|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import datasets |
|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
from typing import Dict |
|
|
|
_CITATION = '''@article{10.1162/tacl_a_00595, |
|
author = {Zhang, Xinyu and Thakur, Nandan and Ogundepo, Odunayo and Kamalloo, Ehsan and Alfonso-Hermelo, David and Li, Xiaoguang and Liu, Qun and Rezagholizadeh, Mehdi and Lin, Jimmy}, |
|
title = "{MIRACL: A Multilingual Retrieval Dataset Covering 18 Diverse Languages}", |
|
journal = {Transactions of the Association for Computational Linguistics}, |
|
volume = {11}, |
|
pages = {1114-1131}, |
|
year = {2023}, |
|
month = {09}, |
|
abstract = "{MIRACL is a multilingual dataset for ad hoc retrieval across 18 languages that collectively encompass over three billion native speakers around the world. This resource is designed to support monolingual retrieval tasks, where the queries and the corpora are in the same language. In total, we have gathered over 726k high-quality relevance judgments for 78k queries over Wikipedia in these languages, where all annotations have been performed by native speakers hired by our team. MIRACL covers languages that are both typologically close as well as distant from 10 language families and 13 sub-families, associated with varying amounts of publicly available resources. Extensive automatic heuristic verification and manual assessments were performed during the annotation process to control data quality. In total, MIRACL represents an investment of around five person-years of human annotator effort. Our goal is to spur research on improving retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have traditionally been underserved. MIRACL is available at http://miracl.ai/.}", |
|
issn = {2307-387X}, |
|
doi = {10.1162/tacl_a_00595}, |
|
url = {https://doi.org/10.1162/tacl\_a\_00595}, |
|
eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00595/2157340/tacl\_a\_00595.pdf}, |
|
}''' |
|
|
|
surprise_languages = ['de', 'yo'] |
|
new_languages = ['es', 'fa', 'fr', 'hi', 'zh'] + surprise_languages |
|
languages = ['ar', 'bn', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', 'zh'] + surprise_languages |
|
|
|
languages2filesize = { |
|
'ar': 5, |
|
'bn': 1, |
|
'en': 66, |
|
'es': 21, |
|
'fa': 5, |
|
'fi': 4, |
|
'fr': 30, |
|
'hi': 2, |
|
'id': 3, |
|
'ja': 14, |
|
'ko': 3, |
|
'ru': 20, |
|
'sw': 1, |
|
'te': 2, |
|
'th': 2, |
|
'zh': 10, |
|
'de': 32, |
|
'yo': 1, |
|
} |
|
|
|
_DESCRIPTION = 'dataset load script for MIRACL' |
|
|
|
_DATASET_URLS = { |
|
language: { |
|
'dev': [ |
|
f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{language}/qrels/qrels.miracl-v1.0-{language}-dev.tsv', |
|
], |
|
'corpus': [ |
|
f'https://huggingface.co/datasets/miracl/miracl-corpus/resolve/main/miracl-corpus-v1.0-{language}/docs-{i}.jsonl.gz' for i in range(n) |
|
], |
|
'queries': [ |
|
f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{language}/topics/topics.miracl-v1.0-{language}-dev.tsv', |
|
], |
|
} for language, n in languages2filesize.items() |
|
} |
|
|
|
def load_topic(fn: str) -> Dict[str, str]: |
|
""" |
|
Load topics from a file. |
|
Args: |
|
fn: file path |
|
Returns: |
|
A dictionary from query id to query text. |
|
""" |
|
qid2topic = {} |
|
with open(fn, encoding="utf-8") as f: |
|
for line in f: |
|
qid, topic = line.strip().split('\t') |
|
qid2topic[qid] = topic |
|
return qid2topic |
|
|
|
|
|
def load_qrels(fn: str) -> Dict[str, Dict[str, int]]: |
|
""" |
|
Load qrels from a file. |
|
Args: |
|
fn: file path |
|
Returns: |
|
A dictionary from query id to a dictionary from doc id to relevance score. |
|
""" |
|
if fn is None: |
|
return None |
|
|
|
qrels = defaultdict(dict) |
|
with open(fn, encoding="utf-8") as f: |
|
for line in f: |
|
qid, _, docid, rel = line.strip().split('\t') |
|
qrels[qid][docid] = int(rel) |
|
return qrels |
|
|
|
|
|
class MMTEBMIRACL(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [datasets.BuilderConfig( |
|
version=datasets.Version('1.0.0'), |
|
name=lang, description=f'MIRACL qrels in language {lang}.' |
|
) for lang in languages |
|
] + [ |
|
datasets.BuilderConfig( |
|
version=datasets.Version('1.0.0'), |
|
name=f'corpus-{lang}', description=f'corpus of MIRACL dataset in language {lang}.' |
|
) for lang in languages |
|
] + [ |
|
datasets.BuilderConfig( |
|
version=datasets.Version('1.0.0'), |
|
name=f'queries-{lang}', description=f'queries of MIRACL dataset in language {lang}.' |
|
) for lang in languages |
|
] |
|
|
|
def _info(self): |
|
name = self.config.name |
|
|
|
if name.startswith('corpus-'): |
|
features = datasets.Features({ |
|
'docid': datasets.Value('string'), |
|
'title': datasets.Value('string'), |
|
'text': datasets.Value('string'), |
|
}) |
|
elif name.startswith("queries-"): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query': datasets.Value('string'), |
|
}) |
|
else: |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'docid': datasets.Value('string'), |
|
'score': datasets.Value('int32'), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage='https://project-miracl.github.io', |
|
|
|
license=None, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
name = self.config.name |
|
|
|
if name.startswith('corpus-'): |
|
language = name.replace('corpus-', '') |
|
downloaded_files = dl_manager.download_and_extract( |
|
_DATASET_URLS[language]['corpus']) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='corpus', |
|
gen_kwargs={ |
|
'filepaths': downloaded_files, |
|
}, |
|
), |
|
] |
|
elif name.startswith('queries-'): |
|
language = name.replace('queries-', '') |
|
downloaded_files = dl_manager.download_and_extract( |
|
_DATASET_URLS[language]['queries']) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='queries', |
|
gen_kwargs={ |
|
'filepaths': downloaded_files, |
|
}, |
|
), |
|
] |
|
else: |
|
language = name |
|
downloaded_files = dl_manager.download_and_extract( |
|
_DATASET_URLS[language]['dev']) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='dev', |
|
gen_kwargs={ |
|
'filepaths': downloaded_files, |
|
}, |
|
), |
|
] |
|
|
|
return splits |
|
|
|
def _generate_examples(self, filepaths): |
|
name = self.config.name |
|
|
|
if name.startswith('corpus-'): |
|
for filepath in sorted(filepaths): |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
yield data['docid'], data |
|
|
|
elif name.startswith('queries-'): |
|
for filepath in filepaths: |
|
qid2topic = load_topic(filepath) |
|
for qid in qid2topic: |
|
data = {} |
|
data['query_id'] = qid |
|
data['query'] = qid2topic[qid] |
|
yield qid, data |
|
|
|
else: |
|
for filepath in filepaths: |
|
qrels = load_qrels(filepath) |
|
for qid in qrels: |
|
for docid in qrels[qid]: |
|
data = {} |
|
data['query_id'] = qid |
|
data['docid'] = docid |
|
data['score'] = qrels[qid][docid] |
|
yield f"{qid}.{docid}", data |