Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
dmahata commited on
Commit
3ad4c1f
1 Parent(s): 82813e8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -1
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ## Dataset Summary
2
 
3
  A dataset for benchmarking keyphrase extraction and generation techniques from abstracts of english scientific papers. For more details about the dataset please refer the original paper - [https://dl.acm.org/doi/pdf/10.3115/1119355.1119383](https://dl.acm.org/doi/pdf/10.3115/1119355.1119383)
4
- Original source of the data - []()
5
 
6
 
7
  ## Dataset Structure
@@ -165,6 +165,8 @@ print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
165
  print("\n-----------\n")
166
  ```
167
  ## Citation Information
 
 
168
  ```
169
  @inproceedings{hulth2003improved,
170
  title={Improved automatic keyword extraction given more linguistic knowledge},
@@ -174,6 +176,37 @@ print("\n-----------\n")
174
  year={2003}
175
  }
176
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
 
178
  ## Contributions
179
  Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset
 
1
  ## Dataset Summary
2
 
3
  A dataset for benchmarking keyphrase extraction and generation techniques from abstracts of english scientific papers. For more details about the dataset please refer the original paper - [https://dl.acm.org/doi/pdf/10.3115/1119355.1119383](https://dl.acm.org/doi/pdf/10.3115/1119355.1119383)
4
+ Data source - [https://github.com/boudinfl/ake-datasets/tree/master/datasets/Inspec](https://github.com/boudinfl/ake-datasets/tree/master/datasets/Inspec)
5
 
6
 
7
  ## Dataset Structure
 
165
  print("\n-----------\n")
166
  ```
167
  ## Citation Information
168
+ Please cite the works below if you use this dataset in your work.
169
+
170
  ```
171
  @inproceedings{hulth2003improved,
172
  title={Improved automatic keyword extraction given more linguistic knowledge},
 
176
  year={2003}
177
  }
178
  ```
179
+ and
180
+
181
+ ```
182
+ @InProceedings{10.1007/978-3-030-45442-5_41,
183
+ author="Sahrawat, Dhruva
184
+ and Mahata, Debanjan
185
+ and Zhang, Haimin
186
+ and Kulkarni, Mayank
187
+ and Sharma, Agniv
188
+ and Gosangi, Rakesh
189
+ and Stent, Amanda
190
+ and Kumar, Yaman
191
+ and Shah, Rajiv Ratn
192
+ and Zimmermann, Roger",
193
+ editor="Jose, Joemon M.
194
+ and Yilmaz, Emine
195
+ and Magalh{\~a}es, Jo{\~a}o
196
+ and Castells, Pablo
197
+ and Ferro, Nicola
198
+ and Silva, M{\'a}rio J.
199
+ and Martins, Fl{\'a}vio",
200
+ title="Keyphrase Extraction as Sequence Labeling Using Contextualized Embeddings",
201
+ booktitle="Advances in Information Retrieval",
202
+ year="2020",
203
+ publisher="Springer International Publishing",
204
+ address="Cham",
205
+ pages="328--335",
206
+ abstract="In this paper, we formulate keyphrase extraction from scholarly articles as a sequence labeling task solved using a BiLSTM-CRF, where the words in the input text are represented using deep contextualized embeddings. We evaluate the proposed architecture using both contextualized and fixed word embedding models on three different benchmark datasets, and compare with existing popular unsupervised and supervised techniques. Our results quantify the benefits of: (a) using contextualized embeddings over fixed word embeddings; (b) using a BiLSTM-CRF architecture with contextualized word embeddings over fine-tuning the contextualized embedding model directly; and (c) using domain-specific contextualized embeddings (SciBERT). Through error analysis, we also provide some insights into why particular models work better than the others. Lastly, we present a case study where we analyze different self-attention layers of the two best models (BERT and SciBERT) to better understand their predictions.",
207
+ isbn="978-3-030-45442-5"
208
+ }
209
+ ```
210
 
211
  ## Contributions
212
  Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset