without calling `get_export_resource_kwargs`. This makes it impossible for me to know which fields the user that made the request can export. **Versions:** - Django Import Export >= 3.3.4 - Python 3.11.7 - Django 4.2.9 **Expected behavior** The following code of method `export_action` from `ExportMixin` class on `admin.py`: ```python context["fields_list"] = [ ( res.get_display_name(), [ field.column_name for field in res(model=self.model).get_user_visible_fields() ], ) for res in self.get_export_resource_classes() ] ``` Should be like this: ```python context["fields_list"] = [ ( res.get_display_name(), [ field.column_name for field in res(model=self.model, **self.get_export_resource_kwargs(request)).get_user_visible_fields() ], ) for res in self.get_export_resource_classes() ] ```
closed
2024-01-15T15:51:11Z
2024-01-17T16:55:42Z
https://github.com/django-import-export/django-import-export/issues/1738
[ "bug" ]
pedrordgs
1
fugue-project/fugue
pandas
485
[BUG] Make Fugue compatible with Ray 2.5.0
Ray 2.5.0 had break changes again! So the `dataset_format` function becomes deprecated. But in lower version, we rely on it to determine whether the dataframe is empty and also to check whether it is arrow or pandas dataset. In addition, they start to introduce their own `Schema` class, and changed the return values of a few functions. It breaks most of the functionalities of Fugue on Ray, so we have to make Fugue compatible from lower version Ray (~2.1.0) to the latest version.
closed
2023-06-14T05:56:55Z
2023-06-14T06:00:23Z
https://github.com/fugue-project/fugue/issues/485
[ "compatibility" ]
goodwanghan
0
horovod/horovod
deep-learning
4,110
[+[!๐…๐”๐‹๐‹ ๐•๐ˆ๐ƒ๐„๐Ž๐’!]+]Sophie Rain Spiderman Video Original Video Link Sophie Rain Spiderman Video Viral On Social Media X Trending Now
20 seconds ago L๐šŽaked Video Sophie Rain Spiderman Original Video Viral Video L๐šŽaked on X Twitter Telegram .. .. [๐ŸŒ ๐–ข๐–ซ๐–จ๐–ข๐–ช ๐–ง๐–ค๐–ฑ๐–ค ๐ŸŸข==โ–บโ–บ ๐–ถ๐– ๐–ณ๐–ข๐–ง ๐–ญ๐–ฎ๐–ถ](https://usnews-daily.com/free-watch/) .. .. [๐Ÿ”ด ๐–ข๐–ซ๐–จ๐–ข๐–ช ๐–ง๐–ค๐–ฑ๐–ค ๐ŸŒ==โ–บโ–บ ๐–ฃ๐—ˆ๐—๐—‡๐—…๐—ˆ๐–บ๐–ฝ ๐–ญ๐—ˆ๐—](https://usnews-daily.com/free-watch/?t) .. .. <a href="https://usnews-daily.com/free-watch/?y" rel="nofollow" data-target="animated-image.originalLink"><img src="https://i.imgur.com/vN3eWE7.png"></a> .. .. [-wATCH-]โ€” Sophie Rain Spiderman Video Original Video Link Sophie Rain Spiderman Video Viral On Social Media X Trending Now [-wATCH-]โ€” Sophie Rain Spiderman สŸแด‡แด€แด‹แด‡แด… Video แด ษชส€แด€สŸ On Social Media หฃ แต€สทโฑแต—แต—แต‰สณ [-wATCH-]โ€” Sophie Rain Spiderman สŸแด‡แด€แด‹แด‡แด… Video แด ษชส€แด€สŸ On Social Media หฃ แต€สทโฑแต—แต—แต‰สณ [-wATCH-]โ€” Sophie Rain Spiderman Video Original Video Link Sophie Rain Spiderman Video Viral On Social Media X Trending Now Sophie Rain Spiderman Original Video video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman, a young and talented digital creator, recently became famous thanks to this interesting video. L๐šŽaked Video Sophie Rain Spiderman Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Original Video Viral Video L๐šŽaked on X Twitter.. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
closed
2024-11-17T17:23:26Z
2024-11-20T12:23:49Z
https://github.com/horovod/horovod/issues/4110
[]
ghost
1
AirtestProject/Airtest
automation
912
[LICENSE] Add name of copyright owner and date
Can you add name of copyright owner and date information to license file in package please. Now, there are only placeholder in this place https://github.com/AirtestProject/Airtest/blob/master/LICENSE#L189
open
2021-06-01T10:50:09Z
2021-06-01T10:50:09Z
https://github.com/AirtestProject/Airtest/issues/912
[]
flaminestone
0
keras-team/autokeras
tensorflow
907
Adopt the image augmentation from preprocessing layers
closed
2020-01-19T20:39:12Z
2020-04-02T22:46:38Z
https://github.com/keras-team/autokeras/issues/907
[ "feature request", "pinned" ]
haifeng-jin
0
davidteather/TikTok-Api
api
642
[BUG] - Incorrect signature generation
