|
import json |
|
import os |
|
import datasets |
|
import soundfile as sf |
|
|
|
|
|
_DESCRIPTION = "tbd" |
|
_CITATION = "tbd" |
|
|
|
_META_FILE = "chall_data.jsonl" |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
class ChallConfig(datasets.BuilderConfig): |
|
|
|
split_into_utterances: bool = False |
|
|
|
def __init__(self, split_into_utterances: bool, **kwargs): |
|
super(ChallConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.split_into_utterances = split_into_utterances |
|
|
|
|
|
class Chall(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DEFAULT_CONFIG_NAME = "chall_data" |
|
|
|
BUILDER_CONFIGS = [ |
|
ChallConfig( |
|
name="chall_data", |
|
split_into_utterances=False |
|
), |
|
ChallConfig( |
|
name="asr", |
|
split_into_utterances=True |
|
) |
|
] |
|
|
|
max_chunk_length: int = int |
|
|
|
def __init__(self, *args, max_chunk_length=12, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.max_chunk_length = max_chunk_length |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"To use the chall dataset you have to download it manually. " |
|
"TBD Download Instructions. " |
|
"Please extract all files in one folder and load the dataset with: " |
|
"`datasets.load_dataset('chall', data_dir='path/to/folder/folder_name')`" |
|
) |
|
|
|
def _info(self): |
|
|
|
if self.config.split_into_utterances: |
|
features = datasets.Features({ |
|
"audio_id": datasets.Value("string"), |
|
"intervention": datasets.Value("int32"), |
|
"school_grade": datasets.Value("string"), |
|
"area_of_school_code": datasets.Value("int32"), |
|
"background_noise": datasets.Value("bool"), |
|
"speaker": datasets.Value("string"), |
|
"words": datasets.features.Sequence( |
|
{ |
|
"start": datasets.Value("float"), |
|
"end": datasets.Value("float"), |
|
"duration": datasets.Value("float"), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
"audio": datasets.Audio(sampling_rate=16_000) |
|
}) |
|
else: |
|
features = datasets.Features({ |
|
"audio_id": datasets.Value("string"), |
|
"intervention": datasets.Value("int32"), |
|
"school_grade": datasets.Value("string"), |
|
"area_of_school_code": datasets.Value("int32"), |
|
"participants": datasets.features.Sequence( |
|
{ |
|
"pseudonym": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"year_of_birth": datasets.Value("int32"), |
|
"school_grade": datasets.Value("int32"), |
|
"languages": datasets.Value("string"), |
|
"estimated_l2_proficiency": datasets.Value("string") |
|
}, length=-1 |
|
), |
|
"background_noise": datasets.Value("bool"), |
|
"speakers": datasets.features.Sequence( |
|
{ |
|
"spkid": datasets.Value("string"), |
|
"name": datasets.Value("string") |
|
} |
|
), |
|
"segments": datasets.features.Sequence( |
|
{ |
|
"speaker": datasets.Value("string"), |
|
"words": datasets.features.Sequence( |
|
{ |
|
"start": datasets.Value("float"), |
|
"end": datasets.Value("float"), |
|
"duration": datasets.Value("float"), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
), |
|
"audio": datasets.Audio(sampling_rate=16_000) |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
|
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
print("_split_generators") |
|
|
|
|
|
|
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
print(data_dir) |
|
|
|
|
|
|
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError( |
|
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('chall', data_dir=...)` " |
|
f"that includes files unzipped from the chall zip. Manual download instructions: {self.manual_download_instructions}" |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "data"), "metafile": os.path.join(data_dir, _META_FILE)}, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
def _generate_examples(self, filepath, metafile): |
|
|
|
logger.info("generating examples from = %s", filepath) |
|
print("_generate_examples") |
|
|
|
with open(metafile, 'r') as file: |
|
for line in file: |
|
data = json.loads(line) |
|
|
|
|
|
transcript_file = os.path.join(filepath, data["transcript_file"]) |
|
with open(transcript_file, 'r') as transcript: |
|
transcript = json.load(transcript) |
|
|
|
audio_id = data['audio_id'] |
|
audio_file_path = os.path.join(filepath, data["audio_file"]) |
|
|
|
if self.config.name == "asr": |
|
|
|
for segment_i, segment in enumerate(transcript["segments"]): |
|
|
|
id_ = f"{audio_id}_{str(segment_i).rjust(3, '0')}" |
|
|
|
data["audio_id"] = id_ |
|
data["speaker_id"] = segment["speaker"] |
|
data["words"] = segment["words"] |
|
|
|
track = sf.SoundFile(audio_file_path) |
|
|
|
can_seek = track.seekable() |
|
if not can_seek: |
|
raise ValueError("Not compatible with seeking") |
|
|
|
sr = track.samplerate |
|
start_time = segment["words"][0]["start"] |
|
end_time = segment["words"][-1]["end"] |
|
|
|
start_frame = int(sr * start_time) |
|
frames_to_read = int(sr * (end_time - start_time)) |
|
|
|
|
|
track.seek(start_frame) |
|
|
|
|
|
audio = track.read(frames_to_read) |
|
|
|
data["audio"] = {"path": audio_file_path, "array": audio, "sampling_rate": sr} |
|
|
|
yield id_, data |
|
else: |
|
|
|
id_ = data["audio_id"] |
|
data["speakers"] = transcript["speakers"] |
|
data["segments"] = transcript["segments"] |
|
|
|
audio, samplerate = sf.read(audio_file_path) |
|
data["audio"] = {"path": audio_file_path, "array": audio, "sampling_rate": samplerate} |
|
|
|
yield id_, data |
|
|