Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
License:
"""TODO(wiki_qa): Add a description here.""" | |
import csv | |
import os | |
import datasets | |
# TODO(wiki_qa): BibTeX citation | |
_CITATION = """\ | |
@InProceedings{YangYihMeek:EMNLP2015:WikiQA, | |
author = {{Yi}, Yang and {Wen-tau}, Yih and {Christopher} Meek}, | |
title = "{WikiQA: A Challenge Dataset for Open-Domain Question Answering}", | |
journal = {Association for Computational Linguistics}, | |
year = 2015, | |
doi = {10.18653/v1/D15-1237}, | |
pages = {2013–2018}, | |
} | |
""" | |
# TODO(wiki_qa): | |
_DESCRIPTION = """\ | |
Wiki Question Answering corpus from Microsoft | |
""" | |
_DATA_URL = "https://download.microsoft.com/download/E/5/f/E5FCFCEE-7005-4814-853D-DAA7C66507E0/WikiQACorpus.zip" # 'https://www.microsoft.com/en-us/download/confirmation.aspx?id=52419' | |
class WikiQa(datasets.GeneratorBasedBuilder): | |
"""TODO(wiki_qa): Short description of my dataset.""" | |
# TODO(wiki_qa): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(wiki_qa): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"question_id": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"document_title": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(num_classes=2), | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://www.microsoft.com/en-us/download/details.aspx?id=52419", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(wiki_qa): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
dl_dir = dl_manager.download_and_extract(_DATA_URL) | |
dl_dir = os.path.join(dl_dir, "WikiQACorpus") | |
# dl_dir = os.path.join(dl_dir, '') | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dl_dir, "WikiQA-test.tsv")} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dl_dir, "WikiQA-dev.tsv")} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(dl_dir, "WikiQA-train.tsv")}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(wiki_qa): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
for idx, row in enumerate(reader): | |
yield idx, { | |
"question_id": row["QuestionID"], | |
"question": row["Question"], | |
"document_title": row["DocumentTitle"], | |
"answer": row["Sentence"], | |
"label": row["Label"], | |
} | |