**Describe the bug** I am working on c# tiktok api for personal use based on your api and everything goes fine until the signature is used in practice, before that it is generated using a script from your API and selenium, everything seems ok but when I try to use the signature in practice, i.e. extract data from endpoint im receiving an empty response from the server with code 200, no error but also no text. Can you help me somehow? Is it some security against bots? Should i do something more? Edit. I decided to check if it works if I use playwright so i rewrited a whole browser class, but the result was the same, I still get the code 200 and an empty response from the server. **The buggy code** Please insert the code that is throwing errors or is giving you weird unexpected results. Below is my implementation of your code (Of course, earlier in the code I inject js with acrawler) ``` public (string, string, string) sign_url(string api_url, string verifyFp = "verify_khr3jabg_V7ucdslq_Vrw9_4KPb_AJ1b_Ks706M8zIJTq", string custom_did = null) { if (api_url == string.Empty) { DataParse.logData("Sign_url required a api_url parameter"); return (string.Empty, string.Empty, string.Empty); } if (verifyFp == string.Empty || custom_did == string.Empty) { DataParse.logData("verifyFp & custom_did are required parameters"); return (string.Empty, string.Empty, string.Empty); } string url = $"{api_url}&verifyFp={verifyFp}&did={custom_did}"; string signature = ((IJavaScriptExecutor)__driver).ExecuteScript("return window.byted_acrawler.sign({url: '" + url + "'});").ToString(); return (verifyFp, custom_did, signature); } ``` Edit cont. Rewrited sign_url function but now using playwright (still same result) ``` public async Task<(string, string, string)> sign_url(string api_url, string verifyFp = "verify_khr3jabg_V7ucdslq_Vrw9_4KPb_AJ1b_Ks706M8zIJTq", string custom_did = null) { // Check if parameters are valid if (api_url == string.Empty) { Console.WriteLine("Sign_url required a api_url parameter"); return (string.Empty, string.Empty, string.Empty); } if (verifyFp == string.Empty || custom_did == string.Empty) { Console.WriteLine("verifyFp & custom_did are required parameters"); return (string.Empty, string.Empty, string.Empty); } // Create new page IBrowserContext context; IPage page; (page, context) = this.create_new_page().Result; // Prepare api url string url = $"{api_url}&verifyFp={verifyFp}&did={custom_did}"; // Inject js into page await page.SetContentAsync($"<script>{get_acrawler()}</script>"); var signature = page.EvaluateAsync("() => {var token = window.byted_acrawler.sign({url: '" + url + "'});return token;}").Result.Value.ToString(); await context.CloseAsync(); if (!page.IsClosed) await page.CloseAsync(); // Return data return (verifyFp, custom_did, signature); } ``` Original code: ``` def sign_url(self, **kwargs): url = kwargs.get("url", None) if url is None: raise Exception("sign_url required a url parameter") if kwargs.get("gen_new_verifyFp", False): verifyFp = self.gen_verifyFp() else: verifyFp = kwargs.get( "custom_verifyFp", "verify_khgp4f49_V12d4mRX_MdCO_4Wzt_Ar0k_z4RCQC9pUDpX", ) if kwargs.get("custom_did") is not None: did = kwargs.get("custom_did", None) elif self.did is None: did = str(random.randint(10000, 999999999)) else: did = self.did return ( verifyFp, did, self.browser.execute_script( ''' var url = "''' + url + "&verifyFp=" + verifyFp + """&did=""" + did + """" var token = window.byted_acrawler.sign({url: url}); return token; """ ), ) ``` **Expected behavior** I thought that I would receive signatures, which, after concating with the API link, will give me the correct response from the server and I will get my data, but I'm receiving an empty responses from the server with the code 200 That's how link with generated signature looks like: https://m.tiktok.com/api/music/item_list/?aid=1988&app_name=tiktok_web&device_platform=web&referer=&root_referer=&user_agent=Mozilla%252F5.0%2B%28iPhone%253B%2BCPU%2BiPhone%2BOS%2B12_2%2Blike%2BMac%2BOS%2BX%29%2BAppleWebKit%252F605.1.15%2B%28KHTML%2C%2Blike%2BGecko%29%2BVersion%252F13.0%2BMobile%252F15E148%2BSafari%252F604.1&cookie_enabled=true&screen_width=794&screen_height=1022&browser_language=&browser_platform=&browser_name=&browser_version=&browser_online=true&ac=4g&timezone_name=&appId=1233&appType=m&isAndroid=False&isMobile=False&isIOS=False&OS=windows&secUid=&musicID=6900010125709413125&count=30&cursor=0&shareUid=&language=en&verifyFp=verify_khr3jabg_V7ucdslq_Vrw9_4KPb_AJ1b_Ks706M8zIJTq&did=8631211774948926517&_signature=_02B4Z6wo00f01VSvdQwAAIBAu7v1doQFFoFUr1GAADXjba That's how the response from the server looks like. ![img](https://user-images.githubusercontent.com/87601088/126064880-088e47d8-af0c-47b3-a41e-0e74a38ef406.png) **Desktop (please complete the following information):** - OS: Windows 10 - TikTokApi==3.9.8 **Additional context**
closed
2021-07-18T10:59:43Z
2021-07-19T19:15:27Z
https://github.com/davidteather/TikTok-Api/issues/642
[ "bug" ]
oskardve
1
microsoft/MMdnn
tensorflow
912
Caffe to keras model AttributeError: type object 'h5py.h5.H5PYConfig' has no attribute '__reduce_cython__'
Platform : Windows 10 Python version: 3.7.9 Source framework with version: Caffe 1.x Destination framework with version: keras (tensorflow 1.15) Pre-trained model path: OpenPose Body 25 https://github.com/CMU-Perceptual-Computing-Lab/openpose Running scripts: I have installed this repo through PyPi using pip install mmdnn I am trying to convert the model using the following command: `mmconvert --srcFramework caffe --inputWeight pose_iter_584000.caffemodel --inputNetwork pose_deploy.prototxt --dstFramework keras --outputModel base.h5` However I get the following error: ``` File "c:\users\alecd\anaconda3\lib\runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "c:\users\alecd\anaconda3\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "C:\Users\alecd\anaconda3\Scripts\mmconvert.exe\__main__.py", line 7, in <module> File "c:\users\alecd\anaconda3\lib\site-packages\mmdnn\conversion\_script\convert.py", line 108, in _main ret = IRToCode._convert(code_args) File "c:\users\alecd\anaconda3\lib\site-packages\mmdnn\conversion\_script\IRToCode.py", line 17, in _convert from mmdnn.conversion.keras.keras2_emitter import Keras2Emitter File "c:\users\alecd\anaconda3\lib\site-packages\mmdnn\conversion\keras\keras2_emitter.py", line 14, in <module> from mmdnn.conversion.keras.extra_layers import Scale File "c:\users\alecd\anaconda3\lib\site-packages\mmdnn\conversion\keras\extra_layers.py", line 8, in <module> from keras.engine import Layer, InputSpec File "C:\Users\alecd\AppData\Roaming\Python\Python38\site-packages\keras\__init__.py", line 3, in <module> from . import utils File "C:\Users\alecd\AppData\Roaming\Python\Python38\site-packages\keras\utils\__init__.py", line 6, in <module> from . import conv_utils File "C:\Users\alecd\AppData\Roaming\Python\Python38\site-packages\keras\utils\conv_utils.py", line 9, in <module> from .. import backend as K File "C:\Users\alecd\AppData\Roaming\Python\Python38\site-packages\keras\backend\__init__.py", line 89, in <module> from .tensorflow_backend import * File "C:\Users\alecd\AppData\Roaming\Python\Python38\site-packages\keras\backend\tensorflow_backend.py", line 5, in <module> import tensorflow as tf File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\__init__.py", line 41, in <module> from tensorflow.python.tools import module_util as _module_util File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 84, in <module> from tensorflow.python import keras File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\keras\__init__.py", line 27, in <module> from tensorflow.python.keras import models File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\keras\models.py", line 24, in <module> from tensorflow.python.keras import metrics as metrics_module File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\keras\metrics.py", line 37, in <module> from tensorflow.python.keras.engine import base_layer File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\keras\engine\base_layer.py", line 59, in <module> from tensorflow.python.keras.saving.saved_model import layer_serialization File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\keras\saving\saved_model\layer_serialization.py", line 24, in <module> from tensorflow.python.keras.saving.saved_model import save_impl File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\keras\saving\saved_model\save_impl.py", line 34, in <module> from tensorflow.python.keras.saving import saving_utils File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\keras\saving\saving_utils.py", line 31, in <module> from tensorflow.python.keras.utils.io_utils import ask_to_proceed_with_overwrite File "c:\users\alecd\anaconda3\lib\site-packages\tensorflow\python\keras\utils\io_utils.py", line 31, in <module> import h5py File "c:\users\alecd\anaconda3\lib\site-packages\h5py\__init__.py", line 34, in <module> from . import version File "c:\users\alecd\anaconda3\lib\site-packages\h5py\version.py", line 17, in <module> from . import h5 as _h5 File "h5py\h5.pyx", line 41, in init h5py.h5 AttributeError: type object 'h5py.h5.H5PYConfig' has no attribute '__reduce_cython__' ``` I have 2.8 of h5py in my environment I can remove this error by installing keras 2.3.1 directly in my environment but then it throws the following error: `AttributeError: module 'tensorflow' has no attribute 'placeholder'` which is a TF v2.x issue, and can only be bypassed to my knowledge by import tensorflow.compat.v1 and disabling v2 behavior. However, I would rather not have to dig through the source if there is another obvious fix. I successfully can get the intermediate representation, and I have successfully converted the model to onnx but when I check the ``` onnx model using onnx.checker.check I get the following bad node: ValidationError: Node (prelu4_2) has input size 1 not in range [min=2, max=2]. ``` ``` ==> Context: Bad node spec: conv4_2prelu4_2prelu4_2"PRelu* slope ```
open
2021-01-06T03:14:03Z
2021-01-20T16:14:26Z
https://github.com/microsoft/MMdnn/issues/912
[]
alecda573
2
lexiforest/curl_cffi
web-scraping
107
่ƒฝๆ”ฏๆŒๅŠจๆ€ๆŒ‡็บนๅ—
closed
2023-08-21T08:03:13Z
2023-08-21T08:14:41Z
https://github.com/lexiforest/curl_cffi/issues/107
[]
huangpd
2
Lightning-AI/pytorch-lightning
deep-learning
19,526
Model stuck after saving a checkpoing when using the FSDPStrategy
### Bug description I'm training a GPT model using Fabric. Below are the setups for Fabric It works well if I'm running without saving a checkpoint. However, if I save a checkpoint using ethier `torch.save` with `fabric.barrier()` or with `fabric.save()` the training will stuck. I saw `torch.distributed.barrier()` have a [similar issue](https://github.com/pytorch/pytorch/issues/54059). I don't have a similar utilities in my code. Not sure if there is a same usage in `Fabric`. ### What version are you seeing the problem on? v2.1 ### How to reproduce the bug ```python strategy = FSDPStrategy( auto_wrap_policy={Block}, activation_checkpointing_policy={Block}, state_dict_type="full", limit_all_gathers=True, cpu_offload=False, ) self.fabric = L.Fabric(accelerator=device, devices=n_devices, strategy=strategy, precision=precision) ``` Saving model with ```python state = {"model": model} full_save_path = os.path.abspath(get_path(base_dir, base_name, '.pt')) fabric.save(full_save_path, state) ``` ### Error messages and logs ``` # Error messages and logs here please ``` No errors, only stuck! ### Environment <details> <summary>Current environment</summary> ``` #- Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow): lightning, mainly using Fabric #- PyTorch Lightning Version (e.g., 1.5.0): 2.1.3 #- Lightning App Version (e.g., 0.5.2): #- PyTorch Version (e.g., 2.0): 2.1.2+cu118 #- Python version (e.g., 3.9): 3.10.13 #- OS (e.g., Linux): Ubuntu #- CUDA/cuDNN version: 11.8 #- GPU models and configuration: A100 40Gx2 #- How you installed Lightning(`conda`, `pip`, source): pip #- Running environment of LightningApp (e.g. local, cloud): local ``` </details> ### More info I think it relates to the communications betweeen the systems. cc @awaelchli @carmocca
closed
2024-02-24T20:07:41Z
2024-07-27T12:44:27Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19526
[ "bug", "strategy: fsdp", "ver: 2.1.x", "repro needed" ]
charlesxu90
3
luispedro/mahotas
numpy
65
Reconstruct surface from Zernike moments
It would be neat to have a function that reconstructs a surface based on the Zernike moments generated by mahotas.features.zernike_moments. In some cases one might want to compute the Euclidean distance between the original and the reconstructed image, thus justifying why this is useful. Apparently someone has implemented such a thing (I have not tested): https://github.com/tvwerkhoven/PyCourse/blob/master/python102/examples/py102-example2-zernike.py
open
2015-10-17T20:30:13Z
2016-01-18T15:54:27Z
https://github.com/luispedro/mahotas/issues/65
[ "enhancement" ]
fredericoschardong
4