Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Urdu
Size:
10K - 100K
License:
"""IMDB Urdu movie reviews dataset.""" | |
import csv | |
import os | |
import datasets | |
from datasets.tasks import TextClassification | |
_CITATION = """ | |
@InProceedings{maas-EtAl:2011:ACL-HLT2011, | |
author = {Maas, Andrew L. and Daly,nRaymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y...}, | |
title = {Learning Word Vectors for Sentiment Analysis}, | |
month = {June}, | |
year = {2011}, | |
address = {Portland, Oregon, USA}, | |
publisher = {Association for Computational Linguistics}, | |
pages = {142--150}, | |
url = {http://www.aclweb.org/anthology/P11-1015} | |
} | |
""" | |
_DESCRIPTION = """ | |
Large Movie translated Urdu Reviews Dataset. | |
This is a dataset for binary sentiment classification containing substantially more data than previous | |
benchmark datasets. We provide a set of 40,000 highly polar movie reviews for training, and 10,000 for testing. | |
To increase the availability of sentiment analysis dataset for a low recourse language like Urdu, | |
we opted to use the already available IMDB Dataset. we have translated this dataset using google translator. | |
This is a binary classification dataset having two classes as positive and negative. | |
The reason behind using this dataset is high polarity for each class. | |
It contains 50k samples equally divided in two classes. | |
""" | |
_URL = "https://github.com/mirfan899/Urdu/blob/master/sentiment/imdb_urdu_reviews.csv.tar.gz?raw=true" | |
_HOMEPAGE = "https://github.com/mirfan899/Urdu" | |
class ImdbUrduReviews(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"sentiment": datasets.ClassLabel(names=["positive", "negative"]), | |
} | |
), | |
citation=_CITATION, | |
homepage=_HOMEPAGE, | |
task_templates=[TextClassification(text_column="sentence", label_column="sentiment")], | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_path = dl_manager.download_and_extract(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_path, "imdb_urdu_reviews.csv")} | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.reader(f, delimiter=",") | |
for id_, row in enumerate(reader): | |
if id_ == 0: | |
continue | |
yield id_, {"sentiment": row[1], "sentence": row[0]} | |