mevol's picture
Upload 47 files
670dfc0
Despite O
displaying O
similar O
affinities B-evidence
for O
XyG B-chemical
, O
reverse B-experimental_method
- I-experimental_method
genetic I-experimental_method
analysis I-experimental_method
reveals O
that O
SGBP B-protein
- I-protein
B I-protein
is O
only O
required O
for O
the O
efficient O
capture O
of O
smaller O
oligosaccharides B-chemical
, O
whereas O
the O
presence O
of O
SGBP B-protein
- I-protein
A I-protein
is O
more O
critical O
than O
its O
carbohydrate B-chemical
- O
binding O
ability O
for O
growth O
on O
XyG B-chemical
. O
Together O
, O
these O
data O
demonstrate O
that O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
play O
complementary O
, O
specialized O
roles O
in O
carbohydrate B-chemical
capture O
by O
B B-species
. I-species
ovatus I-species
and O
elaborate O
a O
model O
of O
how O
vegetable B-taxonomy_domain
xyloglucans B-chemical
are O
accessed O
by O
the O
Bacteroidetes B-taxonomy_domain
. O
The O
human B-species
gut O
bacteria B-taxonomy_domain
Bacteroidetes B-taxonomy_domain
share O
a O
profound O
capacity O
for O
dietary O
glycan B-chemical
degradation O
, O
with O
many O
species O
containing O
> O
250 O
predicted O
carbohydrate O
- O
active O
enzymes O
( O
CAZymes O
), O
compared O
to O
50 O
to O
100 O
within O
many O
Firmicutes B-taxonomy_domain
and O
only O
17 O
in O
the O
human B-species
genome O
devoted O
toward O
carbohydrate O
utilization O
. O
The O
archetypal O
PUL B-gene
- O
encoded O
system O
is O
the O
starch B-complex_assembly
utilization I-complex_assembly
system I-complex_assembly
( O
Sus B-complex_assembly
) O
( O
Fig O
. O
1B O
) O
of O
Bacteroides B-species
thetaiotaomicron I-species
. O
We O
describe O
here O
the O
detailed O
functional B-experimental_method
and I-experimental_method
structural I-experimental_method
characterization I-experimental_method
of O
the O
noncatalytic B-protein_state
SGBPs B-protein_type
encoded O
by O
Bacova_02651 B-gene
and O
Bacova_02650 B-gene
of O
the O
XyGUL B-gene
, O
here O
referred O
to O
as O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
, O
to O
elucidate O
their O
molecular O
roles O
in O
carbohydrate O
acquisition O
in O
vivo O
. O
Immunofluorescence B-experimental_method
of O
formaldehyde O
- O
fixed O
, O
nonpermeabilized O
cells O
grown O
in O
minimal O
medium O
with O
XyG B-chemical
as O
the O
sole O
carbon O
source O
to O
induce O
XyGUL B-gene
expression O
, O
reveals O
that O
both O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
are O
presented O
on O
the O
cell O
surface O
by O
N O
- O
terminal O
lipidation B-ptm
, O
as O
predicted O
by O
signal O
peptide O
analysis O
with O
SignalP O
( O
Fig O
. O
2 O
). O
Neither O
SGBP B-protein_type
recognized O
galactomannan B-chemical
( O
GGM B-chemical
), O
starch B-chemical
, O
carboxymethylcellulose B-chemical
, O
or O
mucin B-chemical
( O
see O
Fig O
. O
S1 O
in O
the O
supplemental O
material O
). O
Affinity B-experimental_method
electrophoresis I-experimental_method
( O
10 O
% O
acrylamide O
) O
of O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
with O
BSA B-protein
as O
a O
control O
protein O
. O
All O
samples O
were O
loaded O
on O
the O
same O
gel O
next O
to O
the O
BSA B-protein
controls O
; O
thin O
black O
lines O
indicate O
where O
intervening O
lanes O
were O
removed O
from O
the O
final O
image O
for O
both O
space O
and O
clarity O
. O
SGBP B-protein
- I-protein
A I-protein
is O
a O
SusD B-protein
homolog O
with O
an O
extensive O
glycan B-site
- I-site
binding I-site
platform I-site
. O
It O
is O
particularly O
notable O
that O
although O
the O
location O
of O
the O
ligand B-site
- I-site
binding I-site
site I-site
is O
conserved B-protein_state
between O
SGBP B-protein
- I-protein
A I-protein
and O
SusD B-protein
, O
that O
of O
SGBP B-protein
- I-protein
A I-protein
displays O
an O
~ O
29 O
- O
Å O
- O
long O
aromatic B-site
platform I-site
to O
accommodate O
the O
extended O
, O
linear O
XyG B-chemical
chain O
( O
see O
reference O
for O
a O
review O
of O
XyG B-chemical
secondary O
structure O
), O
versus O
the O
shorter O
, O
~ O
18 O
- O
Å O
- O
long O
, O
site B-site
within O
SusD B-protein
that O
complements O
the O
helical O
conformation O
of O
amylose B-chemical
( O
Fig O
. O
4C O
and O
D O
). O
Seven O
of O
the O
eight O
backbone O
glucosyl B-chemical
residues O
of O
XyGO2 B-chemical
could O
be O
convincingly O
modeled O
in O
the O
ligand B-evidence
electron I-evidence
density I-evidence
, O
and O
only O
two O
α B-chemical
( I-chemical
1 I-chemical
I-chemical
6 I-chemical
)- I-chemical
linked I-chemical
xylosyl I-chemical
residues O
were O
observed O
( O
Fig O
. O
4B O
; O
cf O
. O
Three O
aromatic O
residues O
O
W82 B-residue_name_number
, O
W283 B-residue_name_number
, O
W306 B-residue_name_number
O
comprise O
the O
flat B-site
platform I-site
that O
stacks O
along O
the O
naturally O
twisted O
β B-chemical
- I-chemical
glucan I-chemical
backbone O
( O
Fig O
. O
4E O
). O
The O
functional O
importance O
of O
this O
platform B-site
is O
underscored O
by O
the O
observation O
that O
the O
W82A B-mutant
W283A B-mutant
W306A B-mutant
mutant B-protein_state
of O
SGBP B-protein
- I-protein
A I-protein
, O
designated O
SGBP B-mutant
- I-mutant
A I-mutant
*, I-mutant
is O
completely B-protein_state
devoid I-protein_state
of I-protein_state
XyG I-protein_state
affinity I-protein_state
( O
Table O
3 O
; O
see O
Fig O
. O
S4 O
in O
the O
supplemental O
material O
). O
Multimodular O
structure O
of O
SGBP B-protein
- I-protein
B I-protein
( O
Bacova_02650 B-gene
). O
( O
A O
) O
Full B-protein_state
- I-protein_state
length I-protein_state
structure B-evidence
of O
SGBP B-protein
- I-protein
B I-protein
, O
color O
coded O
by O
domain O
as O
indicated O
. O
An O
omit B-evidence
map I-evidence
( O
2σ O
) O
for O
XyGO2 B-chemical
is O
displayed O
to O
highlight O
the O
location O
of O
the O
glycan B-site
- I-site
binding I-site
site I-site
. O
( O
D O
) O
Close O
- O
up O
omit B-evidence
map I-evidence
for O
the O
XyGO2 B-chemical
ligand O
, O
contoured O
at O
2σ O
. O
( O
E O
) O
Stereo O
view O
of O
the O
xyloglucan B-site
- I-site
binding I-site
site I-site
of O
SGBP B-protein
- I-protein
B I-protein
, O
displaying O
all O
residues O
within O
4 O
Å O
of O
the O
ligand O
. O
XyG B-chemical
binds B-protein_state
to I-protein_state
domain O
D B-structure_element
of O
SGBP B-protein
- I-protein
B I-protein
at O
the O
concave B-site
interface I-site
of O
the O
top O
β B-structure_element
- I-structure_element
sheet I-structure_element
, O
with O
binding O
mediated O
by O
loops B-structure_element
connecting O
the O
β B-structure_element
- I-structure_element
strands I-structure_element
. O
The O
backbone O
is O
flat O
, O
with O
less O
of O
the O
O
twisted O
- O
ribbon O
O
geometry O
observed O
in O
some O
cello B-chemical
- I-chemical
and I-chemical
xylogluco I-chemical
- I-chemical
oligosaccharides I-chemical
. O
While O
this O
may O
occur O
for O
a O
number O
of O
reasons O
in O
crystal B-evidence
structures I-evidence
, O
it O
is O
likely O
that O
the O
poor O
ligand O
density O
even O
at O
higher O
resolution O
is O
due O
to O
movement O
or O
multiple O
orientations O
of O
the O
sugar B-chemical
averaged O
throughout O
the O
lattice O
. O
Solid O
bars O
indicate O
conditions O
that O
are O
not O
statistically O
significant O
from O
the O
WT B-protein_state
Δtdk B-mutant
cultures O
grown O
on O
the O
indicated O
carbohydrate B-chemical
, O
while O
open O
bars O
indicate O
a O
P O
value O
of O
< O
0 O
. O
005 O
compared O
to O
the O
WT B-protein_state
Δtdk B-mutant
strain O
. O
In O
previous O
studies O
, O
we O
observed O
that O
carbohydrate B-chemical
binding O
by O
SusD B-protein
enhanced O
the O
sensitivity O
of O
the O
cells O
to O
limiting O
concentrations O
of O
malto O
- O
oligosaccharides O
by O
several O
orders O
of O
magnitude O
, O
such O
that O
the O
addition O
of O
0 O
. O
5 O
g O
/ O
liter O
maltose B-chemical
was O
required O
to O
restore O
growth O
of O
the O
ΔsusD B-mutant
:: O
SusD B-mutant
* I-mutant
strain O
on O
starch B-chemical
, O
which O
nonetheless O
occurred O
following O
an O
extended O
lag B-evidence
phase I-evidence
. O
As O
such O
, O
the O
data O
suggest O
that O
SGBP B-protein
- I-protein
A I-protein
can O
compensate O
for O
the O
loss O
of O
function O
of O
SGBP B-protein
- I-protein
B I-protein
on O
longer O
oligo B-chemical
- I-chemical
and I-chemical
polysaccharides I-chemical
, O
while O
SGBP B-protein
- I-protein
B I-protein
may O
adapt O
the O
cell O
to O
recognize O
smaller O
oligosaccharides B-chemical
efficiently O
. O
Presumably O
without O
glycan B-chemical
binding O
by O
the O
SGBPs B-protein_type
, O
the O
GH5 B-protein
protein O
cannot O
efficiently O
process O
xyloglucan B-chemical
, O
and O
/ O
or O
the O
lack O
of O
SGBP B-protein_type
function O
prevents O
efficient O
capture O
and O
import O
of O
the O
processed O
oligosaccharides B-chemical
. O
However O
, O
unlike O
the O
Sus B-complex_assembly
, O
in O
which O
elimination B-experimental_method
of I-experimental_method
SusE B-protein
and O
SusF B-protein
does O
not O
affect O
growth O
on O
starch B-chemical
, O
SGBP B-protein
- I-protein
B I-protein
appears O
to O
have O
a O
dedicated O
role O
in O
growth O
on O
small O
xylogluco B-chemical
- I-chemical
oligosaccharides I-chemical
. O
Thus O
, O
understanding O
glycan B-chemical
capture O
at O
the O
cell O
surface O
is O
fundamental O
to O
explaining O
, O
and O
eventually O
predicting O
, O
how O
the O
carbohydrate O
content O
of O
the O
diet O
shapes O
the O
gut O
community O
structure O
as O
well O
as O
its O
causative O
health O
effects O
. O
Yet O
, O
a O
number O
of O
questions O
remain O
regarding O
the O
molecular O
interplay O
of O
SGBPs B-protein_type
with O
their O
cotranscribed O
cohort O
of O
glycoside B-protein_type
hydrolases I-protein_type
and O
TonB B-protein_type
- I-protein_type
dependent I-protein_type
transporters I-protein_type
. O
PUL B-gene
- O
encoded O
TBDTs B-protein_type
in O
Bacteroidetes B-taxonomy_domain
are O
larger O
than O
the O
well O
- O
characterized O
iron B-protein_type
- I-protein_type
targeting I-protein_type
TBDTs I-protein_type
from O
many O
Proteobacteria B-taxonomy_domain
and O
are O
further O
distinguished O
as O
the O
only O
known O
glycan B-protein_type
- I-protein_type
importing I-protein_type
TBDTs I-protein_type
coexpressed O
with O
an O
SGBP B-protein_type
. O
Thus O
, O
the O
strict O
dependence O
on O
a O
SusD B-protein_type
- I-protein_type
like I-protein_type
SGBP I-protein_type
for O
glycan B-chemical
uptake O
in O
the O
Bacteroidetes B-taxonomy_domain
may O
be O
variable O
and O
substrate O
dependent O
. O
Such O
is O
the O
case O
for O
XyGUL B-gene
from O
related O
Bacteroides B-taxonomy_domain
species O
, O
which O
may O
encode O
either O
one O
or O
two O
of O
these O
predicted O
SGBPs B-protein_type
, O
and O
these O
proteins O
vary O
considerably O
in O
length O
. O
It O
is O
therefore O
important O
to O
understand O
the O
mechanisms O
which O
regulate O
nadA B-gene
expression O
levels O
, O
which O
are O
predominantly O
controlled O
by O
the O
transcriptional B-protein_type
regulator I-protein_type
NadR B-protein
( O
Neisseria B-protein
adhesin I-protein
A I-protein
Regulator I-protein
) O
both O
in O
vitro O
and O
in O
vivo O
. O
These O
findings O
shed O
light O
on O
the O
regulation O
of O
NadR B-protein
, O
a O
key O
MarR B-protein_type
- O
family O
virulence O
factor O
of O
this O
important O
human B-species
pathogen O
. O
The O
O
Reverse B-experimental_method
Vaccinology I-experimental_method
O
approach O
was O
pioneered O
to O
identify O
antigens O
for O
a O
protein O
- O
based O
vaccine O
against O
serogroup B-species
B I-species
Neisseria I-species
meningitidis I-species
( O
MenB B-species
), O
a O
human B-species
pathogen O
causing O
potentially O
- O
fatal O
sepsis O
and O
invasive O
meningococcal B-taxonomy_domain
disease O
. O
Indeed O
, O
Reverse B-experimental_method
Vaccinology I-experimental_method
identified O
Neisseria B-protein
adhesin I-protein
A I-protein
( O
NadA B-protein
), O
a O
surface O
- O
exposed O
protein O
involved O
in O
epithelial O
cell O
invasion O
and O
found O
in O
~ O
30 O
% O
of O
clinical O
isolates O
. O
Although O
additional O
factors O
influence O
nadA B-gene
expression O
, O
we O
focused O
on O
its O
regulation O
by O
NadR B-protein
, O
the O
major O
mediator O
of O
NadA B-protein
phase O
variable O
expression O
. O
Stability O
of O
NadR B-protein
is O
increased O
by O
small O
molecule O
ligands O
. O
The O
interactions O
of O
4 B-chemical
- I-chemical
HPA I-chemical
and O
3Cl B-chemical
, I-chemical
4 I-chemical
- I-chemical
HPA I-chemical
with O
NadR B-protein
exhibited O
KD B-evidence
values O
of O
1 O
. O
5 O
mM O
and O
1 O
. O
1 O
mM O
, O
respectively O
. O
The O
structure B-evidence
of O
the O
NadR B-complex_assembly
/ I-complex_assembly
4 I-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
complex O
was O
determined O
at O
2 O
. O
3 O
Å O
resolution O
using O
a O
combination O
of O
the O
single B-experimental_method
- I-experimental_method
wavelength I-experimental_method
anomalous I-experimental_method
dispersion I-experimental_method
( O
SAD B-experimental_method
) O
and O
molecular B-experimental_method
replacement I-experimental_method
( O
MR B-experimental_method
) O
methods O
, O
and O
was O
refined O
to O
R B-evidence
work I-evidence
/ I-evidence
R I-evidence
free I-evidence
values O
of O
20 O
. O
9 O
/ O
26 O
. O
0 O
% O
( O
Table O
2 O
). O
Despite O
numerous O
attempts O
, O
we O
were O
unable O
to O
obtain O
high O
- O
quality O
crystals B-evidence
of O
NadR B-protein
complexed B-protein_state
with I-protein_state
3Cl B-chemical
, I-chemical
4 I-chemical
- I-chemical
HPA I-chemical
, O
3 B-chemical
, I-chemical
4 I-chemical
- I-chemical
HPA I-chemical
, O
3 B-chemical
- I-chemical
HPA I-chemical
or O
DNA O
targets O
. O
However O
, O
it O
was O
eventually O
possible O
to O
crystallize B-experimental_method
apo B-protein_state
- O
NadR B-protein
, O
and O
the O
structure B-evidence
was O
determined O
at O
2 O
. O
7 O
Å O
resolution O
by O
MR B-experimental_method
methods O
using O
the O
NadR B-complex_assembly
/ I-complex_assembly
4 I-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
complex O
as O
the O
search O
model O
. O
Interestingly O
, O
in O
the O
α4 B-structure_element
- I-structure_element
β2 I-structure_element
region I-structure_element
, O
the O
stretch O
of O
residues O
from O
R64 B-residue_range
- I-residue_range
R91 I-residue_range
presents O
seven O
positively O
- O
charged O
side O
chains O
, O
all O
available O
for O
potential O
interactions O
with O
DNA B-chemical
. O
The O
crystal B-evidence
structure I-evidence
of O
NadR B-protein
in B-protein_state
complex I-protein_state
with I-protein_state
4 B-chemical
- I-chemical
HPA I-chemical
. O
It O
is O
notable O
that O
L130 B-residue_name_number
is O
usually O
present O
as O
Leu B-residue_name
, O
or O
an O
alternative O
bulky O
hydrophobic O
amino O
acid O
( O
e O
. O
g O
. O
Phe B-residue_name
, O
Val B-residue_name
), O
in O
many O
MarR B-protein_type
family O
proteins O
, O
suggesting O
a O
conserved B-protein_state
role O
in O
stabilizing O
the O
dimer B-site
interface I-site
. O
( O
C O
) O
SE B-experimental_method
- I-experimental_method
HPLC I-experimental_method
analyses O
of O
all O
mutant B-protein_state
forms O
of O
NadR B-protein
are O
compared O
with O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
( O
WT B-protein_state
) O
protein O
. O
To O
a O
much O
lesser O
extent O
, O
the O
L133K B-mutant
mutation O
also O
appears O
to O
induce O
a O
O
shoulder O
O
to O
the O
main O
peak O
, O
suggesting O
very O
weak O
ability O
to O
disrupt O
the O
dimer B-oligomeric_state
. O
( O
D O
) O
SE B-experimental_method
- I-experimental_method
HPLC I-experimental_method
/ I-experimental_method
MALLS I-experimental_method
analyses O
of O
the O
L130K B-mutant
mutant B-protein_state
, O
shows O
20 O
% O
dimer B-oligomeric_state
and O
80 O
% O
monomer B-oligomeric_state
. O
A O
water B-chemical
molecule O
is O
shown O
by O
the O
red O
sphere O
. O
The O
entire O
set O
of O
residues O
making O
H O
- O
bonds O
or O
non O
- O
bonded O
contacts O
with O
4 B-chemical
- I-chemical
HPA I-chemical
is O
as O
follows O
: O
SerA9 B-residue_name_number
, O
AsnA11 B-residue_name_number
, O
LeuB21 B-residue_name_number
, O
MetB22 B-residue_name_number
, O
PheB25 B-residue_name_number
, O
LeuB29 B-residue_name_number
, O
AspB36 B-residue_name_number
, O
TrpB39 B-residue_name_number
, O
ArgB43 B-residue_name_number
, O
ValB111 B-residue_name_number
and O
TyrB115 B-residue_name_number
( O
automated O
analysis O
performed O
using O
PDBsum B-experimental_method
and O
verified O
manually O
). O
Side O
chains O
mediating O
hydrophobic O
interactions O
are O
shown O
in O
orange O
. O
( O
B O
) O
A O
model O
was O
prepared O
to O
visualize O
putative O
interactions O
of O
3Cl B-chemical
, I-chemical
4 I-chemical
- I-chemical
HPA I-chemical
( O
pink O
) O
with O
NadR B-protein
, O
revealing O
the O
potential O
for O
additional O
contacts O
( O
dashed O
lines O
) O
of O
the O
chloro O
moiety O
( O
green O
stick O
) O
with O
LeuB29 B-residue_name_number
and O
AspB36 B-residue_name_number
. O
The O
presence O
of O
a O
single O
hydroxyl O
group O
at O
position O
2 O
, O
as O
in O
2 B-chemical
- I-chemical
HPA I-chemical
, O
rather O
than O
at O
position O
4 O
, O
would O
eliminate O
the O
possibility O
of O
favorable O
interactions O
with O
AspB36 B-residue_name_number
, O
resulting O
in O
the O
lack O
of O
NadR B-protein
regulation O
by O
2 B-chemical
- I-chemical
HPA I-chemical
described O
previously O
. O
Analysis O
of O
the O
pockets B-site
reveals O
the O
molecular O
basis O
for O
asymmetric O
binding O
and O
stoichiometry O
In O
these O
crystals B-evidence
, O
the O
ArgA43 B-residue_name_number
side O
chain O
showed O
two O
alternate O
conformations O
, O
modelled O
with O
50 O
% O
occupancy O
in O
each O
state O
, O
as O
indicated O
by O
the O
two O
O
mirrored O
O
arrows O
. O
The O
1H B-experimental_method
- I-experimental_method
15N I-experimental_method
TROSY I-experimental_method
- I-experimental_method
HSQC I-experimental_method
spectrum B-evidence
of O
apo B-protein_state
- O
NadR B-protein
, O
acquired O
at O
25 O
° O
C O
, O
displayed O
approximately O
140 O
distinct O
peaks O
( O
Fig O
6A O
), O
most O
of O
which O
correspond O
to O
backbone O
amide O
N O
- O
H O
groups O
. O
( O
B O
, O
C O
) O
Overlay B-experimental_method
of O
selected O
regions O
of O
the O
1H B-experimental_method
- I-experimental_method
15N I-experimental_method
TROSY I-experimental_method
- I-experimental_method
HSQC I-experimental_method
spectra B-evidence
acquired O
at O
25 O
° O
C O
of O
apo B-protein_state
- O
NadR B-protein
( O
cyan O
) O
and O
NadR B-complex_assembly
/ I-complex_assembly
4 I-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
( O
red O
) O
superimposed B-experimental_method
with O
the O
spectra B-evidence
acquired O
at O
10 O
° O
C O
of O
apo B-protein_state
- O
NadR B-protein
( O
blue O
) O
and O
NadR B-complex_assembly
/ I-complex_assembly
4 I-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
( O
green O
). O
Most O
notably O
, O
the O
position O
of O
the O
DNA B-chemical
- O
binding O
helix B-structure_element
α4 B-structure_element
shifted O
by O
as O
much O
as O
6 O
Å O
( O
Fig O
8B O
). O
For O
clarity O
, O
only O
the O
α4 B-structure_element
helices I-structure_element
are O
shown O
in O
panels O
( O
B O
) O
and O
( O
C O
). O
( O
D O
) O
Upon O
comparison O
with O
the O
experimentally O
- O
determined O
OhrR B-complex_assembly
: I-complex_assembly
ohrA I-complex_assembly
structure B-evidence
( O
grey O
), O
the O
α4 B-structure_element
helix I-structure_element
of O
holo B-protein_state
- O
NadR B-protein
( O
blue O
) O
is O
shifted O
~ O
8Å O
out O
of O
the O
major O
groove O
. O
Specifically O
, O
in O
addition O
to O
the O
different O
inter B-evidence
- I-evidence
helical I-evidence
translational I-evidence
distances I-evidence
, O
the O
α4 B-structure_element
helices I-structure_element
in O
the O
holo B-protein_state
- O
NadR B-protein
homodimer B-oligomeric_state
were O
also O
reoriented O
, O
resulting O
in O
movement O
of O
α4 B-structure_element
out O
of O
the O
major O
groove O
, O
by O
up O
to O
8Å O
, O
and O
presumably O
preventing O
efficient O
DNA B-chemical
binding O
in O
the O
presence O
of O
4 B-chemical
- I-chemical
HPA I-chemical
( O
Fig O
8D O
). O
Firstly O
, O
we O
confirmed O
that O
NadR B-protein
is O
dimeric B-oligomeric_state
in O
solution O
and O
demonstrated O
that O
it O
retains O
its O
dimeric B-oligomeric_state
state O
in O
the O
presence B-protein_state
of I-protein_state
4 B-chemical
- I-chemical
HPA I-chemical
, O
indicating O
that O
induction O
of O
a O
monomeric B-oligomeric_state
status O
is O
not O
the O
manner O
by O
which O
4 B-chemical
- I-chemical
HPA I-chemical
regulates O
NadR B-protein
. O
These O
observations O
were O
in O
agreement O
with O
( O
i O
) O
a O
previous O
study O
of O
NadR B-protein
performed O
using O
SEC B-experimental_method
and O
mass B-experimental_method
spectrometry I-experimental_method
, O
and O
( O
ii O
) O
crystallographic B-experimental_method
studies I-experimental_method
showing O
that O
several O
MarR B-protein_type
homologues O
are O
dimeric B-oligomeric_state
. O
Although O
these O
NadR B-protein
/ O
HPA O
interactions O
appeared O
rather O
weak O
, O
their O
distinct O
affinities O
and O
specificities O
matched O
their O
in O
vitro O
effects O
and O
their O
biological O
relevance O
appears O
similar O
to O
previous O
proposals O
that O
certain O
small O
molecules O
, O
including O
some O
antibiotics O
, O
in O
the O
millimolar O
concentration O
range O
may O
be O
broad O
inhibitors O
of O
MarR B-protein_type
family O
proteins O
. O
Structural B-experimental_method
analyses I-experimental_method
suggested O
that O
O
inward B-protein_state
O
side O
chain O
positions O
of O
Met22 B-residue_name_number
, O
Phe25 B-residue_name_number
and O
especially O
Arg43 B-residue_name_number
precluded O
binding O
of O
a O
second O
ligand O
molecule O
. O
Such O
a O
mechanism O
indicates O
negative O
cooperativity O
, O
which O
may O
enhance O
the O
ligand O
- O
responsiveness O
of O
NadR B-protein
. O
Comparisons O
of O
the O
NadR B-complex_assembly
/ I-complex_assembly
4 I-complex_assembly
- I-complex_assembly
HPA I-complex_assembly
complex O
with O
available O
MarR B-protein_type
family O
/ O
salicylate B-chemical
complexes O
revealed O
that O
4 B-chemical
- I-chemical
HPA I-chemical
has O
a O
previously O
unobserved O
binding O
mode O
. O
Ultimately O
, O
knowledge O
of O
the O
ligand O
- O
dependent O
activity O
of O
NadR B-protein
will O
continue O
to O
deepen O
our O
understanding O
of O
nadA B-gene
expression O
levels O
, O
which O
influence O
meningococcal B-taxonomy_domain
pathogenesis O
. O
The O
structure O
of O
NMB1585 B-protein
, O
a O
MarR O
- O
family O
regulator O
from O
Neisseria O
meningitidis O
The O
PduL B-protein_type
structure B-evidence
, O
in O
the O
context O
of O
the O
catalytic O
core O
, O
completes O
our O
understanding O
of O
the O
structural O
basis O
of O
cofactor O
recycling O
in O
the O
metabolosome B-complex_assembly
lumen O
. O
The O
phosphotransacylase B-protein_type
( O
Pta B-protein_type
) O
enzyme O
catalyzes O
the O
conversion O
between O
acyl B-chemical
- I-chemical
CoA I-chemical
and O
acyl B-chemical
- I-chemical
phosphate I-chemical
. O
We O
solved B-experimental_method
the O
structure B-evidence
of O
this O
convergent B-protein_state
phosphotransacylase B-protein_type
and O
show O
that O
it O
is O
completely O
structurally O
different O
from O
Pta B-protein_type
, O
including O
its O
active B-site
site I-site
architecture O
. O
Bacterial B-taxonomy_domain
Microcompartments B-complex_assembly
( O
BMCs B-complex_assembly
) O
are O
organelles O
that O
encapsulate O
enzymes O
for O
sequential O
biochemical O
reactions O
within O
a O
protein O
shell B-structure_element
. O
The O
vitamin B-complex_assembly
B12 I-complex_assembly
- I-complex_assembly
dependent I-complex_assembly
propanediol I-complex_assembly
- I-complex_assembly
utilizing I-complex_assembly
( I-complex_assembly
PDU I-complex_assembly
) I-complex_assembly
BMC I-complex_assembly
was O
one O
of O
the O
first O
functionally O
characterized O
catabolic B-protein_state
BMCs B-complex_assembly
; O
subsequently O
, O
other O
types O
have O
been O
implicated O
in O
the O
degradation O
of O
ethanolamine B-chemical
, O
choline B-chemical
, O
fucose B-chemical
, O
rhamnose B-chemical
, O
and O
ethanol B-chemical
, O
all O
of O
which O
produce O
different O
aldehyde B-chemical
intermediates O
( O
Table O
1 O
). O
These O
two O
cofactors O
are O
relatively O
large O
, O
and O
their O
diffusion O
across O
the O
protein B-structure_element
shell I-structure_element
is O
thought O
to O
be O
restricted O
, O
necessitating O
their O
regeneration O
within O
the O
BMC B-complex_assembly
lumen O
. O
Both O
enzymes O
are O
, O
however O
, O
not O
restricted O
to O
fermentative B-taxonomy_domain
organisms I-taxonomy_domain
. O
Reaction O
2 O
: O
acetyl B-chemical
phosphate I-chemical
+ O
ADP B-chemical
←→ O
acetate B-chemical
+ O
ATP B-chemical
( O
Ack B-protein_type
) O
As O
a O
member O
of O
the O
core O
biochemical O
machinery O
of O
functionally O
diverse O
aldehyde B-protein_state
- I-protein_state
oxidizing I-protein_state
metabolosomes B-complex_assembly
, O
PduL B-protein_type
must O
have O
a O
certain O
level O
of O
substrate O
plasticity O
( O
see O
Table O
1 O
) O
that O
is O
not O
required O
of O
Pta B-protein_type
, O
which O
has O
generally O
been O
observed O
to O
prefer O
acetyl B-chemical
- I-chemical
CoA I-chemical
. O
PduL B-protein_type
from O
the O
PDU B-complex_assembly
BMC I-complex_assembly
of O
Salmonella B-species
enterica I-species
favors O
propionyl B-chemical
- I-chemical
CoA I-chemical
over O
acetyl B-chemical
- I-chemical
CoA I-chemical
, O
and O
it O
is O
likely O
that O
PduL B-protein_type
orthologs O
in O
functionally O
diverse O
BMCs B-complex_assembly
would O
have O
substrate O
preferences O
for O
other O
CoA B-chemical
derivatives O
. O
Of O
the O
three O
common O
metabolosome B-complex_assembly
core O
enzymes O
, O
crystal B-evidence
structures I-evidence
are O
available O
for O
both O
the O
alcohol B-protein_type
and I-protein_type
aldehyde I-protein_type
dehydrogenases I-protein_type
. O
No O
available O
protein O
structures O
contain O
the O
PF06130 B-structure_element
domain O
, O
and O
homology B-experimental_method
searches I-experimental_method
using O
the O
primary O
structure O
of O
PduL B-protein_type
do O
not O
return O
any O
significant O
results O
that O
would O
allow O
prediction O
of O
the O
structure B-evidence
. O
Metal B-site
coordination I-site
residues I-site
are O
highlighted O
in O
light O
blue O
and O
CoA B-site
contacting I-site
residues I-site
in O
magenta O
, O
residues O
contacting O
the O
CoA B-chemical
of O
the O
other O
chain O
are O
also O
outlined O
. O
We O
were O
able O
to O
fit O
all O
of O
the O
primary O
structure O
of O
PduLΔEP B-mutant
into O
the O
electron B-evidence
density I-evidence
with O
the O
exception O
of O
three O
amino O
acids O
at O
the O
N O
- O
terminus O
and O
two O
amino O
acids O
at O
the O
C O
- O
terminus O
( O
Fig O
2a O
); O
the O
model O
is O
of O
excellent O
quality O
( O
Table O
2 O
). O
This O
β B-structure_element
- I-structure_element
sheet I-structure_element
is O
involved O
in O
contacts O
between O
the O
two O
domains O
and O
forms O
a O
lid O
over O
the O
active B-site
site I-site
. O
Primary O
structure O
conservation O
of O
the O
PduL B-protein_type
protein O
family O
. O
The O
interface B-site
between O
the O
two O
chains O
buries O
882 O
Å2 O
per O
monomer B-oligomeric_state
and O
is O
mainly O
formed O
by O
α B-structure_element
- I-structure_element
helices I-structure_element
2 I-structure_element
and I-structure_element
4 I-structure_element
and O
parts O
of O
β B-structure_element
- I-structure_element
sheets I-structure_element
12 I-structure_element
and I-structure_element
14 I-structure_element
, O
as O
well O
as O
a O
π O
O
π O
stacking O
of O
the O
adenine B-chemical
moiety O
of O
CoA B-chemical
with O
Phe116 B-residue_name_number
of O
the O
adjacent O
chain O
( O
Fig O
4c O
). O
The O
peripheral O
helices B-structure_element
and O
the O
short B-structure_element
antiparallel I-structure_element
β3 I-structure_element
I-structure_element
4 I-structure_element
sheet I-structure_element
mediate O
most O
of O
the O
crystal O
contacts O
. O
( O
d O
)( O
f O
): O
Chromatograms B-evidence
of O
sPduL B-protein
( O
d O
), O
rPduL B-protein
( O
e O
), O
and O
pPduL B-protein
( O
f O
) O
post O
- O
preparative O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
with O
different O
size O
fractions O
separated O
, O
applied O
over O
an O
analytical O
size O
exclusion O
column O
( O
see O
Materials O
and O
Methods O
). O
The O
BMC B-complex_assembly
shell B-structure_element
not O
only O
sequesters O
specific O
enzymes O
but O
also O
their O
cofactors O
, O
thereby O
establishing O
a O
private O
cofactor O
pool O
dedicated O
to O
the O
encapsulated O
reactions O
. O
In O
catabolic B-protein_state
BMCs B-complex_assembly
, O
CoA B-chemical
and O
NAD B-chemical
+ I-chemical
must O
be O
continually O
recycled O
within O
the O
organelle O
( O
Fig O
1 O
). O
The O
Tertiary O
Structure O
of O
PduL B-protein_type
Is O
Formed O
by O
Discontinuous O
Segments O
of O
Primary O
Structure O
In O
contrast O
to O
PduL B-protein_type
, O
there O
is O
only O
one O
barrel B-structure_element
present O
in O
ethylbenzene B-protein_type
dehydrogenase I-protein_type
, O
and O
there O
is O
no O
comparable O
active B-site
site I-site
arrangement O
. O
EP B-structure_element
- O
mediated O
oligomerization O
has O
been O
observed O
for O
the O
signature O
and O
core O
BMC B-complex_assembly
enzymes O
; O
for O
example O
, O
full B-protein_state
- I-protein_state
length I-protein_state
propanediol B-protein_type
dehydratase I-protein_type
and O
ethanolamine B-protein_type
ammonia I-protein_type
- I-protein_type
lyase I-protein_type
( O
signature O
enzymes O
for O
PDU B-complex_assembly
and O
EUT B-complex_assembly
BMCs I-complex_assembly
) O
subunits O
are O
also O
insoluble O
, O
but O
become O
soluble O
upon O
removal O
of O
the O
predicted O
EP B-structure_element
. O
This O
propensity O
of O
the O
EP B-structure_element
to O
cause O
proteins O
to O
form O
complexes O
( O
Fig O
5 O
) O
might O
not O
be O
a O
coincidence O
, O
but O
could O
be O
a O
necessary O
step O
in O
the O
assembly O
of O
BMCs B-complex_assembly
. O
There O
is O
a O
pocket B-site
nearby O
the O
active B-site
site I-site
between O
the O
well B-protein_state
- I-protein_state
conserved I-protein_state
residues O
Ser45 B-residue_name_number
and O
Ala154 B-residue_name_number
, O
which O
could O
accommodate O
the O
propionyl O
group O
( O
S6 O
Fig O
). O
The O
catalytic O
mechanism O
of O
Pta B-protein_type
involves O
the O
abstraction O
of O
a O
thiol O
hydrogen O
by O
an O
aspartate B-residue_name
residue O
, O
resulting O
in O
the O
nucleophilic O
attack O
of O
thiolate O
upon O
the O
carbonyl O
carbon O
of O
acetyl B-chemical
- I-chemical
phosphate I-chemical
, O
oriented O
by O
an O
arginine B-residue_name
and O
stabilized O
by O
a O
serine B-residue_name
O
there O
are O
no O
metals O
involved O
. O
These O
observations O
strongly O
suggest O
that O
an O
acidic B-protein_state
residue B-structure_element
is O
not O
directly O
involved O
in O
catalysis O
by O
PduL B-protein_type
. O
Instead O
, O
the O
dimetal B-site
active I-site
site I-site
of O
PduL B-protein_type
may O
create O
a O
nucleophile O
from O
one O
of O
the O
hydroxyl O
groups O
on O
free O
phosphate B-chemical
to O
attack O
the O
carbonyl O
carbon O
of O
the O
thioester O
bond O
of O
an O
acyl B-chemical
- I-chemical
CoA I-chemical
. O
In O
the O
reverse O
direction O
, O
the O
metal O
ion O
( O
s O
) O
could O
stabilize O
the O
thiolate O
anion O
that O
would O
attack O
the O
carbonyl O
carbon O
of O
an O
acyl B-chemical
- I-chemical
phosphate I-chemical
; O
a O
similar O
mechanism O
has O
been O
described O
for O
phosphatases B-protein_type
where O
hydroxyl O
groups O
or O
hydroxide O
ions O
can O
act O
as O
a O
base O
when O
coordinated O
by O
a O
dimetal B-site
active I-site
site I-site
. O
Alternatively O
, O
Arg103 B-residue_name_number
might O
act O
as O
a O
base O
to O
render O
the O
phosphate B-chemical
more O
nucleophilic O
. O
The O
free O
CoA B-protein_state
- I-protein_state
bound I-protein_state
form O
is O
presumably O
poised O
for O
attack O
upon O
an O
acyl B-chemical
- I-chemical
phosphate I-chemical
, O
indicating O
that O
the O
enzyme O
initially O
binds O
CoA B-chemical
as O
opposed O
to O
acyl B-chemical
- I-chemical
phosphate I-chemical
. O
We O
have O
observed O
the O
oligomeric O
state O
differences O
of O
PduL B-protein_type
to O
correlate O
with O
the O
presence O
of O
an O
EP B-structure_element
, O
providing O
new O
insight O
into O
the O
function O
of O
this O
sequence O
extension O
in O
BMC B-complex_assembly
assembly O
. O
Moreover O
, O
our O
results O
suggest O
a O
means O
for O
Coenzyme B-chemical
A I-chemical
incorporation O
during O
metabolosome B-complex_assembly
biogenesis O
. O
A O
detailed O
understanding O
of O
the O
underlying O
principles O
governing O
the O
assembly O
and O
internal O
structural O
organization O
of O
BMCs B-complex_assembly
is O
a O
requisite O
for O
synthetic O
biologists O
to O
design O
custom O
nanoreactors O
that O
use O
BMC B-complex_assembly
architectures O
as O
a O
template O
. O
We O
found O
that O
the O
NTD B-structure_element
associates O
with O
the O
PIN B-structure_element
domain O
and O
significantly O
enhances O
its O
RNase B-protein_type
activity O
. O
The O
structure B-evidence
combined O
with O
functional O
analyses O
revealed O
that O
four O
catalytically O
important O
Asp B-residue_name
residues O
form O
the O
catalytic B-site
center I-site
and O
stabilize O
Mg2 B-chemical
+ I-chemical
binding O
that O
is O
crucial O
for O
RNase B-protein_type
activity O
. O
The O
NTD B-structure_element
and O
CTD B-structure_element
are O
both O
composed O
of O
three O
α B-structure_element
helices I-structure_element
, O
and O
structurally O
resemble O
ubiquitin B-protein
conjugating I-protein
enzyme I-protein
E2 I-protein
K I-protein
( O
PDB O
ID O
: O
3K9O O
) O
and O
ubiquitin B-protein
associated I-protein
protein I-protein
1 I-protein
( O
PDB O
ID O
: O
4AE4 O
), O
respectively O
, O
according O
to O
the O
Dali B-experimental_method
server I-experimental_method
. O
Based O
on O
the O
decrease O
in O
the O
free O
RNA B-chemical
fluorescence O
band O
, O
we O
evaluated O
the O
contribution O
of O
each O
domain O
of O
Regnase B-protein
- I-protein
1 I-protein
to O
RNA B-chemical
binding O
. O
Contribution O
of O
each O
domain O
of O
Regnase B-protein
- I-protein
1 I-protein
to O
RNase B-protein_type
activity O
On O
the O
other O
hand O
, O
single B-experimental_method
mutations I-experimental_method
of O
side O
chains O
involved O
in O
the O
PIN B-structure_element
O
PIN B-structure_element
oligomeric O
interaction O
resulted O
in O
monomer B-oligomeric_state
formation O
, O
judging O
from O
gel B-experimental_method
filtration I-experimental_method
( O
Fig O
. O
2a O
, O
b O
). O
The O
spectra B-evidence
indicate O
that O
the O
dimer B-site
interface I-site
of O
the O
wild B-protein_state
type I-protein_state
PIN B-structure_element
domain O
were O
significantly O
broadened O
compared O
to O
the O
monomeric B-oligomeric_state
mutants B-protein_state
( O
Supplementary O
Fig O
. O
4 O
). O
These O
results O
indicate O
that O
the O
PIN B-structure_element
domain O
forms O
a O
head B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
tail I-protein_state
oligomer B-oligomeric_state
in O
solution O
similar O
to O
the O
crystal B-evidence
structure I-evidence
. O
These O
results O
clearly O
indicate O
a O
direct O
interaction O
between O
the O
PIN B-structure_element
domain O
and O
the O
NTD B-structure_element
. O
The O
K184A B-mutant
, O
R215A B-mutant
, O
and O
R220A B-mutant
mutants B-protein_state
moderately O
but O
significantly O
decreased O
the O
cleavage O
activity O
for O
both O
target O
mRNAs B-chemical
. O
The O
importance O
of O
residues O
W182 B-residue_name_number
and O
R183 B-residue_name_number
can O
readily O
be O
understood O
in O
terms O
of O
the O
monomeric B-oligomeric_state
PIN B-structure_element
structure B-evidence
as O
they O
are O
located O
near O
to O
the O
RNase B-protein_type
catalytic B-site
site I-site
; O
however O
, O
the O
importance O
of O
residue O
K184 B-residue_name_number
, O
which O
points O
away O
from O
the O
active B-site
site I-site
is O
more O
easily O
rationalized O
in O
terms O
of O
the O
oligomeric O
structure B-evidence
, O
in O
which O
the O
O
secondary O
O
chain O
O
s O
residue O
K184 B-residue_name_number
is O
positioned O
near O
the O
O
primary B-protein_state
I-protein_state
chain O
O
s O
catalytic B-site
site I-site
( O
Fig O
. O
4 O
). O
Our O
NMR B-experimental_method
experiments O
confirmed O
direct O
binding O
of O
the O
ZF B-structure_element
domain O
to O
IL B-protein_type
- I-protein_type
6 I-protein_type
mRNA B-chemical
with O
a O
Kd B-evidence
of O
10 O
± O
1 O
. O
1 O
μM O
. O
Furthermore O
, O
an O
in B-experimental_method
vitro I-experimental_method
gel I-experimental_method
shift I-experimental_method
assay I-experimental_method
indicated O
that O
Regnase B-protein
- I-protein
1 I-protein
containing O
the O
ZF B-structure_element
domain O
enhanced O
target O
mRNA B-chemical
- O
binding O
, O
but O
the O
protein O
- O
RNA B-chemical
complex O
remained O
in O
the O
bottom O
of O
the O
well O
without O
entering O
into O
the O
polyacrylamide O
gel O
. O
These O
results O
indicate O
that O
Regnase B-protein
- I-protein
1 I-protein
directly O
binds O
to O
RNA B-chemical
and O
precipitates O
under O
such O
experimental O
conditions O
. O
Moreover O
, O
we O
found O
that O
the O
NTD B-structure_element
associates O
with O
the O
oligomeric B-site
surface I-site
of O
the O
primary B-protein_state
PIN B-structure_element
, O
docking O
to O
a O
helix B-structure_element
that O
harbors O
its O
catalytic B-site
residues I-site
( O
Figs O
2b O
and O
3a O
). O
While O
further O
analyses O
are O
necessary O
to O
prove O
this O
point O
, O
our O
preliminary O
docking B-experimental_method
and I-experimental_method
molecular I-experimental_method
dynamics I-experimental_method
simulations I-experimental_method
indicate O
that O
NTD B-structure_element
- O
binding O
rearranges O
the O
catalytic B-site
residues I-site
of O
the O
PIN B-structure_element
domain O
toward O
an O
active B-protein_state
conformation O
suitable O
for O
binding O
Mg2 B-chemical
+. I-chemical
The O
docking B-experimental_method
result O
revealed O
multiple O
RNA B-chemical
binding O
modes O
that O
satisfied O
the O
experimental O
results O
in O
vitro O
( O
Supplementary O
Fig O
. O
7c O
, O
d O
), O
however O
, O
it O
should O
be O
noted O
that O
, O
in O
vivo O
, O
there O
would O
likely O
be O
many O
other O
RNA B-protein_type
- I-protein_type
binding I-protein_type
proteins I-protein_type
that O
would O
protect O
loop B-structure_element
regions O
from O
cleavage O
by O
Regnase B-protein
- I-protein
1 I-protein
. O
The O
overall O
model O
of O
regulation O
of O
Regnase B-protein
- I-protein
1 I-protein
RNase B-protein_type
activity O
through O
domain O
- O
domain O
interactions O
in O
vitro O
is O
summarized O
in O
Fig O
. O
6 O
. O
In O
the O
absence B-protein_state
of I-protein_state
target O
mRNA B-chemical
, O
the O
PIN B-structure_element
domain O
forms O
head B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
tail I-protein_state
oligomers B-oligomeric_state
at O
high O
concentration O
. O
A O
fully B-protein_state
active I-protein_state
catalytic B-site
center I-site
can O
be O
formed O
only O
when O
the O
NTD B-structure_element
associates O
with O
the O
oligomer B-oligomeric_state
surface O
of O
the O
PIN B-structure_element
domain O
, O
which O
terminates O
the O
head B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
tail I-protein_state
oligomer B-oligomeric_state
formation O
in O
one O
direction O
( O
primary B-protein_state
PIN B-structure_element
), O
and O
forms O
a O
functional B-protein_state
dimer B-oligomeric_state
together O
with O
the O
neighboring O
PIN B-structure_element
( O
secondary B-protein_state
PIN B-structure_element
). O
Catalytic B-protein_state
Asp B-residue_name
residues O
were O
shown O
in O
sticks O
. O
Three O
Cys B-residue_name
residues O
and O
one O
His B-residue_name
residue O
responsible O
for O
Zn2 O
+- O
binding O
were O
shown O
in O
sticks O
. O
( O
f O
) O
In B-experimental_method
vitro I-experimental_method
gel I-experimental_method
shift I-experimental_method
binding I-experimental_method
assay I-experimental_method
between O
Regnase B-protein
- I-protein
1 I-protein
and O
IL B-protein_type
- I-protein_type
6 I-protein_type
mRNA B-chemical
. O
Catalytic B-site
residues I-site
and O
mutated O
residues O
were O
shown O
in O
sticks O
. O
The O
residues O
with O
significant O
chemical O
shift O
changes O
were O
labeled O
in O
the O
overlaid B-experimental_method
spectra B-evidence
( O
left O
) O
and O
colored O
red O
on O
the O
surface O
and O
ribbon O
structure O
of O
the O
PIN B-structure_element
domain O
( O
right O
). O
( O
b O
) O
NMR B-experimental_method
analyses I-experimental_method
of O
the O
PIN B-structure_element
- O
binding O
to O
the O
NTD B-structure_element
. O
Critical O
residues O
in O
the O
PIN B-structure_element
domain O
for O
the O
RNase B-protein_type
activity O
of O
Regnase B-protein
- I-protein
1 I-protein
. O
( O
b O
) O
In B-experimental_method
vitro I-experimental_method
cleavage I-experimental_method
assay I-experimental_method
of O
basic O
residue O
mutants B-protein_state
for O
Regnase B-protein
- I-protein
1 I-protein
mRNA B-chemical
. O
Schematic O
representation O
of O
regulation O
of O
the O
Regnase B-protein
- I-protein
1 I-protein
catalytic O
activity O
through O
the O
domain O
- O
domain O
interactions O
. O
Ribosomal B-chemical
RNA I-chemical
modifications O
have O
been O
suggested O
to O
optimize O
ribosome O
function O
, O
although O
in O
most O
cases O
this O
remains O
to O
be O
clearly O
established O
. O
Most O
modified O
rRNA B-chemical
nucleotides B-chemical
cluster O
in O
the O
vicinity O
of O
the O
decoding B-site
or O
the O
peptidyl B-site
transferase I-site
center I-site
, O
suggesting O
an O
influence O
on O
ribosome O
functionality O
and O
stability O
. O
Both O
the O
methyl O
and O
the O
acp O
group O
are O
derived O
from O
S B-chemical
- I-chemical
adenosylmethionine I-chemical
( O
SAM B-chemical
), O
but O
the O
enzyme O
responsible O
for O
acp B-chemical
modification O
remained O
elusive O
for O
more O
than O
40 O
years O
. O
Tsr3 B-protein
is O
necessary O
for O
acp B-chemical
modification O
of O
18S B-chemical
rRNA I-chemical
in O
yeast B-taxonomy_domain
and O
human B-species
. O
( O
A O
) O
Hypermodified B-protein_state
nucleotide B-chemical
m1acp3Ψ B-chemical
is O
synthesized O
in O
three O
steps O
: O
pseudouridylation B-ptm
catalyzed O
by O
snoRNP35 B-complex_assembly
, O
N1 B-ptm
- I-ptm
methylation I-ptm
catalyzed O
by O
methyltransferase B-protein_type
Nep1 B-protein
and O
N3 O
- O
acp B-chemical
modification O
catalyzed O
by O
Tsr3 B-protein
. O
The O
asterisk O
indicates O
the O
C1 O
- O
atom O
labeled O
in O
the O
14C B-experimental_method
- I-experimental_method
incorporation I-experimental_method
assay I-experimental_method
. O
( O
C O
) O
14C B-chemical
- I-chemical
acp I-chemical
labeling O
of O
18S B-chemical
rRNAs I-chemical
. O
Upper O
lanes O
show O
the O
ethidium B-chemical
bromide I-chemical
staining O
of O
the O
18S B-chemical
rRNAs I-chemical
for O
quantification O
. O
The O
primer O
extension O
stop O
at O
nucleotide O
1191 B-residue_number
is O
missing O
exclusively O
in O
Δtsr3 B-mutant
mutants O
and O
Δtsr3 B-mutant
Δsnr35 I-mutant
recombinants O
. O
The O
efficiency O
of O
siRNA B-chemical
mediated O
HsTSR3 B-protein
repression O
correlates O
with O
the O
primer B-evidence
extension I-evidence
signals I-evidence
( O
see O
Supplementary O
Figure O
S2A O
). O
During O
the O
biosynthesis O
of O
wybutosine B-chemical
, O
a O
tricyclic O
nucleoside B-chemical
present O
in O
eukaryotic B-taxonomy_domain
and O
archaeal B-taxonomy_domain
phenylalanine B-chemical
tRNA B-chemical
, O
Tyw2 B-protein
( O
Trm12 B-protein
in O
yeast B-taxonomy_domain
) O
transfers O
an O
acp B-chemical
group O
from O
SAM B-chemical
to O
an O
acidic O
carbon O
atom O
. O
Archaeal B-taxonomy_domain
Tyw2 B-protein
has O
a O
structure B-evidence
very O
similar O
to O
Rossmann B-protein_type
- I-protein_type
fold I-protein_type
( I-protein_type
class I-protein_type
I I-protein_type
) I-protein_type
RNA I-protein_type
- I-protein_type
methyltransferases I-protein_type
, O
but O
its O
distinctive O
SAM B-site
- I-site
binding I-site
mode I-site
enables O
the O
transfer O
of O
the O
acp B-chemical
group O
instead O
of O
the O
methyl O
group O
of O
the O
cofactor O
. O
In O
a O
recent O
bioinformatic O
study O
, O
the O
uncharacterized O
yeast B-taxonomy_domain
gene O
YOR006c B-gene
was O
predicted O
to O
be O
involved O
in O
ribosome O
biogenesis O
. O
On O
this O
basis O
, O
YOR006C B-gene
was O
renamed O
O
Twenty B-protein
S I-protein
rRNA I-protein
accumulation I-protein
3 I-protein
O
( O
TSR3 B-protein
). O
However O
, O
its O
function O
remained O
unclear O
although O
recently O
a O
putative O
nuclease O
function O
during O
18S B-chemical
rRNA I-chemical
maturation O
was O
predicted O
. O
Whereas O
the O
acp B-chemical
labeling O
of O
18S B-chemical
rRNA I-chemical
was O
clearly O
present O
in O
the O
wild B-protein_state
type I-protein_state
strain O
no O
radioactive O
labeling O
could O
be O
observed O
in O
a O
Δtsr3 B-mutant
strain O
( O
Figure O
1C O
). O
No O
radioactive O
labeling O
was O
detected O
in O
the O
18S B-mutant
U1191A I-mutant
mutant B-protein_state
which O
served O
as O
a O
control O
for O
the O
specificity O
of O
the O
14C B-chemical
- I-chemical
aminocarboxypropyl I-chemical
incorporation O
. O
The O
Tsr3 B-protein
protein O
is O
highly B-protein_state
conserved I-protein_state
in O
yeast B-taxonomy_domain
and O
humans B-species
( O
50 O
% O
identity O
). O
Human B-species
18S B-chemical
rRNA I-chemical
has O
also O
been O
shown O
to O
contain O
m1acp3Ψ B-ptm
in O
the O
18S B-chemical
rRNA I-chemical
at O
position O
1248 B-residue_number
. O
By O
comparison O
, O
treating O
cells O
with O
siRNA B-chemical
545 O
, O
which O
only O
reduced O
the O
TSR3 B-protein
mRNA O
to O
20 O
%, O
did O
not O
markedly O
reduced O
the O
acp B-chemical
signal O
. O
( O
D O
) O
Cytoplasmic O
localization O
of O
yeast B-taxonomy_domain
Tsr3 B-protein
shown O
by O
fluorescence B-experimental_method
microscopy I-experimental_method
of O
GFP B-mutant
- I-mutant
fused I-mutant
Tsr3 I-mutant
. O
From O
left O
to O
right O
: O
differential B-experimental_method
interference I-experimental_method
contrast I-experimental_method
( O
DIC B-experimental_method
), O
green O
fluorescence O
of O
GFP B-mutant
- I-mutant
Tsr3 I-mutant
, O
red O
fluorescence O
of O
Nop56 B-mutant
- I-mutant
mRFP I-mutant
as O
nucleolar O
marker O
, O
and O
merge O
of O
GFP B-mutant
- I-mutant
Tsr3 I-mutant
/ O
Nop56 B-mutant
- I-mutant
mRFP I-mutant
with O
DIC B-experimental_method
. O
( O
E O
) O
Elution B-evidence
profile I-evidence
( O
A254 O
) O
after O
sucrose B-experimental_method
gradient I-experimental_method
separation I-experimental_method
of O
yeast B-taxonomy_domain
ribosomal B-complex_assembly
subunits I-complex_assembly
and O
polysomes B-complex_assembly
( O
upper O
part O
) O
and O
western B-experimental_method
blot I-experimental_method
analysis O
of O
3xHA B-chemical
tagged O
Tsr3 B-protein
( O
Tsr3 B-mutant
- I-mutant
3xHA I-mutant
) O
after O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
separation O
of O
polysome O
profile O
fractions O
taken O
every O
20 O
s O
( O
lower O
part O
). O
The O
TSR3 B-protein
gene O
was O
genetically O
modified O
at O
its O
native O
locus O
, O
resulting O
in O
a O
C O
- O
terminal O
fusion B-protein_state
of O
Tsr3 B-protein
with O
a O
3xHA B-chemical
epitope O
expressed O
by O
the O
native O
promotor O
in O
yeast B-taxonomy_domain
strain O
CEN O
. O
BM258 O
- O
5B O
. O
Similar O
to O
a O
temperature O
- O
sensitive O
nep1 B-gene
mutant B-protein_state
, O
the O
Δtsr3 B-mutant
deletion O
caused O
hypersensitivity O
to O
paromomycin B-chemical
and O
, O
to O
a O
lesser O
extent O
, O
to O
hygromycin B-chemical
B I-chemical
( O
Figure O
2B O
), O
but O
not O
to O
G418 B-chemical
or O
cycloheximide B-chemical
( O
data O
not O
shown O
). O
This O
agrees O
with O
previous O
biochemical O
data O
suggesting O
that O
the O
acp B-chemical
modification O
of O
18S B-chemical
rRNA I-chemical
occurs O
late O
during O
40S B-complex_assembly
subunit O
biogenesis O
in O
the O
cytoplasm O
, O
and O
makes O
an O
additional O
nuclear O
localization O
as O
reported O
in O
a O
previous O
large O
- O
scale O
analysis O
unlikely O
. O
Such O
distribution B-evidence
on I-evidence
a I-evidence
density I-evidence
gradient I-evidence
suggests O
that O
Tsr3 B-protein
only O
interacts O
transiently O
with O
pre B-complex_assembly
- I-complex_assembly
40S I-complex_assembly
subunits I-complex_assembly
, O
which O
presumably O
explains O
why O
it O
was O
not O
characterized O
in O
pre B-experimental_method
- I-experimental_method
ribosome I-experimental_method
affinity I-experimental_method
purifications I-experimental_method
. O
Structure B-evidence
of O
Tsr3 B-protein
Domain O
characterization O
of O
yeast B-taxonomy_domain
Tsr3 B-protein
and O
correlation O
of O
acp B-chemical
modification O
with O
late O
18S B-chemical
rRNA I-chemical
processing O
steps O
. O
( O
A O
) O
Scheme O
of O
the O
TSR3 B-protein
gene O
with O
truncation O
positions O
in O
the O
open O
reading O
frame O
. O
A O
weak O
20S B-chemical
rRNA I-chemical
signal O
, O
indicating O
normal O
processing O
, O
is O
observed O
for O
Tsr3 B-protein
fragment O
46 B-residue_range
I-residue_range
270 I-residue_range
( O
highlighted O
in O
a O
box O
) O
showing O
its O
functionality O
. O
The O
bound O
S B-chemical
- I-chemical
adenosylmethionine I-chemical
is O
shown O
in O
a O
stick O
representation O
and O
colored O
by O
atom O
type O
. O
The O
color O
coding O
is O
the O
same O
as O
in O
( O
A O
). O
( O
C O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
X B-evidence
- I-evidence
ray I-evidence
structures I-evidence
of O
VdTsr3 B-protein
in O
the O
SAM B-protein_state
- I-protein_state
bound I-protein_state
state O
( O
red O
) O
and O
SsTsr3 B-protein
( O
blue O
) O
in O
the O
apo B-protein_state
state O
. O
The O
closest O
structural O
homolog O
identified O
in O
a O
DALI B-experimental_method
search I-experimental_method
is O
the O
tRNA B-protein_type
methyltransferase I-protein_type
Trm10 B-protein
( O
DALI B-evidence
Z I-evidence
- I-evidence
score I-evidence
6 O
. O
8 O
) O
which O
methylates O
the O
N1 O
nitrogen O
of O
G9 B-residue_name_number
/ O
A9 B-residue_name_number
in O
many O
archaeal B-taxonomy_domain
and O
eukaryotic B-taxonomy_domain
tRNAs B-chemical
by O
using O
SAM B-chemical
as O
the O
methyl O
group O
donor O
. O
In O
comparison O
to O
Tsr3 B-protein
the O
central O
β B-structure_element
- I-structure_element
sheet I-structure_element
element I-structure_element
of O
Trm10 B-protein
is O
extended O
by O
one O
additional O
β B-structure_element
- I-structure_element
strand I-structure_element
pairing O
to O
β2 B-structure_element
. O
However O
, O
there O
are O
no O
structural O
similarities O
between O
Tsr3 B-protein
and O
Tyw2 B-protein
, O
which O
contains O
an O
all B-structure_element
- I-structure_element
parallel I-structure_element
β I-structure_element
- I-structure_element
sheet I-structure_element
of O
a O
different O
topology O
and O
no O
knot B-structure_element
structure I-structure_element
. O
Furthermore O
, O
the O
adenine B-chemical
base O
of O
SAM B-chemical
is O
involved O
in O
hydrophobic O
packing O
interactions O
with O
the O
side O
chains O
of O
L45 B-residue_name_number
( O
β3 B-structure_element
), O
P47 B-residue_name_number
and O
W73 B-residue_name_number
( O
α3 B-structure_element
) O
in O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
as O
well O
as O
with O
L93 B-residue_name_number
, O
L110 B-residue_name_number
( O
both O
in O
the O
loop B-structure_element
connecting O
β5 B-structure_element
and O
α4 B-structure_element
) O
and O
A115 B-residue_name_number
( O
α5 B-structure_element
) O
in O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
. O
The O
ribose B-chemical
2 O
O
and O
3 O
O
hydroxyl O
groups O
of O
SAM B-chemical
are O
hydrogen O
bonded O
to O
the O
backbone O
carbonyl O
group O
of O
I69 B-residue_name_number
. O
Most O
importantly O
, O
the O
methyl O
group O
of O
SAM B-chemical
is O
buried O
in O
a O
hydrophobic B-site
pocket I-site
formed O
by O
the O
sidechains O
of O
W73 B-residue_name_number
and O
A76 B-residue_name_number
both O
located O
in O
α3 B-structure_element
( O
Figure O
5A O
and O
B O
). O
Consequently O
, O
the O
accessibility O
of O
this O
methyl O
group O
for O
a O
nucleophilic O
attack O
is O
strongly O
reduced O
in O
comparison O
with O
RNA B-protein_type
- I-protein_type
methyltransferases I-protein_type
such O
as O
Trm10 B-protein
( O
Figure O
5B O
, O
C O
). O
In O
contrast O
, O
the O
acp B-chemical
side O
chain O
of O
SAM B-chemical
is O
accessible O
for O
reactions O
in O
the O
Tsr3 B-protein_state
- I-protein_state
bound I-protein_state
state O
( O
Figure O
5B O
). O
( O
E O
) O
Binding O
of O
14C B-chemical
- I-chemical
labeled I-chemical
SAM I-chemical
to O
SsTsr3 B-protein
. O
5 B-chemical
- I-chemical
methylthioadenosin I-chemical
O
the O
reaction O
product O
after O
the O
acp B-chemical
- O
transfer O
O
binds O
only O
O
2 O
. O
5 O
- O
fold O
weaker O
( O
KD O
= O
16 O
. O
7 O
μM O
) O
compared O
to O
SAM B-chemical
. O
On O
the O
other O
hand O
, O
the O
loss O
of O
hydrogen O
bonds O
between O
the O
acp B-chemical
sidechain O
carboxylate O
group O
and O
the O
protein O
appears O
to O
be O
thermodynamically O
less O
important O
but O
these O
hydrogen O
bonds O
might O
play O
a O
crucial O
role O
for O
the O
proper O
orientation O
of O
the O
cofactor O
side O
chain O
in O
the O
substrate B-site
binding I-site
pocket I-site
. O
Mutations B-experimental_method
of O
the O
corresponding O
residue O
in O
SsTsr3 B-protein
to O
A B-residue_name
( O
D63 B-residue_name_number
) O
does O
not O
significantly O
alter O
the O
SAM B-evidence
- I-evidence
binding I-evidence
affinity I-evidence
of O
the O
protein O
( O
KD B-evidence
= O
11 O
. O
0 O
μM O
). O
Helix B-structure_element
α1 B-structure_element
contains O
two O
more O
positively O
charged O
amino O
acids O
K17 B-residue_name_number
and O
R25 B-residue_name_number
as O
does O
the O
loop B-structure_element
preceding O
it O
( O
R9 B-residue_name_number
). O
Also O
shown O
in O
stick O
representation O
is O
a O
negatively O
charged O
MES B-chemical
ion O
. O
Conserved B-protein_state
basic O
amino B-chemical
acids I-chemical
are O
labeled O
. O
( O
B O
) O
Comparison O
of O
the O
secondary O
structures O
of O
helix B-structure_element
31 I-structure_element
from O
the O
small O
ribosomal O
subunit O
rRNAs B-chemical
in O
S B-species
. I-species
cerevisiae I-species
and O
S B-species
. I-species
solfataricus I-species
with O
the O
location O
of O
the O
hypermodified B-protein_state
nucleotide B-chemical
indicated O
in O
red O
. O
As O
shown O
here O
TSR3 B-protein
encodes O
the O
transferase O
catalyzing O
the O
acp B-chemical
modification O
as O
the O
last O
step O
in O
the O
biosynthesis O
of O
m1acp3Ψ B-chemical
in O
yeast B-taxonomy_domain
and O
human B-species
cells O
. O
Similar O
to O
the O
structurally O
unrelated O
Rossmann B-protein_type
- I-protein_type
fold I-protein_type
Tyw2 I-protein_type
acp I-protein_type
transferase I-protein_type
, O
the O
SAM B-chemical
methyl O
group O
of O
Tsr3 B-protein
is O
bound O
in O
an O
inaccessible O
hydrophobic B-site
pocket I-site
whereas O
the O
acp B-chemical
side O
chain O
becomes O
accessible O
for O
a O
nucleophilic O
attack O
by O
the O
N3 O
of O
pseudouridine B-chemical
. O
Thus O
, O
additional O
examples O
for O
acp B-protein_type
transferase I-protein_type
enzymes O
might O
be O
found O
with O
similarities O
to O
other O
structural O
classes O
of O
methyltransferases B-protein_type
. O
These O
data O
and O
the O
finding O
that O
a O
missing O
acp B-chemical
modification O
hinders O
pre B-chemical
- I-chemical
20S I-chemical
rRNA I-chemical
processing O
, O
suggest O
that O
the O
acp B-chemical
modification O
together O
with O
the O
release O
of O
Rio2 B-protein
promotes O
the O
formation O
of O
the O
decoding B-site
site I-site
and O
thus O
D B-site
- I-site
site I-site
cleavage O
by O
Nob1 B-protein
. O
Therefore O
, O
Rio2 B-protein
either O
blocks O
the O
access O
of O
Tsr3 B-protein
to O
helix B-structure_element
31 I-structure_element
, O
and O
acp B-chemical
modification O
can O
only O
occur O
after O
Rio2 B-protein
is O
released O
, O
or O
the O
acp B-chemical
modification O
of O
m1Ψ1191 B-residue_name_number
and O
putative O
subsequent O
conformational O
changes O
of O
20S B-chemical
rRNA I-chemical
weaken O
the O
binding O
of O
Rio2 B-protein
to O
helix B-structure_element
31 I-structure_element
and O
support O
its O
release O
from O
the O
pre B-chemical
- I-chemical
rRNA I-chemical
. O
Presence O
of O
a O
hypermodified B-protein_state
nucleotide O
in O
HeLa O
cell O
18 O
S O
and O
Saccharomyces O
carlsbergensis O
17 O
S O
ribosomal O
RNAs O
Crystal B-evidence
Structure I-evidence
and O
Activity B-experimental_method
Studies I-experimental_method
of O
the O
C11 B-protein_type
Cysteine B-protein_type
Peptidase I-protein_type
from O
Parabacteroides B-species
merdae I-species
in O
the O
Human B-species
Gut O
Microbiome O
* O
Collectively O
, O
these O
data O
provide O
insights O
into O
the O
mechanism O
and O
activity O
of O
PmC11 B-protein
and O
a O
detailed O
framework O
for O
studies O
on O
C11 B-protein_type
peptidases I-protein_type
from O
other O
phylogenetic O
kingdoms O
. O
Interestingly O
, O
little O
is O
known O
about O
the O
structure O
or O
function O
of O
the O
C11 B-protein_type
proteins O
, O
despite O
their O
widespread O
distribution O
and O
its O
archetypal O
member O
, O
clostripain B-protein
from O
Clostridium B-species
histolyticum I-species
, O
first O
reported O
in O
the O
literature O
in O
1938 O
. O
As O
part O
of O
an O
ongoing O
project O
to O
characterize O
commensal O
bacteria B-taxonomy_domain
in O
the O
microbiome O
that O
inhabit O
the O
human B-species
gut O
, O
the O
structure B-evidence
of O
C11 B-protein_type
peptidase I-protein_type
, O
PmC11 B-protein
, O
from O
Parabacteroides B-species
merdae I-species
was O
determined O
using O
the O
Joint O
Center O
for O
Structural O
Genomics O
( O
JCSG O
) O
4 O
HTP O
structural O
biology O
pipeline O
. O
The O
structure B-experimental_method
was I-experimental_method
analyzed I-experimental_method
, O
and O
the O
enzyme O
was O
biochemically B-experimental_method
characterized I-experimental_method
to O
provide O
the O
first O
structure O
/ O
function O
correlation O
for O
a O
C11 B-protein_type
peptidase I-protein_type
. O
The O
structure B-evidence
also O
includes O
two O
short O
β B-structure_element
- I-structure_element
hairpins I-structure_element
( O
βA B-structure_element
I-structure_element
βB I-structure_element
and O
βD B-structure_element
I-structure_element
βE I-structure_element
) O
and O
a O
small B-structure_element
β I-structure_element
- I-structure_element
sheet I-structure_element
( O
βC B-structure_element
I-structure_element
βF I-structure_element
), O
which O
is O
formed O
from O
two O
distinct O
regions O
of O
the O
sequence O
( O
βC B-structure_element
precedes O
α11 B-structure_element
, O
α12 B-structure_element
and O
β9 B-structure_element
, O
whereas O
βF B-structure_element
follows O
the O
βD B-structure_element
- I-structure_element
βE I-structure_element
hairpin B-structure_element
) O
in O
the O
middle O
of O
the O
CTD B-structure_element
( O
Fig O
. O
1B O
). O
B O
, O
topology O
diagram O
of O
PmC11 B-protein
colored O
as O
in O
A O
except O
that O
additional O
( O
non O
- O
core O
) O
β B-structure_element
- I-structure_element
strands I-structure_element
are O
in O
yellow O
. O
A O
multiple B-experimental_method
sequence I-experimental_method
alignment I-experimental_method
of O
C11 B-protein_type
proteins O
revealed O
that O
these O
residues O
are O
highly B-protein_state
conserved I-protein_state
( O
data O
not O
shown O
). O
PmC11 O
migrates O
as O
a O
monomer B-oligomeric_state
with O
a O
molecular O
mass O
around O
41 O
kDa O
calculated O
from O
protein O
standards O
of O
known O
molecular O
weights O
. O
Km O
and O
Vmax B-evidence
of O
PmC11 B-protein
and O
K147A B-mutant
mutant O
were O
determined O
by O
monitoring O
change O
in O
the O
fluorescence O
corresponding O
to O
AMC O
release O
from O
Bz B-chemical
- I-chemical
R I-chemical
- I-chemical
AMC I-chemical
. O
G O
, O
electrostatic O
surface O
potential O
of O
PmC11 B-protein
shown O
in O
a O
similar O
orientation O
, O
where O
blue O
and O
red O
denote O
positively O
and O
negatively O
charged O
surface O
potential O
, O
respectively O
, O
contoured O
at O
± O
5 O
kT O
/ O
e O
. O
Purification B-experimental_method
of O
recombinant O
PmC11 B-protein
( O
molecular O
mass O
= O
42 O
. O
6 O
kDa O
) O
revealed O
partial O
processing O
into O
two O
cleavage O
products O
of O
26 O
. O
4 O
and O
16 O
. O
2 O
kDa O
, O
related O
to O
the O
observed O
cleavage B-ptm
at O
Lys147 B-residue_name_number
in O
the O
crystal B-evidence
structure I-evidence
( O
Fig O
. O
2A O
). O
Moreover O
, O
the O
C O
- O
terminal O
side O
of O
the O
cleavage B-site
site I-site
resides O
near O
the O
catalytic B-site
dyad I-site
with O
Ala148 B-residue_name_number
being O
4 O
. O
5 O
and O
5 O
. O
7 O
O
from O
His133 B-residue_name_number
and O
Cys179 B-residue_name_number
, O
respectively O
. O
However O
, O
this O
loop B-structure_element
has O
been O
shown O
to O
be O
important O
for O
substrate O
binding O
in O
clan B-protein_type
CD I-protein_type
and O
this O
residue O
could O
easily O
rotate O
and O
be O
involved O
in O
substrate O
binding O
in O
PmC11 B-protein
. O
In O
support O
of O
these O
findings O
, O
EGTA B-chemical
did O
not O
inhibit O
PmC11 B-protein
suggesting O
that O
, O
unlike O
clostripain B-protein
, O
PmC11 B-protein
does O
not O
require O
Ca2 B-chemical
+ I-chemical
or O
other O
divalent O
cations O
, O
for O
activity O
. O
This O
is O
also O
the O
case O
in O
PmC11 B-protein
, O
although O
the O
cleavage B-ptm
loop B-structure_element
is O
structurally O
different O
to O
that O
found O
in O
the O
caspases B-protein_type
and O
follows O
the O
catalytic B-protein_state
His B-residue_name
( O
Fig O
. O
1A O
), O
as O
opposed O
to O
the O
Cys B-residue_name
in O
the O
caspases B-protein_type
. O
All O
other O
clan B-protein_type
CD I-protein_type
members I-protein_type
requiring O
cleavage B-ptm
for O
full B-protein_state
activation I-protein_state
do O
so O
at O
sites B-site
external O
to O
their O
central O
sheets B-structure_element
. O
Indeed O
, O
insights O
gained O
from O
an O
analysis O
of O
the O
PmC11 B-protein
structure B-evidence
revealed O
the O
identity O
of O
the O
Trypanosoma B-species
brucei I-species
PNT1 B-protein
protein O
as O
a O
C11 B-protein_type
cysteine I-protein_type
peptidase I-protein_type
with O
an O
essential O
role O
in O
organelle O
replication O
. O
The O
PmC11 B-protein
structure B-evidence
should O
provide O
a O
good O
basis O
for O
structural B-experimental_method
modeling I-experimental_method
and O
, O
given O
the O
importance O
of O
other O
clan B-protein_type
CD I-protein_type
enzymes I-protein_type
, O
this O
work O
should O
also O
advance O
the O
exploration O
of O
these O
peptidases B-protein_type
and O
potentially O
identify O
new O
biologically O
important O
substrates O
. O
More O
recently O
, O
this O
system O
was O
also O
reported O
in O
other O
Gram B-taxonomy_domain
- I-taxonomy_domain
negative I-taxonomy_domain
bacteria I-taxonomy_domain
, O
such O
as O
Escherichia B-species
coli I-species
( O
Hufnagel O
et O
al O
.,; O
Raterman O
et O
al O
.,; O
Sanchez O
- O
Torres O
et O
al O
.,), O
Klebsiella B-species
pneumonia I-species
( O
Huertas O
et O
al O
.,) O
and O
Yersinia B-species
pestis I-species
( O
Ren O
et O
al O
.,). O
In O
addition O
, O
quorum O
sensing O
- O
related O
dephosphorylation O
of O
the O
PAS B-structure_element
domain I-structure_element
of O
YfiN B-protein
may O
also O
be O
involved O
in O
the O
regulation O
( O
Ueda O
and O
Wood O
,; O
Xu O
et O
al O
.,). O
The O
O
back B-protein_state
to I-protein_state
back I-protein_state
O
dimer B-oligomeric_state
. O
Each O
crystal O
form O
contains O
three O
different O
dimeric B-oligomeric_state
types O
of O
YfiB B-protein
, O
two O
of O
which O
are O
present O
in O
both O
, O
suggesting O
that O
the O
rest O
of O
the O
dimeric B-oligomeric_state
types O
may O
result O
from O
crystal O
packing O
. O
The O
residues O
proposed O
to O
contribute O
to O
YfiB B-protein
activation O
are O
illustrated O
in O
sticks O
. O
The O
key O
residues O
in O
apo B-protein_state
YfiB B-protein
are O
shown O
in O
red O
and O
those O
in O
YfiBL43P B-mutant
are O
shown O
in O
blue O
. O
( O
D O
) O
Close O
- O
up O
views O
showing O
interactions O
in O
regions B-structure_element
I I-structure_element
and I-structure_element
II I-structure_element
. O
This O
suggests O
that O
the O
N O
- O
terminus O
of O
YfiB B-protein
plays O
an O
important O
role O
in O
forming O
the O
dimeric B-oligomeric_state
YfiB B-protein
in O
solution O
and O
that O
the O
conformational O
change O
of O
residue O
L43 B-residue_name_number
is O
associated O
with O
the O
stretch O
of O
the O
N O
- O
terminus O
and O
opening O
of O
the O
dimer B-oligomeric_state
. O
( O
C O
) O
Close O
- O
up O
view O
showing O
the O
key O
residues O
of O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
interacting O
with O
a O
sulfate B-chemical
ion O
. O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
is O
shown O
in O
cyan O
; O
the O
sulfate B-chemical
ion O
, O
in O
green O
; O
and O
the O
water B-chemical
molecule O
, O
in O
yellow O
. O
( O
D O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
PG B-site
- I-site
binding I-site
sites I-site
of O
apo B-protein_state
YfiB B-protein
and O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
, O
the O
key O
residues O
are O
shown O
in O
stick O
. O
Previous O
homology B-experimental_method
modeling I-experimental_method
studies O
suggested O
that O
YfiB B-protein
contains O
a O
Pal B-site
- I-site
like I-site
PG I-site
- I-site
binding I-site
site I-site
( O
Parsons O
et O
al O
.,), O
and O
the O
mutation B-experimental_method
of I-experimental_method
two I-experimental_method
residues I-experimental_method
at O
this O
site O
, O
D102 B-residue_name_number
and O
G105 B-residue_name_number
, O
reduces O
the O
ability O
for O
biofilm O
formation O
and O
surface O
attachment O
( O
Malone O
et O
al O
.,). O
Moreover O
, O
a O
water B-chemical
molecule O
was O
found O
to O
bridge O
the O
sulfate B-chemical
ion O
and O
the O
side O
chains O
of O
N67 B-residue_name_number
and O
D102 B-residue_name_number
, O
strengthening O
the O
hydrogen B-site
bond I-site
network I-site
( O
Fig O
. O
4C O
). O
Previous O
studies O
indicated O
that O
YfiR B-protein
constitutes O
a O
YfiB B-protein
- O
independent O
sensing O
device O
that O
can O
activate O
YfiN B-protein
in O
response O
to O
the O
redox O
status O
of O
the O
periplasm O
, O
and O
we O
have O
reported O
YfiR B-protein
structures B-evidence
in O
both O
the O
non B-protein_state
- I-protein_state
oxidized I-protein_state
and O
the O
oxidized B-protein_state
states O
earlier O
, O
revealing O
that O
the O
Cys145 B-residue_name_number
- O
Cys152 B-residue_name_number
disulfide B-ptm
bond I-ptm
plays O
an O
essential O
role O
in O
maintaining O
the O
correct O
folding O
of O
YfiR B-protein
( O
Yang O
et O
al O
.,). O
In O
E B-species
. I-species
coli I-species
, O
mutants O
with O
decreased O
tryptophan B-chemical
synthesis O
show O
greater O
biofilm O
formation O
, O
and O
matured O
biofilm O
is O
degraded O
by O
L B-chemical
- I-chemical
tryptophan I-chemical
addition O
( O
Shimazaki O
et O
al O
.,). O
Previous O
studies O
suggested O
that O
in O
response O
to O
cell O
stress O
, O
YfiB B-protein
in O
the O
outer O
membrane O
sequesters O
the O
periplasmic O
protein O
YfiR B-protein
, O
releasing O
its O
inhibition O
of O
YfiN B-protein
on O
the O
inner O
membrane O
and O
thus O
inducing O
the O
diguanylate O
cyclase O
activity O
of O
YfiN B-protein
to O
allow O
c B-chemical
- I-chemical
di I-chemical
- I-chemical
GMP I-chemical
production O
( O
Giardina O
et O
al O
.,; O
Malone O
et O
al O
.,; O
Malone O
et O
al O
.,). O
Our O
structural B-experimental_method
data I-experimental_method
analysis I-experimental_method
shows O
that O
the O
activated B-protein_state
YfiB B-protein
has O
an O
N B-structure_element
- I-structure_element
terminal I-structure_element
portion I-structure_element
that O
is O
largely O
altered O
, O
adopting O
a O
stretched B-protein_state
conformation I-protein_state
compared O
with O
the O
compact B-protein_state
conformation I-protein_state
of O
the O
apo B-protein_state
YfiB B-protein
. O
The O
apo B-protein_state
YfiB B-protein
structure B-evidence
constructed O
beginning O
at O
residue O
34 B-residue_number
has O
a O
compact B-protein_state
conformation I-protein_state
of O
approximately O
45 O
Å O
in O
length O
. O
By O
contrast O
, O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
( O
residues O
44 B-residue_range
I-residue_range
168 I-residue_range
) O
has O
a O
stretched B-protein_state
conformation I-protein_state
of O
approximately O
55 O
Å O
in O
length O
. O
This O
allows O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
portion I-structure_element
of O
the O
membrane B-protein_state
- I-protein_state
anchored I-protein_state
YfiB B-protein
to O
reach O
, O
bind O
and O
penetrate O
the O
cell O
wall O
and O
sequester O
the O
YfiR B-protein
dimer B-oligomeric_state
. O
The O
YfiBNR B-complex_assembly
system O
provides O
a O
good O
example O
of O
a O
delicate O
homeostatic O
system O
that O
integrates O
multiple O
signals O
to O
regulate O
the O
c B-chemical
- I-chemical
di I-chemical
- I-chemical
GMP I-chemical
level O
. O
Predictive O
features O
of O
ligand O
O
specific O
signaling O
through O
the O
estrogen B-protein_type
receptor I-protein_type
E2 B-chemical
O
rings O
are O
numbered O
A O
O
D O
. O
The O
E O
O
ring O
is O
the O
common O
site O
of O
attachment O
for O
BSC O
found O
in O
many O
SERMS B-protein_type
. O
ERα B-protein
domain O
organization O
lettered O
, O
A O
O
F O
. O
DBD B-structure_element
, O
DNA B-structure_element
I-structure_element
binding I-structure_element
domain I-structure_element
; O
LBD B-structure_element
, O
ligand B-structure_element
I-structure_element
binding I-structure_element
domain I-structure_element
; O
AF B-structure_element
, O
activation B-structure_element
function I-structure_element
In O
the O
canonical O
model O
of O
the O
ERα B-protein
signaling O
pathway O
( O
Fig O
1C O
), O
E2 B-protein_state
I-protein_state
bound I-protein_state
ERα B-protein
forms O
a O
homodimer B-oligomeric_state
that O
binds O
DNA O
at O
estrogen B-site
I-site
response I-site
elements I-site
( O
EREs B-site
), O
recruits O
NCOA1 B-protein
/ I-protein
2 I-protein
/ I-protein
3 I-protein
( O
Metivier O
et O
al O
, O
2003 O
; O
Johnson O
& O
O O
' O
Malley O
, O
2012 O
), O
and O
activates O
the O
GREB1 B-protein
gene O
, O
which O
is O
required O
for O
proliferation O
of O
ERα B-protein
O
positive O
breast O
cancer O
cells O
( O
Ghosh O
et O
al O
, O
2000 O
; O
Rae O
et O
al O
, O
2005 O
; O
Deschenes O
et O
al O
, O
2007 O
; O
Liu O
et O
al O
, O
2012 O
; O
Srinivasan O
et O
al O
, O
2013 O
). O
We O
also O
determined B-experimental_method
the O
structures B-evidence
of O
76 O
distinct O
ERα B-protein
LBD B-structure_element
complexes O
bound B-protein_state
to I-protein_state
different O
ligand O
types O
, O
which O
allowed O
us O
to O
understand O
how O
diverse O
ligand O
scaffolds O
distort O
the O
active B-protein_state
conformation O
of O
the O
ERα B-protein
LBD B-structure_element
. O
Our O
findings O
here O
indicate O
that O
specific O
structural O
perturbations O
can O
be O
tied O
to O
ligand O
O
selective O
domain O
usage O
and O
signaling O
patterns O
, O
thus O
providing O
a O
framework O
for O
structure O
O
based O
design O
of O
improved O
breast O
cancer O
therapeutics O
, O
and O
understanding O
the O
different O
phenotypic O
effects O
of O
environmental O
estrogens B-chemical
. O
Structural O
details O
of O
the O
ERα B-protein
LBD B-structure_element
bound B-protein_state
to I-protein_state
the O
indicated O
ligands O
. O
To O
this O
end O
, O
we O
compared O
the O
average O
ligand O
O
induced O
GREB1 B-protein
mRNA O
levels O
in O
MCF O
O
7 O
cells O
and O
3 B-experimental_method
× I-experimental_method
ERE I-experimental_method
I-experimental_method
Luc I-experimental_method
reporter O
gene O
activity O
in O
Ishikawa O
endometrial O
cancer O
cells O
( O
E B-experimental_method
I-experimental_method
Luc I-experimental_method
) O
or O
in O
HepG2 O
cells O
transfected O
with O
wild B-protein_state
I-protein_state
type I-protein_state
ERα B-protein
( O
L B-experimental_method
I-experimental_method
Luc I-experimental_method
ERα B-protein
O
WT B-protein_state
) O
( O
Figs O
3A O
and O
EV2A O
O
C O
). O
Direct O
modulators O
showed O
significant O
differences O
in O
average O
activity O
between O
cell O
types O
except O
OBHS B-chemical
I-chemical
ASC I-chemical
analogs O
, O
which O
had O
similar O
low O
agonist O
activities O
in O
the O
three O
cell O
types O
. O
Significant O
sensitivity O
to O
AB B-structure_element
domain O
deletion O
was O
determined O
by O
Student B-experimental_method
' I-experimental_method
s I-experimental_method
t I-experimental_method
I-experimental_method
test I-experimental_method
( O
n O
= O
number O
of O
ligands O
per O
scaffold O
in O
Fig O
2 O
). O
, O
significant O
correlations O
lost O
upon O
deletion O
of O
AB B-structure_element
or O
F B-structure_element
domains O
. O
Identifying O
cell O
O
specific O
signaling O
clusters O
in O
ERα B-protein
ligand O
classes O
OBHS B-chemical
analogs O
showed O
an O
average O
L B-experimental_method
I-experimental_method
Luc I-experimental_method
ERα B-mutant
I-mutant
ΔAB I-mutant
activity O
of O
3 O
. O
2 O
% O
± O
3 O
( O
mean O
+ O
SEM O
) O
relative O
to O
E2 B-chemical
. O
Deletion B-experimental_method
of I-experimental_method
the O
AB B-structure_element
or O
F B-structure_element
domain O
altered O
correlations O
for O
six O
of O
the O
eight O
scaffolds O
in O
this O
cluster O
( O
2 B-chemical
, I-chemical
5 I-chemical
I-chemical
DTP I-chemical
, O
3 B-chemical
, I-chemical
4 I-chemical
I-chemical
DTP I-chemical
, O
S B-chemical
I-chemical
OBHS I-chemical
I-chemical
3 I-chemical
, O
WAY B-chemical
I-chemical
D I-chemical
, O
WAY B-chemical
dimer I-chemical
, O
and O
cyclofenil B-chemical
I-chemical
ASC I-chemical
) O
( O
Fig O
3D O
lanes O
5 O
O
12 O
). O
These O
results O
suggest O
that O
compounds O
that O
show O
cell O
O
specific O
signaling O
do O
not O
activate O
GREB1 B-protein
, O
or O
use O
coactivators O
other O
than O
NCOA1 B-protein
/ I-protein
2 I-protein
/ I-protein
3 I-protein
to O
control O
GREB1 B-protein
expression O
( O
Fig O
1E O
). O
For O
ligands O
that O
show O
cell O
O
specific O
signaling O
, O
ERα B-protein
O
mediated O
recruitment O
of O
other O
coregulators O
and O
activation O
of O
other O
target O
genes O
likely O
determine O
their O
proliferative O
effects O
on O
MCF O
O
7 O
cells O
. O
At O
this O
time O
point O
, O
other O
WAY B-chemical
I-chemical
C I-chemical
analogs O
also O
induced O
recruitment O
of O
NCOA3 B-protein
at O
this O
site O
to O
varying O
degrees O
( O
Fig O
4B O
). O
The O
Z B-evidence
I-evidence
for O
this O
assay O
was O
0 O
. O
6 O
, O
showing O
statistical O
robustness O
( O
see O
Materials O
and O
Methods O
). O
For O
most O
scaffolds O
, O
L B-experimental_method
I-experimental_method
Luc I-experimental_method
ERβ O
and O
E B-experimental_method
I-experimental_method
Luc I-experimental_method
activities O
were O
not O
correlated O
, O
except O
for O
2 B-chemical
, I-chemical
5 I-chemical
I-chemical
DTP I-chemical
and O
cyclofenil B-chemical
analogs O
, O
which O
showed O
moderate O
but O
significant O
correlations O
( O
Fig O
EV4A O
). O
ERβ B-protein
activity O
is O
not O
an O
independent O
predictor O
of O
E B-experimental_method
I-experimental_method
Luc I-experimental_method
activity O
ERβ B-protein
activity O
in O
HepG2 O
cells O
rarely O
correlates O
with O
E B-experimental_method
I-experimental_method
Luc I-experimental_method
activity O
. O
Data O
information O
: O
The O
r O
2 O
and O
P B-evidence
values I-evidence
for O
the O
indicated O
correlations O
are O
shown O
in O
both O
panels O
. O
* O
Significant O
positive O
correlation O
( O
F B-experimental_method
I-experimental_method
test I-experimental_method
for O
nonzero O
slope O
, O
P B-evidence
I-evidence
value I-evidence
) O
Remarkably O
, O
these O
individual O
inter B-evidence
I-evidence
atomic I-evidence
distances I-evidence
showed O
a O
ligand O
class O
O
specific O
ability O
to O
significantly O
predict O
proliferative O
effects O
( O
Fig O
5E O
and O
F O
), O
demonstrating O
the O
feasibility O
of O
developing O
a O
minimal O
set O
of O
activity O
predictors O
from O
crystal B-evidence
structures I-evidence
. O
ERα B-protein
LBD B-structure_element
structures B-evidence
bound B-protein_state
to I-protein_state
4 O
distinct O
WAY B-chemical
I-chemical
C I-chemical
analogs O
were O
superposed B-experimental_method
( O
PDB O
4 O
IU7 O
, O
4IV4 O
, O
4IVW O
, O
4IW6 O
) O
( O
see O
Datasets O
EV1 O
and O
EV2 O
). O
Crystal B-evidence
structures I-evidence
of O
the O
ERα B-protein
LBD B-structure_element
bound B-protein_state
to I-protein_state
ligands O
with O
cell O
O
specific O
activities O
were O
superposed B-experimental_method
. O
Ligands O
in O
cluster O
2 O
and O
cluster O
3 O
showed O
conformational O
heterogeneity O
in O
parts O
of O
the O
scaffold O
that O
were O
directed O
toward O
multiple O
regions O
of O
the O
receptor O
including O
h3 B-structure_element
, O
h8 B-structure_element
, O
h11 B-structure_element
, O
h12 B-structure_element
, O
and O
/ O
or O
the O
β B-structure_element
I-structure_element
sheets I-structure_element
( O
Fig O
EV5C O
O
G O
). O
Thus O
, O
cell O
O
specific O
activity O
can O
stem O
from O
perturbation O
of O
the O
AF B-site
I-site
2 I-site
surface I-site
without O
an O
extended O
side O
chain O
, O
which O
presumably O
alters O
the O
receptor O
O
coregulator O
interaction O
profile O
. O
The O
h3 B-site
I-site
h12 I-site
interface I-site
( O
circled O
) O
at O
AF B-structure_element
I-structure_element
2 I-structure_element
( O
pink O
) O
was O
expanded O
in O
panels O
( O
B O
, O
C O
). O
Average O
( O
mean O
+ O
SEM O
) O
α B-evidence
I-evidence
carbon I-evidence
distance I-evidence
measured O
from O
h3 B-structure_element
Thr347 B-residue_name_number
to O
h11 B-structure_element
Leu525 B-residue_name_number
of O
A B-protein_state
I-protein_state
CD I-protein_state
, I-protein_state
2 I-protein_state
, I-protein_state
5 I-protein_state
I-protein_state
DTP I-protein_state
, I-protein_state
and I-protein_state
3 I-protein_state
, I-protein_state
4 I-protein_state
I-protein_state
DTPD I-protein_state
I-protein_state
bound I-protein_state
ERα B-protein
LBDs B-structure_element
. O
Ligands O
in O
these O
classes O
altered O
the O
shape O
of O
AF B-structure_element
I-structure_element
2 I-structure_element
to O
affect O
coregulator O
preferences O
. O
It O
is O
noteworthy O
that O
regulation O
of O
h12 B-structure_element
dynamics O
indirectly O
through O
h11 B-structure_element
can O
virtually O
abolish O
AF B-structure_element
I-structure_element
2 I-structure_element
activity O
, O
and O
yet O
still O
drive O
robust O
transcriptional O
activity O
through O
AF B-structure_element
I-structure_element
1 I-structure_element
, O
as O
demonstrated O
with O
the O
OBHS B-chemical
series O
. O
If O
we O
calculated O
inter B-evidence
I-evidence
atomic I-evidence
distance I-evidence
matrices I-evidence
containing O
4 O
, O
000 O
atoms O
per O
structure O
× O
76 O
ligand O
O
receptor O
complexes O
, O
we O
would O
have O
3 O
× O
105 O
predictions O
. O
We O
have O
identified O
atomic B-evidence
vectors I-evidence
for O
the O
OBHS B-chemical
I-chemical
N I-chemical
and O
triaryl B-chemical
I-chemical
ethylene I-chemical
classes O
that O
predict O
ligand O
response O
( O
Fig O
5E O
and O
F O
). O
TOCA1 B-protein
binding O
to O
Cdc42 B-protein
leads O
to O
actin O
rearrangements O
, O
which O
are O
thought O
to O
be O
involved O
in O
processes O
such O
as O
endocytosis O
, O
filopodia O
formation O
, O
and O
cell O
migration O
. O
These O
molecular O
switches O
cycle O
between O
active B-protein_state
, O
GTP B-protein_state
- I-protein_state
bound I-protein_state
, O
and O
inactive B-protein_state
, O
GDP B-protein_state
- I-protein_state
bound I-protein_state
, O
states O
with O
the O
help O
of O
auxiliary O
proteins O
. O
N B-protein
- I-protein
WASP I-protein
exists O
in O
an O
autoinhibited B-protein_state
conformation I-protein_state
, O
which O
is O
released O
upon O
PI B-chemical
( I-chemical
4 I-chemical
, I-chemical
5 I-chemical
) I-chemical
P2 I-chemical
and O
Cdc42 B-protein
binding O
or O
by O
other O
factors O
, O
such O
as O
phosphorylation O
. O
The O
F B-structure_element
- I-structure_element
BAR I-structure_element
domain O
is O
a O
known O
dimerization O
, O
membrane O
- O
binding O
, O
and O
membrane O
- O
deforming O
module O
found O
in O
a O
number O
of O
cell O
signaling O
proteins O
. O
These O
HR1 B-structure_element
domains O
, O
however O
, O
show O
specificity O
for O
Cdc42 B-protein
, O
rather O
than O
RhoA B-protein
or O
Rac1 B-protein
. O
Here O
, O
we O
present O
the O
solution B-experimental_method
NMR I-experimental_method
structure B-evidence
of O
the O
HR1 B-structure_element
domain O
of O
TOCA1 B-protein
, O
providing O
the O
first O
structural B-evidence
data I-evidence
for O
this O
protein O
. O
The O
HR1 B-structure_element
domains O
from O
the O
PRK B-protein_type
family I-protein_type
bind O
their O
G B-protein_type
protein I-protein_type
partners O
with O
a O
high O
affinity O
, O
exhibiting O
a O
range O
of O
submicromolar O
dissociation B-evidence
constants I-evidence
( O
Kd B-evidence
) O
as O
low O
as O
26 O
nm O
. O
This O
region O
comprises O
the O
complete O
HR1 B-structure_element
domain O
based O
on O
secondary O
structure O
predictions O
and O
sequence B-experimental_method
alignments I-experimental_method
with O
another O
TOCA B-protein_type
family I-protein_type
member O
, O
CIP4 B-protein
, O
whose O
structure B-evidence
has O
been O
determined O
. O
The O
interaction O
between O
[ B-complex_assembly
3H I-complex_assembly
] I-complex_assembly
GTP I-complex_assembly
· I-complex_assembly
Cdc42 I-complex_assembly
and O
a O
C O
- O
terminally O
His B-protein_state
- I-protein_state
tagged I-protein_state
TOCA1 B-protein
HR1 B-structure_element
domain O
construct O
was O
investigated O
using O
SPA B-experimental_method
. O
The O
affinity B-evidence
was O
therefore O
determined O
using O
competition B-experimental_method
SPAs I-experimental_method
. O
Competition O
of O
GST B-mutant
- I-mutant
ACK I-mutant
GBD B-structure_element
bound B-protein_state
to I-protein_state
[ B-complex_assembly
3H I-complex_assembly
] I-complex_assembly
GTP I-complex_assembly
· I-complex_assembly
Cdc42 I-complex_assembly
by O
free B-protein_state
ACK B-protein
GBD B-structure_element
was O
used O
as O
a O
control O
and O
to O
establish O
the O
value O
of O
background O
counts O
when O
Cdc42 B-protein
is O
fully O
displaced O
. O
Indeed O
, O
GST B-experimental_method
pull I-experimental_method
- I-experimental_method
downs I-experimental_method
performed O
with O
in O
vitro O
translated O
human B-species
TOCA1 B-protein
fragments O
had O
suggested O
that O
residues O
N O
- O
terminal O
to O
the O
HR1 B-structure_element
domain O
may O
be O
required O
to O
stabilize O
the O
HR1 B-structure_element
domain O
structure O
. O
Furthermore O
, O
both O
BAR B-structure_element
and O
SH3 B-structure_element
domains O
have O
been O
implicated O
in O
interactions O
with O
small O
G B-protein_type
proteins I-protein_type
( O
e O
. O
g O
. O
the O
BAR B-structure_element
domain O
of O
Arfaptin2 B-protein
binds O
to O
Rac1 B-protein
and O
Arl1 B-protein
), O
while O
an O
SH3 B-structure_element
domain O
mediates O
the O
interaction O
between O
Rac1 B-protein
and O
the O
guanine B-protein
nucleotide I-protein
exchange I-protein
factor I-protein
, O
β B-protein
- I-protein
PIX I-protein
. O
The O
structure B-evidence
closest O
to O
the O
mean O
is O
shown O
in O
Fig O
. O
3A O
. O
C O
, O
a O
close O
- O
up O
of O
the O
N O
- O
terminal O
region O
of O
TOCA1 B-protein
HR1 B-structure_element
, O
indicating O
some O
of O
the O
NOEs B-evidence
defining O
its O
position O
with O
respect O
to O
the O
two O
α B-structure_element
- I-structure_element
helices I-structure_element
. O
In O
the O
HR1a B-structure_element
domain O
of O
PRK1 B-protein
, O
a O
region O
N O
- O
terminal O
to O
helix B-structure_element
1 I-structure_element
forms O
a O
short B-structure_element
α I-structure_element
- I-structure_element
helix I-structure_element
, O
which O
packs O
against O
both O
helices O
of O
the O
HR1 B-structure_element
domain O
. O
B O
, O
CSPs B-experimental_method
were O
calculated O
as O
described O
under O
O
Experimental O
Procedures O
O
and O
are O
shown O
for O
backbone O
and O
side O
chain O
NH O
groups O
. O
The O
mean O
CSP B-experimental_method
is O
marked O
with O
a O
red O
line O
. O
Residues O
with O
significantly O
affected O
backbone O
and O
side O
chain O
groups O
that O
are O
solvent B-protein_state
- I-protein_state
accessible I-protein_state
are O
colored O
red O
. O
A O
close O
- O
up O
of O
the O
binding B-site
region I-site
is O
shown O
, O
with O
affected O
side O
chain O
heavy O
atoms O
shown O
as O
sticks O
. O
D O
, O
the O
G B-site
protein I-site
- I-site
binding I-site
region I-site
is O
marked O
in O
red O
onto O
structures B-evidence
of O
the O
HR1 B-structure_element
domains O
as O
indicated O
. O
These O
switch B-site
regions I-site
become O
visible O
in O
Cdc42 B-protein
and O
other O
small O
G B-protein_type
protein I-protein_type
· O
effector O
complexes O
due O
to O
a O
decrease O
in O
conformational O
freedom O
upon O
complex O
formation O
. O
This O
suggests O
that O
the O
switch B-site
regions I-site
are O
not O
rigidified O
in O
the O
HR1 B-structure_element
complex O
and O
are O
still O
in O
conformational O
exchange O
. O
The O
orientation O
of O
the O
HR1 B-structure_element
domain O
with O
respect O
to O
Cdc42 B-protein
cannot O
be O
definitively O
concluded O
in O
the O
absence O
of O
unambiguous O
distance O
restraints O
; O
hence O
, O
HADDOCK B-experimental_method
produced O
a O
set O
of O
models O
in O
which O
the O
HR1 B-structure_element
domain O
contacts O
the O
same O
surface O
on O
Cdc42 B-protein
but O
is O
in O
various O
orientations O
with O
respect O
to O
Cdc42 B-protein
. O
A O
representative O
model O
from O
this O
cluster O
is O
shown O
in O
Fig O
. O
6A O
alongside O
the O
Rac1 B-complex_assembly
- I-complex_assembly
HR1b I-complex_assembly
structure B-evidence
( O
PDB O
code O
2RMK O
) O
in O
Fig O
. O
6B O
. O
C O
, O
sequence B-experimental_method
alignment I-experimental_method
of O
RhoA B-protein
, O
Cdc42 B-protein
and O
Rac1 B-protein
. O
Some O
of O
these O
can O
be O
rationalized O
; O
for O
example O
, O
Thr B-residue_name_number
- I-residue_name_number
24Cdc42 I-residue_name_number
, O
Leu B-residue_name_number
- I-residue_name_number
160Cdc42 I-residue_name_number
, O
and O
Lys B-residue_name_number
- I-residue_name_number
163Cdc42 I-residue_name_number
all O
pack O
behind O
switch B-site
I I-site
and O
are O
likely O
to O
be O
affected O
by O
conformational O
changes O
within O
the O
switch B-site
, O
while O
Glu B-residue_name_number
- I-residue_name_number
95Cdc42 I-residue_name_number
and O
Lys B-residue_name_number
- I-residue_name_number
96Cdc42 I-residue_name_number
are O
in O
the O
helix B-structure_element
behind O
switch B-site
II I-site
. O
Lys B-residue_name_number
- I-residue_name_number
16Cdc42 I-residue_name_number
is O
unlikely O
to O
be O
a O
contact O
residue O
because O
it O
is O
involved O
in O
nucleotide O
binding O
, O
but O
the O
others O
may O
represent O
specific O
Cdc42 B-complex_assembly
- I-complex_assembly
TOCA1 I-complex_assembly
contacts O
. O
Competition O
between O
N B-protein
- I-protein
WASP I-protein
and O
TOCA1 B-protein
Interestingly O
, O
the O
presence B-protein_state
of I-protein_state
the O
TOCA1 B-protein
HR1 B-structure_element
would O
not O
prevent O
the O
core O
CRIB B-structure_element
of O
WASP B-protein
from O
binding O
to O
Cdc42 B-protein
, O
although O
the O
regions O
C O
- O
terminal O
to O
the O
CRIB B-structure_element
that O
are O
required O
for O
high O
affinity O
binding O
of O
WASP B-protein
would O
interfere O
sterically O
with O
the O
TOCA1 B-protein
HR1 B-structure_element
. O
These O
data O
indicate O
that O
the O
HR1 B-structure_element
domain O
is O
displaced O
from O
Cdc42 B-protein
by O
N B-protein
- I-protein
WASP I-protein
and O
that O
a O
ternary O
complex O
comprising O
TOCA1 B-protein
HR1 B-structure_element
, O
N B-protein
- I-protein
WASP I-protein
GBD B-structure_element
, O
and O
Cdc42 B-protein
is O
not O
formed O
. O
To O
extend O
these O
studies O
to O
a O
more O
complex O
system O
and O
to O
assess O
the O
ability O
of O
TOCA1 B-protein
HR1 B-structure_element
to O
compete O
with O
full B-protein_state
- I-protein_state
length I-protein_state
N B-protein
- I-protein
WASP I-protein
, O
pyrene B-experimental_method
actin I-experimental_method
assays I-experimental_method
were O
employed O
. O
Actin B-protein_type
polymerization O
triggered O
by O
the O
addition O
of O
PI B-chemical
( I-chemical
4 I-chemical
, I-chemical
5 I-chemical
) I-chemical
P2 I-chemical
- O
containing O
liposomes O
has O
previously O
been O
shown O
to O
depend O
on O
TOCA1 B-protein
and O
N B-protein
- I-protein
WASP I-protein
. O
The O
Cdc42 B-protein
- O
TOCA1 B-protein
Interaction O
The O
TOCA1 B-protein
HR1 B-structure_element
domain O
alone B-protein_state
is O
sufficient O
for O
Cdc42 B-protein
binding O
in O
vitro O
, O
yet O
the O
affinity B-evidence
of O
the O
TOCA1 B-protein
HR1 B-structure_element
domain O
for O
Cdc42 B-protein
is O
remarkably O
low O
( O
Kd B-evidence
O
5 O
μm O
). O
The O
TOCA1 B-protein
HR1 B-structure_element
domain O
is O
a O
left O
- O
handed O
coiled B-structure_element
- I-structure_element
coil I-structure_element
comparable O
with O
other O
known O
HR1 B-structure_element
domains O
. O
This O
region O
is O
distant O
from O
the O
G B-site
protein I-site
- I-site
binding I-site
interface I-site
of O
the O
HR1 B-structure_element
domains O
, O
so O
the O
structural O
differences O
may O
relate O
to O
the O
structure O
and O
regulation O
of O
these O
domains O
rather O
than O
their O
G B-protein_type
protein I-protein_type
interactions O
. O
The O
interhelical B-structure_element
loops I-structure_element
of O
TOCA1 B-protein
and O
CIP4 B-protein
differ O
from O
the O
same O
region O
in O
the O
HR1 B-structure_element
domains O
of O
PRK1 B-protein
in O
that O
they O
are O
longer O
and O
contain O
two O
short O
stretches O
of O
310 B-structure_element
- I-structure_element
helix I-structure_element
. O
In O
free B-protein_state
TOCA1 B-protein
, O
the O
side O
chains O
of O
the O
interhelical B-structure_element
region I-structure_element
make O
extensive O
contacts O
with O
residues O
in O
helix B-structure_element
1 I-structure_element
. O
Arg B-residue_name_number
- I-residue_name_number
68Cdc42 I-residue_name_number
of O
switch B-site
II I-site
is O
positioned O
close O
to O
Glu B-residue_name_number
- I-residue_name_number
395TOCA1 I-residue_name_number
( O
Fig O
. O
6D O
), O
suggesting O
a O
direct O
electrostatic O
contact O
between O
switch B-site
II I-site
of O
Cdc42 B-protein
and O
helix B-structure_element
2 I-structure_element
of O
the O
HR1 B-structure_element
domain O
. O
The O
solution B-evidence
structure I-evidence
of O
the O
TOCA1 B-protein
HR1 B-structure_element
domain O
presented O
here O
, O
along O
with O
the O
model O
of O
the O
HR1TOCA1 B-complex_assembly
· I-complex_assembly
Cdc42 I-complex_assembly
complex O
is O
consistent O
with O
a O
conserved O
mode O
of O
binding O
across O
the O
known O
HR1 B-structure_element
domain O
- O
Rho O
family O
interactions O
, O
despite O
their O
differing O
affinities O
. O
We O
have O
previously O
postulated O
that O
the O
inherent O
flexibility O
of O
HR1 B-structure_element
domains O
contributes O
to O
their O
ability O
to O
bind O
to O
different O
Rho B-protein_type
family I-protein_type
G I-protein_type
proteins I-protein_type
, O
with O
Rho O
- O
binding O
HR1 B-structure_element
domains O
displaying O
increased O
flexibility O
, O
reflected O
in O
their O
lower O
melting B-evidence
temperatures I-evidence
( O
Tm B-evidence
) O
and O
Rac B-protein_type
binders O
being O
more O
rigid O
. O
Cdc42 B-protein
- O
HR1TOCA1 B-structure_element
binding O
would O
then O
be O
favorable O
, O
as O
long O
as O
coincident O
activation O
of O
Cdc42 B-protein
had O
occurred O
, O
leading O
to O
stabilization O
of O
TOCA1 B-protein
at O
the O
membrane O
and O
downstream O
activation O
of O
N B-protein
- I-protein
WASP I-protein
. O
TOCA1 B-protein
can O
then O
recruit O
N B-protein
- I-protein
WASP I-protein
via O
an O
interaction O
between O
its O
SH3 B-structure_element
domain O
and O
the O
N B-protein
- I-protein
WASP I-protein
proline B-structure_element
- I-structure_element
rich I-structure_element
region I-structure_element
. O
It O
may O
therefore O
be O
envisaged O
that O
WIP B-protein
and O
TOCA1 B-protein
exert O
opposing O
allosteric O
effects O
on O
N B-protein
- I-protein
WASP I-protein
, O
with O
TOCA1 B-protein
favoring O
the O
unfolded B-protein_state
, O
active B-protein_state
conformation O
of O
N B-protein
- I-protein
WASP I-protein
and O
increasing O
its O
affinity O
for O
Cdc42 B-protein
. O
Our O
binding B-evidence
data I-evidence
suggest O
that O
TOCA1 B-protein
HR1 B-structure_element
binding O
is O
not O
allosterically O
regulated O
, O
and O
our O
NMR B-experimental_method
data O
, O
along O
with O
the O
high O
stability B-protein_state
of O
TOCA1 B-protein
HR1 B-structure_element
, O
suggest O
that O
there O
is O
no O
widespread O
conformational O
change O
in O
the O
presence B-protein_state
of I-protein_state
Cdc42 B-protein
. O
Furthermore O
, O
TOCA1 B-protein
is O
required O
for O
Cdc42 B-protein
- O
mediated O
activation O
of O
N B-complex_assembly
- I-complex_assembly
WASP I-complex_assembly
· I-complex_assembly
WIP I-complex_assembly
, O
implying O
that O
it O
may O
not O
be O
possible O
for O
Cdc42 B-protein
to O
bind O
and O
activate O
N B-protein
- I-protein
WASP I-protein
prior O
to O
TOCA1 B-protein
- O
Cdc42 B-protein
binding O
. O
There O
is O
an O
advantage O
to O
such O
an O
effector O
handover O
, O
in O
that O
N B-protein
- I-protein
WASP I-protein
would O
only O
be O
robustly O
recruited O
when O
F B-structure_element
- I-structure_element
BAR I-structure_element
domains O
are O
already O
present O
. O
The O
lysine B-residue_name
residues O
thought O
to O
be O
involved O
in O
an O
electrostatic O
steering O
mechanism O
in O
WASP B-protein
- O
Cdc42 B-protein
binding O
are O
conserved O
in O
N B-protein
- I-protein
WASP I-protein
and O
would O
be O
able O
to O
interact O
with O
Cdc42 B-protein
even O
when O
the O
TOCA1 B-protein
HR1 B-structure_element
domain O
is O
already O
bound B-protein_state
. O
The O
dynamic B-protein_state
organization O
of O
fungal B-taxonomy_domain
acetyl B-protein_type
- I-protein_type
CoA I-protein_type
carboxylase I-protein_type
In O
contrast O
to O
related O
carboxylases B-protein_type
, O
large O
- O
scale O
conformational O
changes O
are O
required O
for O
substrate O
turnover O
, O
and O
are O
mediated O
by O
the O
CD B-structure_element
under O
phosphorylation B-ptm
control O
. O
Biotin B-protein_type
- I-protein_type
dependent I-protein_type
acetyl I-protein_type
- I-protein_type
CoA I-protein_type
carboxylases I-protein_type
( O
ACCs B-protein_type
) O
are O
essential O
enzymes O
that O
catalyse O
the O
ATP B-chemical
- O
dependent O
carboxylation O
of O
acetyl B-chemical
- I-chemical
CoA I-chemical
to O
malonyl B-chemical
- I-chemical
CoA I-chemical
. O
This O
reaction O
provides O
the O
committed O
activated O
substrate O
for O
the O
biosynthesis O
of O
fatty B-chemical
acids I-chemical
via O
fatty B-protein_type
- I-protein_type
acid I-protein_type
synthase I-protein_type
. O
In O
addition O
to O
the O
canonical O
ACC B-structure_element
components I-structure_element
, O
eukaryotic B-taxonomy_domain
ACCs B-protein_type
contain O
two O
non B-protein_state
- I-protein_state
catalytic I-protein_state
regions B-structure_element
, O
the O
large O
central B-structure_element
domain I-structure_element
( O
CD B-structure_element
) O
and O
the O
BC B-structure_element
I-structure_element
CT I-structure_element
interaction I-structure_element
domain I-structure_element
( O
BT B-structure_element
). O
The O
CD B-structure_element
comprises O
one O
- O
third O
of O
the O
protein O
and O
is O
a O
unique B-protein_state
feature I-protein_state
of I-protein_state
eukaryotic B-taxonomy_domain
ACCs B-protein_type
without O
homologues O
in O
other O
proteins O
. O
The O
structure B-experimental_method
determination I-experimental_method
of O
the O
holoenzymes B-protein_state
of O
bacterial B-taxonomy_domain
biotin B-protein_type
- I-protein_type
dependent I-protein_type
carboxylases I-protein_type
, O
which O
lack B-protein_state
the O
characteristic O
CD B-structure_element
, O
such O
as O
the O
pyruvate B-protein_type
carboxylase I-protein_type
( O
PC B-protein_type
), O
propionyl B-protein_type
- I-protein_type
CoA I-protein_type
carboxylase I-protein_type
, O
3 B-protein_type
- I-protein_type
methyl I-protein_type
- I-protein_type
crotonyl I-protein_type
- I-protein_type
CoA I-protein_type
carboxylase I-protein_type
and O
a O
long B-protein_type
- I-protein_type
chain I-protein_type
acyl I-protein_type
- I-protein_type
CoA I-protein_type
carboxylase I-protein_type
revealed O
strikingly O
divergent O
architectures O
despite O
a O
general O
conservation O
of O
all O
functional O
components O
. O
Human B-species
ACC1 B-protein
is O
regulated B-protein_state
allosterically I-protein_state
, O
via O
specific O
protein O
O
protein O
interactions O
, O
and O
by O
reversible O
phosphorylation B-ptm
. O
Dynamic O
polymerization O
of O
human B-species
ACC1 B-protein
is O
linked O
to O
increased O
activity O
and O
is O
regulated B-protein_state
allosterically I-protein_state
by O
the O
activator O
citrate B-chemical
and O
the O
inhibitor O
palmitate B-chemical
, O
or O
by O
binding O
of O
the O
small O
protein O
MIG B-protein
- I-protein
12 I-protein
( O
ref O
.). O
AMPK B-protein
phosphorylates O
ACC1 B-protein
in O
vitro O
at O
Ser80 B-residue_name_number
, O
Ser1201 B-residue_name_number
and O
Ser1216 B-residue_name_number
and O
PKA B-protein
at O
Ser78 B-residue_name_number
and O
Ser1201 B-residue_name_number
. O
However O
, O
regulatory O
effects O
on O
ACC1 B-protein
activity O
are O
mainly O
mediated O
by O
phosphorylation B-ptm
of O
Ser80 B-residue_name_number
and O
Ser1201 B-residue_name_number
( O
refs O
). O
The O
organization O
of O
the O
yeast B-taxonomy_domain
ACC B-protein_type
CD B-structure_element
CDL B-structure_element
is O
composed O
of O
a O
small B-structure_element
, I-structure_element
irregular I-structure_element
four I-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
( O
Lα1 B-structure_element
I-structure_element
4 I-structure_element
) O
and O
tightly O
interacts O
with O
the O
open O
face O
of O
CDC1 B-structure_element
via O
an O
interface B-site
of O
1 O
, O
300 O
Å2 O
involving O
helices B-structure_element
Lα3 B-structure_element
and O
Lα4 B-structure_element
. O
CDL B-structure_element
does O
not O
interact O
with O
CDN B-structure_element
apart O
from O
the O
covalent O
linkage O
and O
forms O
only O
a O
small O
contact O
to O
CDC2 B-structure_element
via O
a O
loop B-structure_element
between O
Lα2 B-structure_element
/ I-structure_element
α3 I-structure_element
and O
the O
N O
- O
terminal O
end O
of O
Lα1 B-structure_element
, O
with O
an O
interface B-site
area O
of O
400 O
Å2 O
. O
A O
regulatory B-structure_element
loop I-structure_element
mediates O
interdomain O
interactions O
The O
SceCD B-species
structure B-evidence
thus O
authentically O
represents O
the O
state O
of O
SceACC B-protein
, O
where O
the O
enzyme B-protein
is O
inhibited B-protein_state
by O
SNF1 B-ptm
- I-ptm
dependent I-ptm
phosphorylation I-ptm
. O
An O
experimentally B-evidence
phased I-evidence
map I-evidence
was O
obtained O
at O
3 O
. O
7 O
Å O
resolution O
for O
a O
cadmium B-chemical
- O
derivatized O
crystal O
and O
was O
interpreted O
by O
a O
poly O
- O
alanine O
model O
( O
Fig O
. O
1e O
and O
Table O
1 O
). O
In O
agreement O
with O
their O
tight O
interaction O
in O
SceCD B-species
, O
the O
relative O
spatial O
arrangement O
of O
CDL B-structure_element
and O
CDC1 B-structure_element
is O
preserved O
in O
HsaBT B-mutant
- I-mutant
CD I-mutant
, O
but O
the O
human B-species
CDL B-structure_element
/ O
CDC1 B-structure_element
didomain O
is O
tilted O
by O
30 O
° O
based O
on O
a O
superposition B-experimental_method
of O
human B-species
and O
yeast B-taxonomy_domain
CDC2 B-structure_element
( O
Supplementary O
Fig O
. O
1c O
). O
As O
a O
result O
, O
the O
N O
terminus O
of O
CDL B-structure_element
at O
helix B-structure_element
Lα1 B-structure_element
, O
which O
connects O
to O
CDN B-structure_element
, O
is O
shifted O
by O
12 O
Å O
. O
Remarkably O
, O
CDN B-structure_element
of O
HsaBT B-mutant
- I-mutant
CD I-mutant
adopts O
a O
completely O
different O
orientation O
compared O
with O
SceCD B-species
. O
This O
rotation O
displaces O
the O
N O
terminus O
of O
CDN B-structure_element
in O
HsaBT B-mutant
- I-mutant
CD I-mutant
by O
51 O
Å O
compared O
with O
SceCD B-species
, O
resulting O
in O
a O
separation O
of O
the O
attachment O
points O
of O
the O
N O
- O
terminal O
linker B-structure_element
to O
the O
BCCP B-structure_element
domain I-structure_element
and O
the O
C O
- O
terminal O
CT B-structure_element
domain O
by O
67 O
Å O
( O
the O
attachment O
points O
are O
indicated O
with O
spheres O
in O
Fig O
. O
1e O
). O
The O
highly B-protein_state
conserved I-protein_state
Ser1216 B-residue_name_number
( O
corresponding O
to O
S B-species
. I-species
cerevisiae I-species
Ser1157 B-residue_name_number
), O
as O
well O
as O
Ser1201 B-residue_name_number
, O
both O
in O
the O
regulatory B-structure_element
loop I-structure_element
discussed O
above O
, O
are O
not B-protein_state
phosphorylated I-protein_state
. O
At O
the O
level O
of O
isolated B-experimental_method
yeast B-taxonomy_domain
and O
human B-species
CD B-structure_element
, O
the O
structural B-experimental_method
analysis I-experimental_method
indicates O
the O
presence O
of O
at O
least O
two O
hinges B-structure_element
, O
one O
with O
large O
- O
scale O
flexibility O
at O
the O
CDN B-structure_element
/ I-structure_element
CDL I-structure_element
connection I-structure_element
, O
and O
one O
with O
tunable O
plasticity O
between O
CDL B-structure_element
/ O
CDC1 B-structure_element
and O
CDC2 B-structure_element
, O
plausibly O
affected O
by O
phosphorylation B-ptm
in O
the O
regulatory B-structure_element
loop I-structure_element
region O
. O
The O
integration O
of O
CD B-structure_element
into O
the O
fungal B-taxonomy_domain
ACC B-protein_type
multienzyme I-protein_type
In O
all O
these O
crystal B-evidence
structures I-evidence
, O
the O
CT B-structure_element
domains O
build O
a O
canonical O
head B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
tail I-protein_state
dimer B-oligomeric_state
, O
with O
active B-site
sites I-site
formed O
by O
contributions O
from O
both O
protomers B-oligomeric_state
( O
Fig O
. O
2 O
and O
Supplementary O
Fig O
. O
3a O
). O
The O
connecting B-structure_element
region I-structure_element
is O
remarkably O
similar O
in O
isolated B-protein_state
CD B-structure_element
and O
CthCD B-mutant
- I-mutant
CTCter I-mutant
structures B-evidence
, O
indicating O
inherent O
conformational O
stability O
. O
CD B-structure_element
/ O
CT B-structure_element
contacts O
are O
only O
formed O
in O
direct O
vicinity O
of O
the O
covalent O
linkage O
and O
involve O
the O
β B-structure_element
- I-structure_element
hairpin I-structure_element
extension I-structure_element
of O
CDC2 B-structure_element
as O
well O
as O
the O
loop B-structure_element
between O
strands B-structure_element
β2 I-structure_element
/ I-structure_element
β3 I-structure_element
of O
the O
CT B-structure_element
N I-structure_element
- I-structure_element
lobe I-structure_element
, O
which O
contains O
a O
conserved B-protein_state
RxxGxN B-structure_element
motif I-structure_element
. O
On O
the O
basis O
of O
an O
interface O
area O
of O
O
600 O
Å2 O
and O
its O
edge O
- O
to O
- O
edge O
connection O
characteristics O
, O
the O
interface B-site
between O
CT B-structure_element
and O
CD B-structure_element
might O
be O
classified O
as O
conformationally O
variable O
. O
In O
addition O
, O
CDN B-structure_element
can O
rotate O
around O
hinges B-structure_element
in O
the O
connection O
between O
CDN B-structure_element
/ O
CDL B-structure_element
by O
70 O
° O
( O
Fig O
. O
4b O
, O
observed O
in O
the O
second O
protomer B-oligomeric_state
of O
CthΔBCCP B-mutant
, O
denoted O
as O
CthΔBCCP2 B-mutant
) O
and O
160 O
° O
( O
Fig O
. O
4c O
, O
observed O
in O
SceCD B-species
) O
leading O
to O
displacement O
of O
the O
anchor B-site
site I-site
for O
the O
BCCP B-structure_element
linker I-structure_element
by O
up O
to O
33 O
and O
40 O
Å O
, O
respectively O
. O
The O
current O
data O
thus O
suggest O
that O
regulation O
of O
fungal B-taxonomy_domain
ACC B-protein_type
is O
mediated O
by O
controlling O
the O
dynamics O
of O
the O
unique B-protein_state
CD B-structure_element
, O
rather O
than O
directly O
affecting O
catalytic O
turnover O
at O
the O
active B-site
sites I-site
of O
BC B-structure_element
and O
CT B-structure_element
. O
In O
their O
study O
, O
mutational B-experimental_method
data I-experimental_method
indicate O
a O
requirement O
for O
BC O
dimerization O
for O
catalytic O
activity O
. O
In O
flACC B-mutant
, O
the O
regulatory B-structure_element
loop I-structure_element
is O
mostly B-protein_state
disordered I-protein_state
, O
illustrating O
the O
increased O
flexibility O
due O
to O
the O
absence O
of O
the O
phosphoryl B-chemical
group O
. O
Only O
in O
three O
out O
of O
eight O
observed O
protomers B-oligomeric_state
a O
short B-structure_element
peptide I-structure_element
stretch O
( O
including O
Ser1157 B-residue_name_number
) O
was O
modelled B-evidence
. O
In O
those O
instances O
the O
Ser1157 B-residue_name_number
residue O
is O
located O
at O
a O
distance O
of O
14 O
O
20 O
Å O
away O
from O
the O
location O
of O
the O
phosphorylated B-protein_state
serine B-residue_name
observed O
here O
, O
based O
on O
superposition B-experimental_method
of O
either O
CDC1 B-structure_element
or O
CDC2 B-structure_element
. O
This O
implicates O
that O
the O
triangular B-protein_state
shape I-protein_state
with O
dimeric B-oligomeric_state
BC B-structure_element
domains O
has O
a O
low O
population O
also O
in O
the O
active B-protein_state
form I-protein_state
, O
even O
though O
a O
biasing O
influence O
of O
grid O
preparation O
cannot O
be O
excluded O
completely O
. O
Large O
- O
scale O
conformational O
variability O
has O
also O
been O
observed O
in O
most O
other O
carrier B-protein_type
protein I-protein_type
- I-protein_type
based I-protein_type
multienzymes I-protein_type
, O
including O
polyketide B-protein_type
and I-protein_type
fatty I-protein_type
- I-protein_type
acid I-protein_type
synthases I-protein_type
( O
with O
the O
exception O
of O
fungal B-protein_type
- I-protein_type
type I-protein_type
fatty I-protein_type
- I-protein_type
acid I-protein_type
synthases I-protein_type
), O
non B-protein_type
- I-protein_type
ribosomal I-protein_type
peptide I-protein_type
synthetases I-protein_type
and O
the O
pyruvate B-protein_type
dehydrogenase I-protein_type
complexes I-protein_type
, O
although O
based O
on O
completely O
different O
architectures O
. O
The O
regulation O
of O
activity O
thus O
results O
from O
restrained O
large O
- O
scale O
conformational O
dynamics O
rather O
than O
a O
direct O
or O
indirect O
influence O
on O
active B-site
site I-site
structure I-site
. O
The O
phosphorylated B-protein_state
central B-structure_element
domain I-structure_element
of O
yeast B-taxonomy_domain
ACC B-protein_type
. O
The O
attachment O
points O
to O
the O
N O
- O
terminal O
BCCP B-structure_element
domain O
and O
the O
C O
- O
terminal O
CT B-structure_element
domain O
are O
indicated O
with O
spheres O
. O
Variability O
of O
the O
connections O
of O
CDC2 B-structure_element
to O
CT B-structure_element
and O
CDC1 B-structure_element
in O
fungal B-taxonomy_domain
ACC B-protein_type
. O
For O
clarity O
, O
only O
one O
protomer B-oligomeric_state
of O
CthCD B-mutant
- I-mutant
CTCter1 I-mutant
is O
shown O
in O
full O
colour O
as O
reference O
. O
The O
domains O
are O
labelled O
and O
the O
distances O
between O
the O
N O
termini O
of O
CDN B-structure_element
( O
spheres O
) O
in O
the O
compared O
structures O
are O
indicated O
. O
( O
d O
) O
Schematic O
model O
of O
fungal B-taxonomy_domain
ACC B-protein_type
showing O
the O
intrinsic O
, O
regulated O
flexibility O
of O
CD B-structure_element
in O
the O
phosphorylated B-protein_state
inhibited B-protein_state
or O
the O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
activated B-protein_state
state O
. O
The O
inducible B-protein_state
lysine B-protein_type
decarboxylase I-protein_type
LdcI B-protein
is O
an O
important O
enterobacterial B-taxonomy_domain
acid B-protein_type
stress I-protein_type
response I-protein_type
enzyme I-protein_type
whereas O
LdcC B-protein
is O
its O
close O
paralogue O
thought O
to O
play O
mainly O
a O
metabolic O
role O
. O
A O
unique O
macromolecular O
cage O
formed O
by O
two O
decamers B-oligomeric_state
of O
the O
Escherichia B-species
coli I-species
LdcI B-protein
and O
five O
hexamers B-oligomeric_state
of O
the O
AAA B-protein_type
+ I-protein_type
ATPase I-protein_type
RavA B-protein
was O
shown O
to O
counteract O
acid O
stress O
under O
starvation O
. O
They O
counteract O
acid O
stress O
experienced O
by O
the O
bacterium B-taxonomy_domain
in O
the O
host O
digestive O
and O
urinary O
tract O
, O
and O
in O
particular O
in O
the O
extremely O
acidic O
stomach O
. O
Decarboxylation O
of O
the O
amino B-chemical
acid I-chemical
into O
a O
polyamine B-chemical
is O
catalysed O
by O
a O
PLP B-chemical
cofactor O
in O
a O
multistep O
reaction O
that O
consumes O
a O
cytoplasmic O
proton B-chemical
and O
produces O
a O
CO2 B-chemical
molecule O
passively O
diffusing O
out O
of O
the O
cell O
, O
while O
the O
polyamine B-chemical
is O
excreted O
by O
the O
antiporter B-protein_type
in O
exchange O
for O
a O
new O
amino B-chemical
acid I-chemical
substrate O
. O
Both O
acid B-protein_state
pH I-protein_state
and O
cadaverine B-chemical
induce O
closure O
of O
outer O
membrane O
porins B-protein_type
thereby O
contributing O
to O
bacterial B-taxonomy_domain
protection O
from O
acid O
stress O
, O
but O
also O
from O
certain O
antibiotics O
, O
by O
reduction O
in O
membrane O
permeability O
. O
Ten O
years O
ago O
we O
showed O
that O
the O
E B-species
. I-species
coli I-species
AAA B-protein_type
+ I-protein_type
ATPase I-protein_type
RavA B-protein
, O
involved O
in O
multiple O
stress O
response O
pathways O
, O
tightly O
interacted O
with O
LdcI B-protein
but O
was O
not O
capable O
of O
binding O
to O
LdcC B-protein
. O
We O
described O
how O
two O
double O
pentameric B-oligomeric_state
rings B-structure_element
of O
the O
LdcI B-protein
tightly O
associate O
with O
five O
hexameric B-oligomeric_state
rings B-structure_element
of O
RavA B-protein
to O
form O
a O
unique O
cage O
- O
like O
architecture O
that O
enables O
the O
bacterium B-taxonomy_domain
to O
withstand O
acid O
stress O
even O
under O
conditions O
of O
nutrient O
deprivation O
eliciting O
stringent O
response O
. O
This O
comparison O
pinpointed O
differences O
between O
the O
biodegradative B-protein_state
and O
the O
biosynthetic B-protein_state
lysine B-protein_type
decarboxylases I-protein_type
and O
brought O
to O
light O
interdomain O
movements O
associated O
to O
pH B-protein_state
- I-protein_state
dependent I-protein_state
enzyme O
activation O
and O
RavA B-protein
binding O
, O
notably O
at O
the O
predicted O
RavA B-site
binding I-site
site I-site
at O
the O
level O
of O
the O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheet I-structure_element
of O
LdcI B-protein
. O
Consequently O
, O
we O
tested O
the O
capacity O
of O
cage O
formation O
by O
LdcI B-mutant
- I-mutant
LdcC I-mutant
chimeras I-mutant
where O
we O
interchanged B-experimental_method
the O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheets I-structure_element
in O
question O
. O
CryoEM B-experimental_method
3D B-evidence
reconstructions I-evidence
of O
LdcC B-protein
, O
LdcIa B-protein
and O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
In O
the O
frame O
of O
this O
work O
, O
we O
produced O
two O
novel O
subnanometer O
resolution O
cryoEM B-experimental_method
reconstructions B-evidence
of O
the O
E B-species
. I-species
coli I-species
lysine B-protein_type
decarboxylases I-protein_type
at O
pH B-protein_state
optimal I-protein_state
for O
their O
enzymatic O
activity O
O
a O
5 O
. O
5 O
Å O
resolution O
cryoEM B-experimental_method
map B-evidence
of O
the O
LdcC B-protein
( O
pH B-protein_state
7 I-protein_state
. I-protein_state
5 I-protein_state
) O
for O
which O
no O
3D O
structural O
information O
has O
been O
previously O
available O
( O
Figs O
1A O
, O
B O
and O
S1 O
), O
and O
a O
6 O
. O
1 O
Å O
resolution O
cryoEM B-experimental_method
map B-evidence
of O
the O
LdcIa B-protein
, O
( O
pH B-protein_state
6 I-protein_state
. I-protein_state
2 I-protein_state
) O
( O
Figs O
1C O
, O
D O
and O
S2 O
). O
Significant O
differences O
between O
these O
pseudoatomic B-evidence
models I-evidence
can O
be O
interpreted O
as O
movements O
between O
specific O
biological O
states O
of O
the O
proteins O
as O
described O
below O
. O
The O
core B-structure_element
domain I-structure_element
and O
the O
active B-site
site I-site
rearrangements O
upon O
pH B-protein_state
- I-protein_state
dependent I-protein_state
enzyme O
activation O
and O
LARA O
binding O
The O
core B-structure_element
domain I-structure_element
is O
built O
by O
the O
PLP B-structure_element
- I-structure_element
binding I-structure_element
subdomain I-structure_element
( O
PLP B-structure_element
- I-structure_element
SD I-structure_element
, O
residues O
184 B-residue_range
I-residue_range
417 I-residue_range
) O
flanked O
by O
two O
smaller O
subdomains B-structure_element
rich O
in O
partly B-protein_state
disordered I-protein_state
loops B-structure_element
O
the O
linker B-structure_element
region I-structure_element
( O
residues O
130 B-residue_range
I-residue_range
183 I-residue_range
) O
and O
the O
subdomain B-structure_element
4 I-structure_element
( O
residues O
418 B-residue_range
I-residue_range
563 I-residue_range
). O
Zooming O
in O
the O
variations O
in O
the O
PLP B-structure_element
- I-structure_element
SD I-structure_element
shows O
that O
most O
of O
the O
structural O
changes O
concern O
displacements O
in O
the O
active B-site
site I-site
( O
Fig O
. O
3C O
O
F O
). O
The O
ppGpp B-site
binding I-site
pocket I-site
is O
made O
up O
by O
residues O
from O
all O
domains O
and O
is O
located O
approximately O
30 O
Å O
away O
from O
the O
PLP B-chemical
moiety O
. O
At O
this O
resolution O
, O
the O
apo B-protein_state
- O
LdcIi B-protein
and O
ppGpp B-complex_assembly
- I-complex_assembly
LdcIi I-complex_assembly
structures B-evidence
( O
both O
solved O
at O
pH B-protein_state
8 I-protein_state
. I-protein_state
5 I-protein_state
) O
appeared O
indistinguishable O
except O
for O
the O
presence O
of O
ppGpp B-chemical
( O
Fig O
. O
S11 O
in O
ref O
. O
). O
Swinging O
and O
stretching O
of O
the O
CTDs B-structure_element
upon O
pH B-protein_state
- I-protein_state
dependent I-protein_state
LdcI B-protein
activation O
and O
LARA B-structure_element
binding O
Importantly O
, O
most O
of O
the O
amino O
acid O
differences O
between O
the O
two O
enzymes O
are O
located O
in O
this O
very B-structure_element
region I-structure_element
. O
One O
of O
the O
elucidated O
roles O
of O
the O
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
cage O
is O
to O
maintain O
LdcI B-protein
activity O
under O
conditions O
of O
enterobacterial B-taxonomy_domain
starvation O
by O
preventing O
LdcI B-protein
inhibition O
by O
the O
stringent B-chemical
response I-chemical
alarmone I-chemical
ppGpp B-chemical
. O
The O
dashed O
circle O
indicates O
the O
central O
region B-structure_element
that O
remains O
virtually O
unchanged O
between O
all O
the O
structures B-evidence
, O
while O
the O
periphery O
undergoes O
visible O
movements O
. O
The O
PLP B-chemical
moieties O
of O
the O
cartoon O
ring B-structure_element
are O
shown O
in O
red O
. O
The O
active B-site
site I-site
is O
boxed O
. O
( O
D O
, O
E O
) O
A O
gallery O
of O
negative O
stain O
EM O
images O
of O
( O
D O
) O
the O
wild B-protein_state
type I-protein_state
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
cage O
and O
( O
E O
) O
the O
LdcCI B-mutant
- I-mutant
RavA I-mutant
cage I-mutant
- I-mutant
like I-mutant
particles I-mutant
. O
( O
F O
) O
Some O
representative O
class O
averages O
of O
the O
LdcCI B-mutant
- I-mutant
RavA I-mutant
cage I-mutant
- I-mutant
like I-mutant
particles I-mutant
. O
Crystal B-evidence
Structures I-evidence
of O
Putative O
Sugar B-protein_type
Kinases I-protein_type
from O
Synechococcus B-species
Elongatus I-species
PCC I-species
7942 I-species
and O
Arabidopsis B-species
Thaliana I-species
Together O
, O
these O
results O
provide O
important O
information O
for O
a O
more O
detailed O
understanding O
of O
the O
cofactor O
and O
substrate O
binding O
mode O
as O
well O
as O
the O
catalytic O
mechanism O
of O
SePSK B-protein
, O
and O
possible O
similarities O
with O
its O
plant B-taxonomy_domain
homologue O
AtXK B-protein
- I-protein
1 I-protein
. O
Structures B-evidence
reported O
in O
the O
Protein O
Data O
Bank O
of O
the O
FGGY B-protein_type
family I-protein_type
carbohydrate I-protein_type
kinases I-protein_type
exhibit O
a O
similar O
overall O
architecture O
containing O
two O
protein O
domains O
, O
one O
of O
which O
is O
responsible O
for O
the O
binding O
of O
substrate O
, O
while O
the O
second O
is O
used O
for O
binding O
cofactor O
ATP B-chemical
. O
SePSK B-protein
and O
AtXK B-protein
- I-protein
1 I-protein
display O
a O
sequence O
identity O
of O
44 O
. O
9 O
%, O
and O
belong O
to O
the O
ribulokinase B-protein_type
- I-protein_type
like I-protein_type
carbohydrate I-protein_type
kinases I-protein_type
, O
a O
sub O
- O
family O
of O
FGGY B-protein_type
family I-protein_type
carbohydrate I-protein_type
kinases I-protein_type
. O
It O
was O
shown O
that O
XK B-protein
- I-protein
2 I-protein
( O
At5g49650 B-gene
) O
located O
in O
the O
cytosol O
is O
indeed O
xylulose B-protein_type
kinase I-protein_type
. O
The O
attempt O
to O
solve O
the O
SePSK B-protein
structure B-evidence
by O
molecular B-experimental_method
replacement I-experimental_method
method I-experimental_method
failed O
with O
ribulokinase B-protein
from O
Bacillus B-species
halodurans I-species
( O
PDB O
code O
: O
3QDK O
, O
15 O
. O
7 O
% O
sequence O
identity O
) O
as O
an O
initial O
model O
. O
The O
secondary O
structural O
elements O
are O
indicated O
( O
α B-structure_element
- I-structure_element
helix I-structure_element
: O
cyan O
, O
β B-structure_element
- I-structure_element
sheet I-structure_element
: O
yellow O
). O
However O
, O
superposition B-experimental_method
of O
structures B-evidence
of O
AtXK B-protein
- I-protein
1 I-protein
and O
SePSK B-protein
shows O
some O
differences O
, O
especially O
at O
the O
loop B-structure_element
regions I-structure_element
. O
The O
corresponding O
residues O
between O
these O
two O
structures B-evidence
( O
SePSK B-protein
- O
Lys35 B-residue_name_number
and O
AtXK B-protein
- I-protein
1 I-protein
- O
Lys48 B-residue_name_number
) O
have O
a O
distance O
of O
15 O
. O
4 O
Å O
( O
S3 O
Fig O
). O
To O
further O
identify O
the O
actual O
substrate O
of O
SePSK B-protein
and O
AtXK B-protein
- I-protein
1 I-protein
, O
five O
different O
sugar O
molecules O
, O
including O
D B-chemical
- I-chemical
ribulose I-chemical
, O
L B-chemical
- I-chemical
ribulose I-chemical
, O
D B-chemical
- I-chemical
xylulose I-chemical
, O
L B-chemical
- I-chemical
xylulose I-chemical
and O
Glycerol B-chemical
, O
were O
used O
in O
enzymatic B-experimental_method
activity I-experimental_method
assays I-experimental_method
. O
While O
the O
ATP B-chemical
hydrolysis O
activity O
of O
SePSK B-protein
greatly O
increases O
upon O
addition O
of O
D B-chemical
- I-chemical
ribulose I-chemical
( O
DR B-chemical
). O
To O
obtain O
more O
detailed O
information O
of O
SePSK B-protein
and O
AtXK B-protein
- I-protein
1 I-protein
in B-protein_state
complex I-protein_state
with I-protein_state
ATP B-chemical
, O
we O
soaked B-experimental_method
the O
apo B-protein_state
- O
crystals B-evidence
in O
the O
reservoir O
adding O
cofactor O
ATP B-chemical
, O
and O
obtained O
the O
structures B-evidence
of O
SePSK B-protein
and O
AtXK B-protein
- I-protein
1 I-protein
bound B-protein_state
with I-protein_state
ATP B-chemical
at O
the O
resolution O
of O
2 O
. O
3 O
Å O
and O
1 O
. O
8 O
Å O
, O
respectively O
. O
In O
both O
structures B-evidence
, O
a O
strong O
electron B-evidence
density I-evidence
was O
found O
in O
the O
conserved B-protein_state
ATP B-site
binding I-site
pocket I-site
, O
but O
can O
only O
be O
fitted O
with O
an O
ADP B-chemical
molecule O
( O
S4 O
Fig O
). O
The O
purine O
ring O
of O
AMP B-chemical
- I-chemical
PNP I-chemical
is O
positioned O
in O
parallel O
to O
the O
indole O
ring O
of O
Trp383 B-residue_name_number
. O
In O
addition O
, O
it O
is O
hydrogen O
- O
bonded O
with O
the O
side O
chain O
amide O
of O
Asn380 B-residue_name_number
( O
Fig O
3B O
). O
Glu329 B-residue_name_number
in O
3QDK O
has O
no O
counterpart O
in O
RBL B-complex_assembly
- I-complex_assembly
SePSK I-complex_assembly
structure B-evidence
. O
The O
hydrogen O
bonds O
are O
indicated O
by O
the O
black O
dashed O
lines O
and O
the O
numbers O
near O
the O
dashed O
lines O
are O
the O
distances O
( O
Å O
). O
( O
C O
) O
The O
binding B-experimental_method
affinity I-experimental_method
assays I-experimental_method
of O
SePSK B-protein
with O
D B-chemical
- I-chemical
ribulose I-chemical
. O
This O
change O
might O
be O
the O
reason O
that O
AtXK B-protein
- I-protein
1 I-protein
only O
shows O
limited O
increasing O
in O
its O
ATP B-chemical
hydrolysis O
ability O
upon O
adding O
D B-chemical
- I-chemical
ribulose I-chemical
as O
a O
substrate O
after O
comparing O
with O
SePSK B-protein
( O
Fig O
2C O
). O
As O
reported O
previously O
, O
members O
of O
the O
sugar B-protein_type
kinase I-protein_type
family O
undergo O
a O
conformational O
change O
to O
narrow O
the O
crossing O
angle O
between O
two O
domains O
and O
reduce O
the O
distance O
between O
substrate O
and O
ATP B-chemical
in O
order O
to O
facilitate O
the O
catalytic O
reaction O
of O
phosphorylation B-ptm
of O
sugar O
substrates O
. O
The O
results O
of O
superposition B-experimental_method
displayed O
different O
crossing O
angle O
between O
these O
two O
domains O
. O
After O
superposition B-experimental_method
, O
the O
distances O
of O
AMP B-chemical
- I-chemical
PNP I-chemical
γ O
- O
phosphate B-chemical
and O
the O
fifth O
hydroxyl O
group O
of O
RBL1 B-residue_name_number
are O
7 O
. O
9 O
Å O
( O
superposed B-experimental_method
with O
AtXK B-protein
- I-protein
1 I-protein
), O
7 O
. O
4 O
Å O
( O
superposed B-experimental_method
with O
SePSK B-protein
), O
6 O
. O
6 O
Å O
( O
superposed B-experimental_method
with O
3LL3 O
) O
and O
6 O
. O
1 O
Å O
( O
superposed B-experimental_method
with O
1GLJ O
). O
The O
structures B-evidence
are O
shown O
as O
cartoon O
and O
the O
ligands O
are O
shown O
as O
sticks O
. O
Domain B-structure_element
I I-structure_element
from O
D B-complex_assembly
- I-complex_assembly
ribulose I-complex_assembly
- I-complex_assembly
SePSK I-complex_assembly
( O
green O
) O
and O
Domain B-structure_element
II I-structure_element
from O
AMP B-complex_assembly
- I-complex_assembly
PNP I-complex_assembly
- I-complex_assembly
SePSK I-complex_assembly
( O
cyan O
) O
are O
superposed B-experimental_method
with O
apo B-protein_state
- O
AtXK B-protein
- I-protein
1 I-protein
( O
1st O
), O
apo B-protein_state
- O
SePSK B-protein
( O
2nd O
), O
3LL3 O
( O
3rd O
) O
and O
1GLJ O
( O
4th O
), O
respectively O
. O
Mep2 B-protein_type
proteins I-protein_type
are O
fungal B-taxonomy_domain
transceptors B-protein_type
that O
play O
an O
important O
role O
as O
ammonium B-chemical
sensors O
in O
fungal B-taxonomy_domain
development O
. O
Here O
we O
report O
X B-evidence
- I-evidence
ray I-evidence
crystal I-evidence
structures I-evidence
of O
the O
Mep2 B-protein_type
orthologues O
from O
Saccharomyces B-species
cerevisiae I-species
and O
Candida B-species
albicans I-species
and O
show O
that O
under O
nitrogen O
- O
sufficient O
conditions O
the O
transporters B-protein_type
are O
not B-protein_state
phosphorylated I-protein_state
and O
present O
in O
closed B-protein_state
, O
inactive B-protein_state
conformations O
. O
One O
of O
the O
most O
important O
unresolved O
questions O
in O
the O
field O
is O
how O
the O
transceptors B-protein_type
couple O
to O
downstream O
signalling O
pathways O
. O
They O
belong O
to O
the O
Amt B-protein_type
/ I-protein_type
Mep I-protein_type
/ I-protein_type
Rh I-protein_type
family I-protein_type
of I-protein_type
transporters I-protein_type
that O
are O
present O
in O
all B-taxonomy_domain
kingdoms I-taxonomy_domain
of I-taxonomy_domain
life I-taxonomy_domain
and O
they O
take O
up O
ammonium B-chemical
from O
the O
extracellular O
environment O
. O
As O
is O
the O
case O
for O
other O
transceptors B-protein_type
, O
it O
is O
not O
clear O
how O
Mep2 B-protein
interacts O
with O
downstream O
signalling O
partners O
, O
but O
the O
protein O
kinase O
A O
and O
mitogen O
- O
activated O
protein O
kinase O
pathways O
have O
been O
proposed O
as O
downstream O
effectors O
of O
Mep2 B-protein
( O
refs O
). O
In O
addition O
, O
Mep2 B-protein
is O
also O
important O
for O
uptake O
of O
ammonium B-chemical
produced O
by O
growth O
on O
other O
nitrogen B-chemical
sources O
. O
All O
structures B-evidence
show O
the O
transporters B-protein_type
in O
open B-protein_state
conformations O
. O
To O
elucidate O
the O
mechanism O
of O
Mep2 B-protein_type
transport O
regulation O
, O
we O
present O
here O
X B-evidence
- I-evidence
ray I-evidence
crystal I-evidence
structures I-evidence
of O
the O
Mep2 B-protein_type
transceptors I-protein_type
from O
S B-species
. I-species
cerevisiae I-species
and O
C B-species
. I-species
albicans I-species
. O
The O
channels B-site
of O
phosphorylation B-protein_state
- I-protein_state
mimicking I-protein_state
mutants I-protein_state
of O
C B-species
. I-species
albicans I-species
Mep2 B-protein
are O
still O
closed B-protein_state
but O
show O
large O
conformational O
changes O
within O
a O
conserved B-protein_state
part O
of O
the O
CTR B-structure_element
. O
Of O
these O
, O
Mep2 B-protein
from O
C B-species
. I-species
albicans I-species
( O
CaMep2 B-protein
) O
showed O
superior O
stability O
in O
relatively O
harsh O
detergents O
such O
as O
nonyl O
- O
glucoside O
, O
allowing O
structure B-experimental_method
determination I-experimental_method
in O
two O
different O
crystal B-evidence
forms I-evidence
to O
high O
resolution O
( O
up O
to O
1 O
. O
5 O
Å O
). O
Important O
functional O
features O
such O
as O
the O
extracellular O
ammonium B-site
binding I-site
site I-site
, O
the O
Phe B-site
gate I-site
and O
the O
twin B-structure_element
- I-structure_element
His I-structure_element
motif I-structure_element
within O
the O
hydrophobic B-site
channel I-site
are O
all O
very O
similar O
to O
those O
present O
in O
the O
bacterial B-taxonomy_domain
transporters B-protein_type
and O
RhCG B-protein
. O
In O
addition O
to O
changing O
the O
RxK B-structure_element
motif I-structure_element
, O
the O
movement O
of O
ICL1 B-structure_element
has O
another O
, O
crucial O
functional O
consequence O
. O
This O
two O
- O
tier O
channel B-structure_element
block I-structure_element
likely O
ensures O
that O
very O
little O
ammonium B-chemical
transport O
will O
take O
place O
under O
nitrogen B-chemical
- O
sufficient O
conditions O
. O
The O
result O
of O
these O
interactions O
is O
that O
the O
CTR B-structure_element
O
hugs O
' O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
half I-structure_element
of O
the O
transporters B-protein_type
( O
Fig O
. O
4 O
). O
Strikingly O
, O
the O
Npr1 B-site
target I-site
serine I-site
residue O
is O
located O
at O
the O
periphery O
of O
the O
trimer B-oligomeric_state
, O
far O
away O
(O
30 O
Å O
) O
from O
any O
channel B-site
exit I-site
( O
Fig O
. O
6 O
). O
Given O
that O
Ser457 B-residue_name_number
/ O
453 B-residue_number
is O
far O
from O
any O
channel B-site
exit I-site
( O
Fig O
. O
6 O
), O
the O
crucial O
question O
is O
how O
phosphorylation B-ptm
opens O
the O
Mep2 B-protein
channel B-site
to O
generate O
an O
active B-protein_state
transporter B-protein_type
. O
Density B-evidence
for O
ICL3 B-structure_element
and O
the O
CTR B-structure_element
beyond O
residue O
Arg415 B-residue_name_number
is O
missing O
in O
the O
442Δ B-mutant
mutant B-protein_state
, O
and O
the O
density B-evidence
for O
the O
other O
ICLs B-structure_element
including O
ICL1 B-structure_element
is O
generally O
poor O
with O
visible O
parts O
of O
the O
structure B-evidence
having O
high O
B O
- O
factors O
( O
Fig O
. O
7 O
). O
The O
second O
possibility O
is O
that O
the O
Tyr B-site
I-site
His I-site
hydrogen I-site
bond I-site
has O
to O
be O
disrupted O
by O
the O
incoming O
substrate O
to O
open B-protein_state
the O
channel O
. O
The O
latter O
model O
would O
fit O
well O
with O
the O
NH3 B-chemical
/ O
H B-chemical
+ I-chemical
symport O
model O
in O
which O
the O
proton O
is O
relayed O
by O
the O
twin B-structure_element
- I-structure_element
His I-structure_element
motif I-structure_element
. O
Phosphorylation B-ptm
causes O
a O
conformational O
change O
in O
the O
CTR B-structure_element
Do O
the O
Mep2 B-protein
structures B-evidence
provide O
any O
clues O
regarding O
the O
potential O
effect O
of O
phosphorylation B-ptm
? O
The O
ammonium B-chemical
uptake O
activity O
of O
the O
S B-species
. I-species
cerevisiae I-species
version O
of O
the O
DD B-mutant
mutant I-mutant
is O
the O
same O
as O
that O
of O
WT B-protein_state
Mep2 B-protein
and O
the O
S453D B-mutant
mutant B-protein_state
, O
indicating O
that O
the O
mutations O
do O
not O
affect O
transporter O
functionality O
in O
the O
triple B-mutant
mepΔ I-mutant
background O
( O
Fig O
. O
3 O
). O
For O
example O
, O
the O
distance B-evidence
between O
the O
Asp453 B-residue_name_number
acidic O
oxygens O
and O
the O
Glu420 B-residue_name_number
acidic O
oxygens O
increases O
from O
O
7 O
to O
> O
22 O
Å O
after O
200 O
ns O
simulations B-experimental_method
, O
and O
thus O
these O
residues O
are O
not O
interacting O
. O
Our O
model O
also O
provides O
an O
explanation O
for O
the O
observation O
that O
certain B-mutant
mutations I-mutant
within O
the O
CTR B-structure_element
completely O
abolish O
transport O
activity O
. O
Such O
mutations O
likely O
cause O
structural O
changes O
in O
the O
CTR B-structure_element
that O
prevent O
close O
contacts O
between O
the O
CTR B-structure_element
and O
ICL1 B-structure_element
/ O
ICL3 B-structure_element
, O
thereby O
stabilizing O
a O
closed B-protein_state
state O
that O
may O
be O
similar O
to O
that O
observed O
in O
Mep2 B-protein
. O
While O
the O
current O
study O
does O
not O
specifically O
address O
the O
mechanism O
of O
signalling O
underlying O
pseudohyphal O
growth O
, O
our O
structures B-evidence
do O
show O
that O
Mep2 B-protein_type
proteins I-protein_type
can O
assume O
different O
conformations O
. O
( O
b O
) O
CaMep2 B-protein
trimer B-oligomeric_state
viewed O
from O
the O
intracellular O
side O
( O
right O
). O
The O
Npr1 B-site
kinase I-site
site I-site
in O
the O
AI B-structure_element
region I-structure_element
is O
highlighted O
pink O
. O
Growth B-experimental_method
of O
ScMep2 B-mutant
variants I-mutant
on O
low O
ammonium O
medium O
. O
The O
side O
chains O
of O
residues O
in O
the O
RxK B-structure_element
motif I-structure_element
as O
well O
as O
those O
of O
Tyr49 B-residue_name_number
and O
His342 B-residue_name_number
are O
labelled O
. O
( O
c O
) O
Conserved B-protein_state
residues O
in O
ICL1 B-structure_element
- I-structure_element
3 I-structure_element
and O
the O
CTR B-structure_element
. O
Views O
from O
the O
cytosol O
for O
CaMep2 B-protein
( O
left O
) O
and O
AfAmt B-protein
- I-protein
1 I-protein
, O
highlighting O
the O
large O
differences O
in O
conformation O
of O
the O
conserved B-protein_state
residues O
in O
ICL1 B-structure_element
( O
RxK O
motif O
; O
blue O
), O
ICL2 B-structure_element
( O
ER B-structure_element
motif I-structure_element
; O
cyan O
), O
ICL3 B-structure_element
( O
green O
) O
and O
the O
CTR B-structure_element
( O
red O
). O
Missing O
regions O
are O
labelled O
. O
( O
b O
) O
Stereo O
superpositions B-experimental_method
of O
WT B-protein_state
CaMep2 B-protein
and O
the O
truncation B-protein_state
mutant I-protein_state
. O
2Fo O
O
Fc O
electron O
density O
( O
contoured O
at O
1 O
. O
0 O
σ O
) O
for O
residues O
Tyr49 B-residue_name_number
and O
His342 B-residue_name_number
is O
shown O
for O
the O
truncation B-protein_state
mutant I-protein_state
. O
( O
a O
) O
Cytoplasmic O
view O
of O
the O
DD B-mutant
mutant I-mutant
trimer B-oligomeric_state
, O
with O
WT B-protein_state
CaMep2 B-protein
superposed B-experimental_method
in O
grey O
for O
one O
of O
the O
monomers B-oligomeric_state
. O
High O
- O
resolution O
structural B-evidence
models I-evidence
of O
protein O
- O
protein O
interactions O
are O
critical O
for O
obtaining O
mechanistic O
insights O
into O
biological O
processes O
. O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
has O
historically O
provided O
valuable O
information O
on O
small O
- O
scale O
conformational O
changes O
, O
but O
observing O
large O
- O
amplitude O
heterogeneous O
conformational O
changes O
often O
falls O
beyond O
the O
reach O
of O
current O
crystallographic O
techniques O
. O
NMR B-experimental_method
can O
theoretically O
be O
used O
to O
determine O
heterogeneous O
ensembles O
, O
but O
in O
practice O
, O
this O
proves O
to O
be O
very O
challenging O
. O
However O
, O
modeling O
of O
the O
substrate O
in O
the O
complex O
proved O
to O
be O
a O
substantial O
challenge O
, O
as O
the O
electron B-evidence
density I-evidence
of O
the O
substrate O
was O
discontinuous O
and O
fragmented O
. O
Even O
the O
minimal B-structure_element
binding I-structure_element
portion I-structure_element
of O
Im7 B-protein
( O
Im76 B-mutant
- I-mutant
45 I-mutant
) O
showed O
highly O
dispersed O
electron B-evidence
density I-evidence
( O
Fig O
. O
1a O
). O
Thus O
, O
we O
developed O
a O
new O
approach O
to O
interpret O
the O
chaperone B-protein_state
- I-protein_state
bound I-protein_state
substrate O
in O
multiple O
conformations O
. O
If O
successful O
, O
the O
selection O
identifies O
the O
smallest O
group O
of O
specific O
conformations O
that O
best O
fits O
the O
residual B-evidence
electron I-evidence
density I-evidence
and O
anomalous B-evidence
signals I-evidence
. O
Each O
complex O
within O
this O
pool O
comprises O
one O
Spy B-protein
dimer B-oligomeric_state
bound B-protein_state
to I-protein_state
a O
single O
Im76 B-mutant
- I-mutant
45 I-mutant
substrate O
. O
This O
process O
provided O
us O
with O
a O
target O
map B-evidence
that O
the O
ensuing O
selection O
tried O
to O
recapitulate O
. O
This O
approach O
allowed O
us O
to O
simultaneously O
use O
both O
the O
iodine B-chemical
anomalous B-evidence
signals I-evidence
and O
the O
residual B-evidence
electron I-evidence
density I-evidence
in O
the O
selection O
procedure O
. O
The O
selection O
resulted O
in O
small O
ensembles O
from O
the O
MD B-experimental_method
pool O
that O
best O
fit O
the O
READ B-experimental_method
data O
( O
Fig O
. O
1c O
, O
d O
). O
The O
Spy B-site
- I-site
contacting I-site
residues I-site
comprise O
a O
mixture O
of O
charged O
, O
polar O
, O
and O
hydrophobic O
residues O
. O
Surprisingly O
, O
we O
noted O
that O
in O
the O
ensemble O
, O
Im76 B-mutant
- I-mutant
45 I-mutant
interacts O
with O
only O
38 O
% O
of O
the O
hydrophobic O
residues O
in O
the O
Spy B-protein
cradle B-site
, O
but O
interacts O
with O
61 O
% O
of O
the O
hydrophilic O
residues O
in O
the O
cradle B-site
. O
The O
structures B-evidence
of O
our O
ensemble B-evidence
agree O
well O
with O
lower O
- O
resolution O
crosslinking O
data O
, O
which O
indicate O
that O
chaperone B-protein_type
- O
substrate O
interactions O
primarily O
occur O
on O
the O
concave B-site
surface I-site
of O
Spy B-protein
. O
The O
ensemble B-evidence
suggests O
a O
model O
in O
which O
Spy B-protein
provides O
an O
amphipathic B-site
surface I-site
that O
allows O
substrate O
proteins O
to O
assume O
different O
conformations O
while O
bound B-protein_state
to I-protein_state
the O
chaperone B-protein_type
. O
As O
inter O
- O
molecular O
hydrophobic O
interactions O
between O
Spy B-protein
and O
the O
substrate O
become O
progressively O
replaced O
by O
intra O
- O
molecular O
interactions O
within O
the O
substrate O
, O
the O
affinity O
between O
chaperone B-protein_type
and O
substrates O
could O
decrease O
, O
eventually O
leading O
to O
release O
of O
the O
folded B-protein_state
client O
protein O
. O
Other O
Super O
Spy B-protein
mutations B-protein_state
( O
F115I B-mutant
and O
F115L B-mutant
) O
caused O
increased O
flexibility O
but O
not O
tighter O
substrate O
binding O
. O
In O
addition O
to O
insights O
into O
chaperone B-protein_type
function O
, O
this O
work O
presents O
a O
new O
method O
for O
determining O
heterogeneous O
structural O
ensembles O
via O
a O
hybrid O
methodology O
of O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
and O
computational B-experimental_method
modeling I-experimental_method
. O
Flowchart O
of O
the O
READ B-experimental_method
sample B-experimental_method
- I-experimental_method
and I-experimental_method
- I-experimental_method
select I-experimental_method
process O
. O
Spy B-complex_assembly
: I-complex_assembly
Im76 I-complex_assembly
- I-complex_assembly
45 I-complex_assembly
ensemble O
, O
arranged O
by O
RMSD B-evidence
to O
native B-protein_state
state O
of O
Im76 B-mutant
- I-mutant
45 I-mutant
. O
Although O
the O
six O
- O
membered O
ensemble O
from O
the O
READ B-experimental_method
selection O
should O
be O
considered O
only O
as O
an O
ensemble O
, O
for O
clarity O
, O
the O
individual O
conformers O
are O
shown O
separately O
here O
. O
Shown O
below O
each O
ensemble O
member O
is O
the O
RMSD B-evidence
of O
each O
conformer O
to O
the O
native B-protein_state
state O
of O
Im76 B-mutant
- I-mutant
45 I-mutant
, O
as O
well O
as O
the O
percentage O
of O
contacts O
between O
Im76 B-mutant
- I-mutant
45 I-mutant
and O
Spy B-protein
that O
are O
hydrophobic O
. O
The O
frequency O
plotted O
is O
calculated O
as O
the O
average O
contact B-evidence
frequency I-evidence
from O
Spy B-protein
to O
every O
residue O
of O
Im76 B-mutant
- I-mutant
45 I-mutant
and O
vice O
- O
versa O
. O
( O
a O
) O
Overlay B-experimental_method
of O
apo B-protein_state
Spy B-protein
( O
PDB O
ID O
: O
3O39 O
, O
gray O
) O
and O
bound B-protein_state
Spy B-protein
( O
green O
). O
( O
b O
) O
Overlay B-experimental_method
of O
WT B-protein_state
Spy B-protein
bound B-protein_state
to I-protein_state
Im76 B-mutant
- I-mutant
45 I-mutant
( O
green O
), O
H96L B-mutant
Spy B-protein
bound B-protein_state
to I-protein_state
Im7 B-protein
L18A B-mutant
L19 B-mutant
AL13A I-mutant
( O
blue O
), O
H96L B-mutant
Spy B-protein
bound B-protein_state
to I-protein_state
WT B-protein_state
Im7 B-protein
( O
yellow O
), O
and O
WT B-protein_state
Spy B-protein
bound B-protein_state
to I-protein_state
casein B-chemical
( O
salmon O
). O
( O
c O
) O
Competition B-experimental_method
assay I-experimental_method
showing O
Im76 B-mutant
- I-mutant
45 I-mutant
competes O
with O
Im7 B-protein
L18A B-mutant
L19A B-mutant
L37A B-mutant
H40W B-mutant
for O
the O
same O
binding B-site
site I-site
on O
Spy B-protein
( O
further O
substrate B-experimental_method
competition I-experimental_method
assays I-experimental_method
are O
shown O
in O
Supplementary O
Fig O
. O
8 O
). O
( O
b O
) O
F115 B-residue_name_number
and O
L32 B-residue_name_number
tether O
Spy B-protein
O
s O
linker B-structure_element
region I-structure_element
to O
its O
cradle B-site
, O
decreasing O
Spy B-protein
activity O
by O
limiting O
linker B-structure_element
region I-structure_element
flexibility O
. O
All O
four O
heavy B-structure_element
chains I-structure_element
of O
the O
antigen B-structure_element
- I-structure_element
binding I-structure_element
fragments I-structure_element
( O
Fabs B-structure_element
) O
have O
the O
same O
complementarity B-structure_element
- I-structure_element
determining I-structure_element
region I-structure_element
( O
CDR B-structure_element
) O
H3 B-structure_element
that O
was O
reported O
in O
an O
earlier O
Fab B-structure_element
structure B-evidence
. O
CDR B-structure_element
H3 B-structure_element
, O
despite O
having O
the O
same O
amino O
acid O
sequence O
, O
exhibits O
the O
largest O
conformational O
diversity O
. O
The O
structures B-evidence
and O
their O
analyses O
provide O
a O
rich O
foundation O
for O
future O
antibody B-protein_type
modeling O
and O
engineering O
efforts O
. O
At O
present O
, O
therapeutic O
antibodies B-protein_type
are O
the O
largest O
class O
of O
biotherapeutic O
proteins O
that O
are O
in O
clinical O
trials O
. O
Our O
current O
structural O
knowledge O
of O
antibodies B-protein_type
is O
based O
on O
a O
multitude O
of O
studies O
that O
used O
many O
techniques O
to O
gain O
insight O
into O
the O
functional O
and O
structural O
properties O
of O
this O
class O
of O
macromolecule O
. O
These O
multimeric O
forms O
are O
linked O
with O
an O
additional O
J B-structure_element
chain O
. O
Both O
κ B-structure_element
and O
λ B-structure_element
polypeptide O
chains O
are O
composed O
of O
a O
single O
V B-structure_element
domain I-structure_element
and O
a O
single O
C B-structure_element
domain I-structure_element
. O
A O
CDR B-structure_element
canonical O
structure O
is O
defined O
by O
its O
length O
and O
conserved O
residues O
located O
in O
the O
hypervariable B-structure_element
loop I-structure_element
and O
framework B-structure_element
residues I-structure_element
( O
V B-structure_element
- I-structure_element
region I-structure_element
residues O
that O
are O
not O
part O
of O
the O
CDRs B-structure_element
). O
Additional O
efforts O
have O
led O
to O
our O
current O
understanding O
that O
the O
LC B-structure_element
CDRs B-structure_element
L1 B-structure_element
, O
L2 B-structure_element
, O
and O
L3 B-structure_element
have O
preferred O
sets O
of O
canonical O
structures O
based O
on O
length O
and O
amino O
acid O
sequence O
composition O
. O
Classification O
schemes O
for O
the O
canonical O
structures O
of O
these O
5 O
CDRs B-structure_element
have O
emerged O
and O
evolved O
as O
the O
number O
of O
depositions O
in O
the O
Protein O
Data O
Bank O
of O
Fab B-structure_element
fragments O
of O
antibodies B-protein_type
grow O
. O
Recent O
antibody B-experimental_method
modeling I-experimental_method
assessments I-experimental_method
show O
continued O
improvement O
in O
the O
quality O
of O
the O
models O
being O
generated O
by O
a O
variety O
of O
modeling O
methods O
. O
( O
Continued O
) O
Crystal B-evidence
data I-evidence
, O
X B-evidence
- I-evidence
ray I-evidence
data I-evidence
, O
and O
refinement B-evidence
statistics I-evidence
. O
The O
crystal B-evidence
structures I-evidence
of O
the O
16 O
Fabs B-structure_element
have O
been O
determined O
at O
resolutions O
ranging O
from O
3 O
. O
3 O
O
to O
1 O
. O
65 O
O
( O
Table O
1 O
). O
One O
involves O
the O
loop B-structure_element
connecting O
the O
first O
2 O
β B-structure_element
- I-structure_element
strands I-structure_element
of O
the O
constant B-structure_element
domain I-structure_element
( O
in O
all O
Fabs B-structure_element
except O
H3 B-complex_assembly
- I-complex_assembly
23 I-complex_assembly
: I-complex_assembly
L1 I-complex_assembly
- I-complex_assembly
39 I-complex_assembly
, O
H3 B-complex_assembly
- I-complex_assembly
23 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
11 I-complex_assembly
and O
H3 B-complex_assembly
- I-complex_assembly
53 I-complex_assembly
: I-complex_assembly
L1 I-complex_assembly
- I-complex_assembly
39 I-complex_assembly
). O
The O
CDR B-structure_element
H1 B-structure_element
structures B-evidence
with O
H1 B-mutant
- I-mutant
69 I-mutant
shown O
in O
Fig O
. O
1A O
are O
quite O
variable O
, O
both O
for O
the O
structures B-evidence
with O
different O
LCs B-structure_element
and O
for O
the O
copies O
of O
the O
same O
Fab B-structure_element
in O
the O
asymmetric O
unit O
, O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
11 I-complex_assembly
and O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
. O
In O
total O
, O
6 O
independent O
Fab B-structure_element
structures B-evidence
produce O
5 O
different O
canonical O
structures B-evidence
, O
namely O
H1 B-mutant
- I-mutant
13 I-mutant
- I-mutant
1 I-mutant
, O
H1 B-mutant
- I-mutant
13 I-mutant
- I-mutant
3 I-mutant
, O
H1 B-mutant
- I-mutant
13 I-mutant
- I-mutant
4 I-mutant
, O
H1 B-mutant
- I-mutant
13 I-mutant
- I-mutant
6 I-mutant
and O
H1 B-mutant
- I-mutant
13 I-mutant
- I-mutant
10 I-mutant
. O
Although O
three O
of O
the O
germlines O
have O
CDR B-structure_element
H2 B-structure_element
of O
the O
same O
length O
, O
10 B-residue_range
residues I-residue_range
, O
they O
adopt O
2 O
distinctively O
different O
conformations O
depending O
mostly O
on O
the O
residue O
at O
position O
71 B-residue_number
from O
the O
so O
- O
called O
CDR B-structure_element
H4 B-structure_element
. O
Conformations O
of O
CDR B-structure_element
H2 B-structure_element
in O
H1 B-mutant
- I-mutant
69 I-mutant
and O
H5 B-mutant
- I-mutant
51 I-mutant
, O
both O
of O
which O
have O
canonical O
structure O
H2 B-mutant
- I-mutant
10 I-mutant
- I-mutant
1 I-mutant
, O
show O
little O
deviation O
within O
each O
set O
of O
4 O
structures B-evidence
. O
L4 B-mutant
- I-mutant
1 I-mutant
has O
the O
longest O
CDR B-structure_element
L1 B-structure_element
, O
composed O
of O
17 B-residue_range
amino I-residue_range
acid I-residue_range
residues I-residue_range
( O
Fig O
. O
3D O
). O
This O
is O
the O
tip O
of O
the O
loop B-structure_element
region I-structure_element
, O
which O
appears O
to O
have O
similar O
conformations O
that O
fan O
out O
the O
structures B-evidence
because O
of O
the O
slight O
differences O
in O
torsion O
angles O
in O
the O
backbone O
near O
Tyr30a B-residue_name_number
and O
Lys30f B-residue_name_number
. O
The O
third O
structure O
, O
H3 B-complex_assembly
- I-complex_assembly
23 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
, O
has O
CDR B-structure_element
L1 B-structure_element
as O
L1 B-mutant
- I-mutant
12 I-mutant
- I-mutant
2 I-mutant
, O
which O
deviates O
from O
L1 B-mutant
- I-mutant
12 I-mutant
- I-mutant
1 I-mutant
at O
residues O
29 B-residue_range
- I-residue_range
32 I-residue_range
, O
i O
. O
e O
., O
at O
the O
site O
of O
insertion O
with O
respect O
to O
the O
11 B-residue_range
- I-residue_range
residue I-residue_range
CDR B-structure_element
. O
The O
superposition B-experimental_method
of O
CDR B-structure_element
L2 B-structure_element
backbones O
for O
all O
HC B-complex_assembly
: I-complex_assembly
LC I-complex_assembly
pairs O
with O
light B-structure_element
chains I-structure_element
: O
( O
A O
) O
L1 B-mutant
- I-mutant
39 I-mutant
, O
( O
B O
) O
L3 B-mutant
- I-mutant
11 I-mutant
, O
( O
C O
) O
L3 B-mutant
- I-mutant
20 I-mutant
and O
( O
D O
) O
L4 B-mutant
- I-mutant
1 I-mutant
. O
The O
slight O
conformational O
variability O
occurs O
in O
the O
region O
of O
amino O
acid O
residues O
90 B-residue_range
- I-residue_range
92 I-residue_range
, O
which O
is O
in O
contact O
with O
CDR B-structure_element
H3 B-structure_element
. O
This O
water B-chemical
is O
present O
in O
both O
the O
bound B-protein_state
( O
4DN4 O
) O
and O
unbound B-protein_state
( O
4DN3 O
) O
forms O
of O
CNTO B-chemical
888 I-chemical
. O
Ribbon O
representations O
of O
( O
A O
) O
the O
superposition B-experimental_method
of O
all O
CDR B-structure_element
H3s B-structure_element
of O
the O
structures B-evidence
with O
complete O
backbone O
traces O
. O
( O
B O
) O
The O
CDR B-structure_element
H3s B-structure_element
rotated O
90 O
° O
about O
the O
y O
axis O
of O
the O
page O
. O
Another O
four O
of O
the O
Fabs B-structure_element
, O
H3 B-complex_assembly
- I-complex_assembly
23 I-complex_assembly
: I-complex_assembly
L1 I-complex_assembly
- I-complex_assembly
39 I-complex_assembly
, O
H3 B-complex_assembly
- I-complex_assembly
53 I-complex_assembly
: I-complex_assembly
L1 I-complex_assembly
- I-complex_assembly
39 I-complex_assembly
, O
H3 B-complex_assembly
- I-complex_assembly
53 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
11 I-complex_assembly
and O
H3 B-complex_assembly
- I-complex_assembly
53 I-complex_assembly
: I-complex_assembly
L4 I-complex_assembly
- I-complex_assembly
1 I-complex_assembly
have O
missing O
side O
- O
chain O
atoms O
. O
A O
comparison O
of O
representatives O
of O
the O
O
kinked B-protein_state
O
and O
O
extended B-protein_state
O
structures B-evidence
. O
The O
largest O
backbone O
conformational O
deviation O
for O
the O
set O
is O
at O
Tyr99 B-residue_name_number
, O
where O
the O
C O
= O
O O
is O
rotated O
by O
90 O
° O
relative O
to O
that O
observed O
in O
4DN3 O
. O
Also O
, O
it O
is O
worth O
noting O
that O
only O
one O
of O
these O
structures B-evidence
, O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L4 I-complex_assembly
- I-complex_assembly
1 I-complex_assembly
, O
has O
the O
conserved B-protein_state
water B-chemical
molecule O
in O
CDR B-structure_element
H3 B-structure_element
observed O
in O
the O
4DN3 O
and O
4DN4 O
structures B-evidence
. O
The O
CDR B-structure_element
H3 B-structure_element
for O
this O
structure B-evidence
is O
shown O
in O
Fig O
. O
S3 O
. O
The O
domain O
packing O
of O
the O
variants O
was O
assessed O
by O
computing O
the O
domain B-site
interface I-site
interactions O
, O
the O
VH B-complex_assembly
: I-complex_assembly
VL I-complex_assembly
tilt B-evidence
angles I-evidence
, O
the O
buried O
surface O
area O
and O
surface O
complementarity O
. O
VH B-complex_assembly
: I-complex_assembly
VL I-complex_assembly
tilt B-evidence
angles I-evidence
The O
relative O
orientation O
of O
VH B-structure_element
and O
VL B-structure_element
has O
been O
measured O
in O
a O
number O
of O
different O
ways O
. O
The O
four O
LCs B-structure_element
all O
are O
classified O
as O
Type O
A O
because O
they O
have O
a O
proline B-residue_name
at O
position O
44 B-residue_number
, O
and O
the O
results O
for O
each O
orientation B-evidence
parameter I-evidence
are O
within O
the O
range O
of O
values O
of O
this O
type O
reported O
by O
Dunbar O
and O
co O
- O
workers O
. O
This O
kind O
of O
disorder O
may O
compromise O
the O
integrity O
of O
the O
VH B-structure_element
domain O
and O
its O
interaction O
with O
the O
VL B-structure_element
. O
The O
smallest O
differences O
in O
the O
tilt B-evidence
angle I-evidence
are O
between O
the O
Fabs B-structure_element
in O
isomorphous O
crystal B-evidence
forms I-evidence
. O
Among O
the O
complete B-protein_state
structures B-evidence
, O
the O
interface B-site
areas O
range O
from O
684 O
to O
836 O
2 O
. O
These O
findings O
correlate O
well O
with O
the O
degree O
of O
conformational O
disorder O
observed O
