|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MetaLWOz: A Dataset of Multi-Domain Dialogues for the Fast Adaptation of Conversation Models""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{shalyminov2020fast, |
|
author = {Shalyminov, Igor and Sordoni, Alessandro and Atkinson, Adam and Schulz, Hannes}, |
|
title = {Fast Domain Adaptation For Goal-Oriented Dialogue Using A Hybrid Generative-Retrieval Transformer}, |
|
booktitle = {2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
|
year = {2020}, |
|
month = {April}, |
|
url = {https://www.microsoft.com/en-us/research/publication/fast-domain-adaptation-for-goal-oriented-dialogue-using-a |
|
-hybrid-generative-retrieval-transformer/}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
MetaLWOz: A Dataset of Multi-Domain Dialogues for the Fast Adaptation of Conversation Models. \ |
|
We introduce the Meta-Learning Wizard of Oz (MetaLWOz) dialogue dataset for developing fast adaptation methods for \ |
|
conversation models. This data can be used to train task-oriented dialogue models, specifically to develop methods to \ |
|
quickly simulate user responses with a small amount of data. Such fast-adaptation models fall into the research areas \ |
|
of transfer learning and meta learning. The dataset consists of 37,884 crowdsourced dialogues recorded between two \ |
|
human users in a Wizard of Oz setup, in which one was instructed to behave like a bot, and the other a true human \ |
|
user. The users are assigned a task belonging to a particular domain, for example booking a reservation at a \ |
|
particular restaurant, and work together to complete the task. Our dataset spans 47 domains having 227 tasks total. \ |
|
Dialogues are a minimum of 10 turns long. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.microsoft.com/en-us/research/project/metalwoz/" |
|
|
|
_LICENSE = "Microsoft Research Data License Agreement" |
|
|
|
_URLs = { |
|
"train": "https://download.microsoft.com/download/E/B/8/EB84CB1A-D57D-455F-B905-3ABDE80404E5/metalwoz-v1.zip", |
|
"test": "https://download.microsoft.com/download/0/c/4/0c4a8893-cbf9-4a43-a44a-09bab9539234/metalwoz-test-v1.zip", |
|
} |
|
|
|
|
|
class MetaWoz(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="dialogues", description="The dataset of dialogues from various domains."), |
|
datasets.BuilderConfig( |
|
name="tasks", description="The metadata for tasks corresponding to dialogues from " "various domains." |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "dialogues" |
|
|
|
def _info(self): |
|
if self.config.name == "tasks": |
|
features = datasets.Features( |
|
{ |
|
"task_id": datasets.Value("string"), |
|
"domain": datasets.Value("string"), |
|
"bot_prompt": datasets.Value("string"), |
|
"bot_role": datasets.Value("string"), |
|
"user_prompt": datasets.Value("string"), |
|
"user_role": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"user_id": datasets.Value("string"), |
|
"bot_id": datasets.Value("string"), |
|
"domain": datasets.Value("string"), |
|
"task_id": datasets.Value("string"), |
|
"turns": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
data_dir["test"] = dl_manager.extract(os.path.join(data_dir["test"], "dstc8_metalwoz_heldout.zip")) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"data_dir": data_dir["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"data_dir": data_dir["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir): |
|
"""Yields examples.""" |
|
if self.config.name == "tasks": |
|
filepath = os.path.join(data_dir, "tasks.txt") |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id_, { |
|
"task_id": data["task_id"], |
|
"domain": data["domain"], |
|
"bot_prompt": data["bot_prompt"], |
|
"bot_role": data["bot_role"], |
|
"user_prompt": data["user_prompt"], |
|
"user_role": data["user_role"], |
|
} |
|
else: |
|
id_ = -1 |
|
base_path = os.path.join(data_dir, "dialogues") |
|
file_list = sorted( |
|
[os.path.join(base_path, file) for file in os.listdir(base_path) if file.endswith(".txt")] |
|
) |
|
for filepath in file_list: |
|
with open(filepath, encoding="utf-8") as f: |
|
for row in f: |
|
id_ += 1 |
|
data = json.loads(row) |
|
yield id_, { |
|
"id": data["id"], |
|
"user_id": data["user_id"], |
|
"bot_id": data["bot_id"], |
|
"domain": data["domain"], |
|
"task_id": data["task_id"], |
|
"turns": data["turns"], |
|
} |
|
|