|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Deal or no deal negotiator""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{lewis2017deal, |
|
title={Deal or no deal? end-to-end learning for negotiation dialogues}, |
|
author={Lewis, Mike and Yarats, Denis and Dauphin, Yann N and Parikh, Devi and Batra, Dhruv}, |
|
journal={arXiv preprint arXiv:1706.05125}, |
|
year={2017} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other’s reward functions must reach anagreement (o a deal) via natural language dialogue. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/facebookresearch/end-to-end-negotiator" |
|
|
|
_LICENSE = "The project is licenced under CC-by-NC" |
|
|
|
_URLs = { |
|
"train": "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/train.txt", |
|
"test": "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/test.txt", |
|
"val": "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/val.txt", |
|
"selfplay": "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/selfplay.txt", |
|
} |
|
|
|
|
|
class DealOrNoDialog(datasets.GeneratorBasedBuilder): |
|
"""Deal or no deal negotiator""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="dialogues", |
|
description="Consists of 5808 dialogues, based on 2236 unique scenarios.", |
|
version=VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="self_play", description="Count and values with no dialogues. Used for self playing.", version=VERSION |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "dialogues" |
|
|
|
def _info(self): |
|
if self.config.name == "dialogues": |
|
features = datasets.Features( |
|
{ |
|
"input": datasets.Sequence({"count": datasets.Value("int32"), "value": datasets.Value("int32")}), |
|
"dialogue": datasets.Value("string"), |
|
"output": datasets.Value("string"), |
|
"partner_input": datasets.Sequence( |
|
{"count": datasets.Value("int32"), "value": datasets.Value("int32")} |
|
), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"input": datasets.Sequence({"count": datasets.Value("int32"), "value": datasets.Value("int32")}), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.name == "dialogues": |
|
path_train = dl_manager.download_and_extract(_URLs["train"]) |
|
path_test = dl_manager.download_and_extract(_URLs["test"]) |
|
path_val = dl_manager.download_and_extract(_URLs["val"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": path_train, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": path_test, "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": path_val, |
|
"split": "val", |
|
}, |
|
), |
|
] |
|
|
|
else: |
|
path = dl_manager.download_and_extract(_URLs["selfplay"]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": path, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split="train"): |
|
"""Yields examples.""" |
|
if self.config.name == "dialogues": |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
tokens = line.split() |
|
|
|
yield idx, { |
|
"input": { |
|
"count": get_count_value(get_tag(tokens, "input"))[0], |
|
"value": get_count_value(get_tag(tokens, "input"))[1], |
|
}, |
|
"dialogue": get_tag(tokens, "dialogue"), |
|
"output": get_tag(tokens, "output"), |
|
"partner_input": { |
|
"count": get_count_value(get_tag(tokens, "partner_input"))[0], |
|
"value": get_count_value(get_tag(tokens, "partner_input"))[1], |
|
}, |
|
} |
|
|
|
else: |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
yield idx, {"input": {"count": get_count_value(line)[0], "value": get_count_value(line)[1]}} |
|
|
|
|
|
def get_tag(tokens, tag): |
|
return " ".join(tokens[tokens.index("<" + tag + ">") + 1 : tokens.index("</" + tag + ">")]) |
|
|
|
|
|
def get_count_value(sequence): |
|
seq_list = [int(el) for el in sequence.split()] |
|
assert len(seq_list) == 6 |
|
return [seq_list[idx] for idx in [0, 2, 4]], [seq_list[idx] for idx in [1, 3, 5]] |
|
|