in O
the O
crystal B-evidence
structures I-evidence
. O
This O
variability O
is O
likely O
a O
result O
of O
2 O
factors O
, O
crystal O
packing O
interactions O
and O
internal O
instability O
of O
the O
variable B-structure_element
domain I-structure_element
. O
The O
other O
2 O
HCs B-structure_element
, O
H3 B-mutant
- I-mutant
23 I-mutant
and O
H5 B-mutant
- I-mutant
51 I-mutant
, O
have O
canonical O
structures O
that O
are O
remarkably B-protein_state
well I-protein_state
conserved I-protein_state
( O
Fig O
. O
1 O
). O
As O
mentioned O
in O
the O
Results O
section O
, O
this O
data O
set O
is O
composed O
of O
21 O
Fabs B-structure_element
, O
since O
5 O
of O
the O
16 O
variants O
have O
2 O
Fab B-structure_element
copies O
in O
the O
asymmetric O
unit O
. O
Thus O
, O
it O
is O
likely O
that O
the O
CDR B-structure_element
H3 B-structure_element
conformation O
is O
dependent O
upon O
2 O
dominating O
factors O
: O
1 O
) O
amino O
acid O
sequence O
; O
and O
2 O
) O
VH B-structure_element
and O
VL B-structure_element
context O
. O
More O
than O
half O
of O
the O
variants O
retain O
the O
conformation O
of O
the O
parent O
despite O
having O
differences O
in O
the O
VH B-complex_assembly
: I-complex_assembly
VL I-complex_assembly
pairing O
. O
The O
absolute O
VH B-complex_assembly
: I-complex_assembly
VL I-complex_assembly
orientation B-evidence
parameters I-evidence
for O
the O
2 O
Fabs B-structure_element
( O
Table O
S2 O
) O
show O
significant O
deviation B-evidence
in O
HL B-structure_element
, O
LC1 B-structure_element
and O
HC2 B-structure_element
values O
( O
2 O
- O
3 O
standard O
deviations O
from O
the O
mean O
). O
Curiously O
, O
the O
2 O
Fabs B-structure_element
, O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
and O
H3 B-complex_assembly
- I-complex_assembly
23 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
, O
deviate O
markedly O
in O
their O
tilt B-evidence
angles I-evidence
from O
the O
rest O
of O
the O
panel O
. O
It O
is O
possible O
that O
by O
adopting O
extreme O
tilt B-evidence
angles I-evidence
the O
structure B-evidence
modulates O
CDR B-structure_element
H3 B-structure_element
and O
its O
environment O
, O
which O
apparently O
cannot O
be O
achieved O
solely O
by O
conformational O
rearrangement O
of O
the O
CDR B-structure_element
. O
Quite O
unexpectedly O
, O
2 O
of O
the O
variants O
, O
H1 B-complex_assembly
- I-complex_assembly
69 I-complex_assembly
: I-complex_assembly
L3 I-complex_assembly
- I-complex_assembly
20 I-complex_assembly
and O
H3 B-complex_assembly
- I-complex_assembly
53 I-complex_assembly
: I-complex_assembly
L4 I-complex_assembly
- I-complex_assembly
1 I-complex_assembly
, O
have O
the O
O
extended B-protein_state
O
stem B-structure_element
region I-structure_element
differing O
from O
the O
other O
14 O
that O
have O
a O
O
kinked B-protein_state
O
stem B-structure_element
region I-structure_element
. O
These O
data O
reveal O
the O
difficulty O
of O
modeling O
CDR B-structure_element
H3 B-structure_element
accurately O
, O
as O
shown O
again O
in O
Antibody O
Modeling O
Assessment O
II O
. O
Fortunately O
, O
for O
most O
applications O
of O
antibody B-protein_type
modeling O
, O
such O
as O
engineering O
affinity O
and O
biophysical O
properties O
, O
an O
accurate O
CDR B-structure_element
H3 B-structure_element
structure B-evidence
is O
not O
always O
necessary O
. O
The O
results O
essentially O
support O
the O
underlying O
idea O
of O
canonical O
structures B-evidence
, O
indicating O
that O
most O
CDRs B-structure_element
with O
germline O
sequences O
tend O
to O
adopt O
predefined O
conformations O
. O
Here O
, O
the O
authors O
report O
U2AF65 B-protein
structures B-evidence
and O
single B-experimental_method
molecule I-experimental_method
FRET I-experimental_method
that O
reveal O
mechanistic O
insights O
into O
splice B-site
site I-site
recognition O
. O
A O
subsequent O
NMR B-experimental_method
structure B-evidence
characterized O
the O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
arrangement O
of O
the O
minimal B-protein_state
U2AF65 B-protein
RRM1 B-structure_element
and O
RRM2 B-structure_element
connected O
by O
a O
linker B-structure_element
of O
natural B-protein_state
length I-protein_state
( O
U2AF651 B-mutant
, I-mutant
2 I-mutant
), O
yet O
depended O
on O
the O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
crystal B-evidence
structures I-evidence
for O
RNA B-chemical
interactions O
and O
an O
ab O
initio O
model O
for O
the O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
conformation O
. O
Cognate O
U2AF65 B-protein
O
Py B-chemical
- I-chemical
tract I-chemical
recognition O
requires O
RRM B-structure_element
extensions I-structure_element
Historically O
, O
this O
difference O
was O
attributed O
to O
the O
U2AF65 B-protein
arginine B-structure_element
I-structure_element
serine I-structure_element
rich I-structure_element
domain I-structure_element
, O
which O
contacts O
pre B-complex_assembly
- I-complex_assembly
mRNA I-complex_assembly
I-complex_assembly
U2 I-complex_assembly
snRNA I-complex_assembly
duplexes I-complex_assembly
outside O
of O
the O
Py B-chemical
tract I-chemical
. O
U2AF65 B-protein_state
- I-protein_state
bound I-protein_state
Py B-chemical
tract I-chemical
comprises O
nine O
contiguous B-structure_element
nucleotides B-chemical
The O
U2AF651 B-mutant
, I-mutant
2L I-mutant
RRM1 B-structure_element
and O
RRM2 B-structure_element
associate O
with O
the O
Py B-chemical
tract I-chemical
in O
a O
parallel B-protein_state
, O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
arrangement O
( O
shown O
for O
representative O
structure O
iv O
in O
Fig O
. O
2b O
, O
c O
; O
Supplementary O
Movie O
1 O
). O
Yet O
, O
only O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
interactions O
at O
sites B-site
1 I-site
and I-site
7 I-site
are O
nearly O
identical O
to O
those O
of O
the O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
structures B-evidence
( O
Supplementary O
Fig O
. O
3a O
, O
f O
). O
Rather O
than O
interacting O
with O
a O
new O
5 O
- O
terminal O
nucleotide B-chemical
as O
we O
had O
hypothesized O
, O
the O
C O
- O
terminal O
α B-structure_element
- I-structure_element
helix I-structure_element
of O
RRM2 B-structure_element
instead O
folds O
across O
one O
surface O
of O
rU3 B-residue_name_number
in O
the O
third B-site
binding I-site
site I-site
( O
Fig O
. O
3b O
). O
The O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
reveal O
that O
the O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
mediates O
an O
extensive B-site
interface I-site
with O
the O
second O
α B-structure_element
- I-structure_element
helix I-structure_element
of O
RRM1 B-structure_element
, O
the O
β2 B-structure_element
/ I-structure_element
β3 I-structure_element
strands I-structure_element
of O
RRM2 B-structure_element
and O
the O
N O
- O
terminal O
α B-structure_element
- I-structure_element
helical I-structure_element
extension I-structure_element
of O
RRM1 B-structure_element
. O
We O
introduced O
glycine B-residue_name
substitutions B-experimental_method
to O
maximally O
reduce O
the O
buried O
surface O
area O
without O
directly O
interfering O
with O
its O
hydrogen O
bonds O
between O
backbone O
atoms O
and O
the O
base O
. O
However O
, O
the O
resulting O
decrease O
in O
the O
AdML B-gene
RNA B-evidence
affinity I-evidence
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
- I-mutant
3Gly I-mutant
mutant B-protein_state
relative O
to O
wild B-protein_state
- I-protein_state
type I-protein_state
protein B-protein
was O
not O
significant O
( O
Fig O
. O
4b O
). O
A O
more O
conservative B-experimental_method
substitution I-experimental_method
of O
these O
five O
residues O
( O
251 B-residue_range
I-residue_range
255 I-residue_range
) O
with O
an O
unrelated O
sequence O
capable O
of O
backbone O
- O
mediated O
hydrogen O
bonds O
( O
STVVP B-mutant
> I-mutant
NLALA I-mutant
) O
confirmed O
the O
subtle O
impact O
of O
this O
versatile O
inter B-structure_element
- I-structure_element
RRM I-structure_element
sequence I-structure_element
on O
affinity B-evidence
for O
the O
AdML B-gene
Py B-chemical
tract I-chemical
. O
Finally O
, O
to O
ensure O
that O
these O
selective O
mutations O
were O
sufficient O
to O
disrupt O
the O
linker B-structure_element
/ O
RRM B-structure_element
contacts O
, O
we O
substituted B-experimental_method
glycine B-residue_name
for O
the O
majority O
of O
buried O
hydrophobic O
residues O
in O
the O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
( O
including O
M144 B-residue_name_number
, O
L235 B-residue_name_number
, O
M238 B-residue_name_number
, O
V244 B-residue_name_number
, O
V246 B-residue_name_number
, O
V249 B-residue_name_number
, O
V250 B-residue_name_number
, O
S251 B-residue_name_number
, O
T252 B-residue_name_number
, O
V253 B-residue_name_number
, O
V254 B-residue_name_number
, O
P255 B-residue_name_number
; O
called O
12Gly B-mutant
). O
Yet O
, O
it O
is O
well O
known O
that O
the O
linker B-experimental_method
deletion I-experimental_method
in O
the O
context O
of O
the O
minimal B-protein_state
RRM1 B-structure_element
O
RRM2 B-structure_element
boundaries O
has O
no O
detectable O
effect O
on O
the O
RNA B-evidence
affinities I-evidence
of O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
compared O
with O
U2AF651 B-mutant
, I-mutant
2 I-mutant
( O
refs O
; O
Figs O
1b O
and O
4b O
; O
Supplementary O
Fig O
. O
4j O
). O
The O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
suggest O
that O
an O
extended B-protein_state
conformation I-protein_state
of O
the O
truncated B-protein_state
dU2AF651 B-mutant
, I-mutant
2 I-mutant
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
would O
suffice O
to O
connect O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
RRM1 B-structure_element
C O
terminus O
to O
the O
N O
terminus O
of O
RRM2 B-structure_element
( O
24 O
Å O
distance O
between O
U2AF651 B-mutant
, I-mutant
2L I-mutant
R227 B-residue_name_number
- O
Cα O
O
H259 B-residue_name_number
- O
Cα O
atoms O
), O
which O
agrees O
with O
the O
greater O
RNA B-evidence
affinities I-evidence
of O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
and O
U2AF651 B-mutant
, I-mutant
2 I-mutant
dual B-protein_state
RRMs B-structure_element
compared O
with O
the O
individual B-protein_state
U2AF65 B-protein
RRMs B-structure_element
. O
Likewise O
, O
deletion B-experimental_method
of O
the O
N O
- O
terminal O
RRM1 B-structure_element
extension I-structure_element
in O
the O
shortened B-protein_state
constructs O
would O
remove O
packing O
interactions O
that O
position O
the O
linker B-structure_element
in O
a O
kinked B-structure_element
turn I-structure_element
following O
P229 B-residue_name_number
( O
Fig O
. O
4a O
), O
consistent O
with O
the O
lower O
RNA B-evidence
affinities I-evidence
of O
dU2AF651 B-mutant
, I-mutant
2L I-mutant
, O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
and O
U2AF651 B-mutant
, I-mutant
2 I-mutant
compared O
with O
U2AF651 B-mutant
, I-mutant
2L I-mutant
. O
To O
further O
test O
cooperation O
among O
the O
U2AF65 B-protein
RRM B-structure_element
extensions I-structure_element
and O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
for O
RNA O
recognition O
, O
we O
tested O
the O
impact O
of O
a O
triple O
Q147A B-mutant
/ O
V254P B-mutant
/ O
R227A B-mutant
mutation B-experimental_method
( O
U2AF651 B-mutant
, I-mutant
2L I-mutant
- I-mutant
3Mut I-mutant
) O
for O
RNA O
binding O
( O
Fig O
. O
4b O
; O
Supplementary O
Fig O
. O
4d O
). O
Notably O
, O
the O
Q147A B-mutant
/ O
V254P B-mutant
/ O
R227A B-mutant
mutation B-experimental_method
reduced O
the O
RNA B-evidence
affinity I-evidence
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
- I-mutant
3Mut I-mutant
protein O
by O
30 O
- O
fold O
more O
than O
would O
be O
expected O
based O
on O
simple O
addition O
of O
the O
ΔΔG B-evidence
' O
s O
for O
the O
single O
mutations O
. O
Importance O
of O
U2AF65 B-complex_assembly
I-complex_assembly
RNA I-complex_assembly
contacts O
for O
pre B-chemical
- I-chemical
mRNA I-chemical
splicing O
As O
a O
representative O
splicing O
substrate O
, O
we O
utilized O
a O
well O
- O
characterized O
minigene B-chemical
splicing I-chemical
reporter I-chemical
( O
called O
pyPY B-chemical
) O
comprising O
a O
weak O
( O
that O
is O
, O
degenerate O
, O
py B-chemical
) O
and O
strong O
( O
that O
is O
, O
U B-structure_element
- I-structure_element
rich I-structure_element
, O
PY B-chemical
) O
polypyrimidine B-chemical
tracts I-chemical
preceding O
two O
alternative O
splice B-site
sites I-site
( O
Fig O
. O
5a O
). O
Sparse O
inter B-structure_element
- I-structure_element
RRM I-structure_element
contacts O
underlie O
apo B-protein_state
- O
U2AF65 B-protein
dynamics O
The O
direct O
interface B-site
between O
U2AF651 B-mutant
, I-mutant
2L I-mutant
RRM1 B-structure_element
and O
RRM2 B-structure_element
is O
minor O
, O
burying O
265 O
Å2 O
of O
solvent O
accessible O
surface O
area O
compared O
with O
570 O
Å2 O
on O
average O
for O
a O
crystal O
packing O
interface O
. O
Criteria O
included O
( O
i O
) O
residue O
locations O
that O
are O
distant O
from O
and O
hence O
not O
expected O
to O
interfere O
with O
the O
RRM B-complex_assembly
/ I-complex_assembly
RNA I-complex_assembly
or O
inter B-site
- I-site
RRM I-site
interfaces I-site
, O
( O
ii O
) O
inter O
- O
dye O
distances O
( O
50 O
Å O
for O
U2AF651 B-complex_assembly
, I-complex_assembly
2L I-complex_assembly
I-complex_assembly
Py I-complex_assembly
tract I-complex_assembly
and O
30 O
Å O
for O
the O
closed B-protein_state
apo B-protein_state
- O
model O
) O
that O
are O
expected O
to O
be O
near O
the O
Förster B-experimental_method
radius I-experimental_method
( I-experimental_method
Ro I-experimental_method
) I-experimental_method
for O
the O
Cy3 B-chemical
/ O
Cy5 B-chemical
pair O
( O
56 O
Å O
), O
where O
changes O
in O
the O
efficiency O
of O
energy O
transfer O
are O
most O
sensitive O
to O
distance O
, O
and O
( O
iii O
) O
FRET B-evidence
efficiencies I-evidence
that O
are O
calculated O
to O
be O
significantly O
greater O
for O
the O
O
closed B-protein_state
' O
apo B-protein_state
- O
model O
as O
opposed O
to O
the O
O
open B-protein_state
' O
RNA B-protein_state
- I-protein_state
bound I-protein_state
structures B-evidence
( O
by O
O
30 O
%). O
Therefore O
, O
RRM1 B-structure_element
- O
to O
- O
RRM2 B-structure_element
distance O
remains O
similar O
regardless O
of O
whether O
U2AF65 B-protein
is O
bound B-protein_state
to I-protein_state
interrupted O
or O
continuous O
Py B-chemical
tract I-chemical
. O
Importantly O
, O
the O
majority O
of O
traces B-evidence
(O
70 O
%) O
of O
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
bound B-protein_state
to I-protein_state
the O
slide O
- O
tethered O
RNA B-chemical
lacked O
FRET O
fluctuations O
and O
predominately O
exhibited O
a O
O
0 O
. O
45 O
FRET B-evidence
value I-evidence
( O
for O
example O
, O
Fig O
. O
6g O
). O
Thus O
, O
the O
sequence O
of O
structural O
rearrangements O
of O
U2AF65 B-protein
observed O
in O
smFRET B-experimental_method
traces B-evidence
( O
Supplementary O
Fig O
. O
7c O
O
g O
) O
suggests O
that O
a O
O
conformational O
selection O
' O
mechanism O
of O
Py B-chemical
- I-chemical
tract I-chemical
recognition O
( O
that O
is O
, O
RNA O
ligand O
stabilization O
of O
a O
pre B-protein_state
- I-protein_state
configured I-protein_state
U2AF65 B-protein
conformation O
) O
is O
complemented O
by O
O
induced O
fit O
' O
( O
that O
is O
, O
RNA O
- O
induced O
rearrangement O
of O
the O
U2AF65 B-protein
RRMs B-structure_element
to O
achieve O
the O
final O
O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
' O
conformation O
), O
as O
discussed O
below O
. O
Recently O
, O
high B-experimental_method
- I-experimental_method
throughput I-experimental_method
sequencing I-experimental_method
studies I-experimental_method
have O
shown O
that O
somatic O
mutations O
in O
pre B-protein_type
- I-protein_type
mRNA I-protein_type
splicing I-protein_type
factors I-protein_type
occur O
in O
the O
majority O
of O
patients O
with O
myelodysplastic O
syndrome O
( O
MDS O
). O
An O
increased O
prevalence O
of O
the O
O
0 O
. O
45 O
FRET B-evidence
value I-evidence
following O
U2AF65 B-protein
O
RNA B-chemical
binding O
, O
coupled O
with O
the O
apparent O
absence B-protein_state
of I-protein_state
transitions O
in O
many O
O
0 O
. O
45 O
- O
value O
single O
molecule O
traces B-evidence
( O
for O
example O
, O
Fig O
. O
6e O
), O
suggests O
a O
population O
shift O
in O
which O
RNA B-chemical
binds O
to O
( O
and O
draws O
the O
equilibrium O
towards O
) O
a O
pre B-protein_state
- I-protein_state
configured I-protein_state
inter B-structure_element
- I-structure_element
RRM I-structure_element
proximity O
that O
most O
often O
corresponds O
to O
the O
O
0 O
. O
45 O
FRET B-evidence
value I-evidence
. O
Notably O
, O
our O
smFRET B-experimental_method
results O
reveal O
that O
U2AF65 B-protein
O
Py B-chemical
- I-chemical
tract I-chemical
recognition O
can O
be O
characterized O
by O
an O
O
extended O
conformational O
selection O
' O
model O
( O
Fig O
. O
7b O
). O
Here O
, O
the O
majority O
of O
changes O
in O
smFRET B-experimental_method
traces B-evidence
for O
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
bound B-protein_state
to I-protein_state
slide O
- O
tethered O
RNA B-chemical
began O
at O
high O
( O
0 O
. O
65 O
O
0 O
. O
8 O
) O
FRET B-evidence
value I-evidence
and O
transition O
to O
the O
predominant O
0 O
. O
45 O
FRET B-evidence
value I-evidence
( O
Supplementary O
Fig O
. O
7c O
O
g O
). O
The O
finding O
that O
U2AF65 B-protein
recognizes O
a O
nine O
base O
pair O
Py B-chemical
tract I-chemical
contributes O
to O
an O
elusive O
O
code O
' O
for O
predicting O
splicing O
patterns O
from O
primary O
sequences O
in O
the O
post O
- O
genomic O
era O
( O
reviewed O
in O
ref O
.). O
Moreover O
, O
structural O
differences O
among O
U2AF65 B-protein
homologues O
and O
paralogues O
may O
regulate O
splice B-site
site I-site
selection O
. O
Ultimately O
, O
these O
guidelines O
will O
assist O
the O
identification O
of O
3 B-site
I-site
splice I-site
sites I-site
and O
the O
relationship O
of O
disease O
- O
causing O
mutations O
to O
penalties O
for O
U2AF65 B-protein
association O
. O
( O
a O
) O
Domain O
organization O
of O
full B-protein_state
- I-protein_state
length I-protein_state
( O
fl B-protein_state
) O
U2AF65 B-protein
and O
constructs O
used O
for O
RNA B-chemical
binding O
and O
structural O
experiments O
. O
Structures B-evidence
of O
U2AF651 B-mutant
, I-mutant
2L I-mutant
recognizing O
a O
contiguous B-structure_element
Py B-chemical
tract I-chemical
. O
The O
prior O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
nucleotide B-site
- I-site
binding I-site
sites I-site
are O
given O
in O
parentheses O
( O
site O
4 O
' O
interacts O
with O
dU2AF65 B-mutant
RRM1 B-structure_element
and O
RRM2 B-structure_element
by O
crystallographic O
symmetry O
). O
( O
b O
) O
Stereo O
views O
of O
a O
O
kicked O
' O
2 B-evidence
| I-evidence
Fo I-evidence
|| I-evidence
Fc I-evidence
| I-evidence
electron I-evidence
density I-evidence
map I-evidence
contoured O
at O
1σ O
for O
the O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
, O
N O
- O
and O
C O
- O
terminal O
residues O
( O
blue O
) O
or O
bound O
oligonucleotide B-chemical
of O
a O
representative O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structure O
( O
structure O
iv O
, O
bound B-protein_state
to I-protein_state
5 O
-( O
P O
) O
rUrUrUdUrUrU O
( O
BrdU O
) O
dUrC O
) O
( O
magenta O
). O
The O
nucleotide B-site
- I-site
binding I-site
sites I-site
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
and O
prior O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
structure B-evidence
are O
compared O
in O
Supplementary O
Fig O
. O
3a O
O
h O
. O
The O
first B-site
and I-site
seventh I-site
U2AF651 I-site
, I-site
2L I-site
- I-site
binding I-site
sites I-site
are O
unchanged O
from O
the O
prior O
dU2AF651 B-complex_assembly
, I-complex_assembly
2 I-complex_assembly
I-complex_assembly
RNA I-complex_assembly
structure B-evidence
and O
are O
portrayed O
in O
Supplementary O
Fig O
. O
3a O
, O
f O
. O
The O
four O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
are O
similar O
with O
the O
exception O
of O
pH O
- O
dependent O
variations O
at O
the O
ninth B-site
site I-site
that O
are O
detailed O
in O
Supplementary O
Fig O
. O
3i O
, O
j O
. O
The O
representative O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structure B-evidence
shown O
has O
the O
highest O
resolution O
and O
/ O
or O
ribose B-chemical
nucleotide I-chemical
at O
the O
given O
site O
: O
( O
a O
) O
rU2 B-residue_name_number
of O
structure O
iv O
; O
( O
b O
) O
rU3 B-residue_name_number
of O
structure O
iii O
; O
( O
c O
) O
rU4 B-residue_name_number
of O
structure O
i O
; O
( O
d O
) O
rU5 B-residue_name_number
of O
structure O
iii O
; O
( O
e O
) O
rU6 B-residue_name_number
of O
structure O
ii O
; O
( O
f O
) O
dU8 B-residue_name_number
of O
structure O
iii O
; O
( O
g O
) O
dU9 B-residue_name_number
of O
structure O
iii O
; O
( O
h O
) O
rC9 B-residue_name_number
of O
structure O
iv O
. O
The O
U2AF65 B-protein
linker B-structure_element
/ O
RRM B-structure_element
and O
inter O
- O
RRM B-structure_element
interactions O
. O
The O
apparent O
equilibrium B-evidence
dissociation I-evidence
constants I-evidence
( O
KD B-evidence
) O
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
mutant B-protein_state
proteins O
are O
: O
wild B-protein_state
type I-protein_state
( O
WT B-protein_state
), O
35 O
± O
6 O
nM O
; O
3Gly B-mutant
, O
47 O
± O
4 O
nM O
; O
5Gly B-mutant
, O
61 O
± O
3 O
nM O
; O
12Gly B-mutant
, O
88 O
± O
21 O
nM O
; O
NLALA B-mutant
, O
45 O
± O
3 O
nM O
; O
dU2AF651 B-mutant
, I-mutant
2L I-mutant
, O
123 O
± O
5 O
nM O
; O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
, O
5000 O
± O
100 O
nM O
; O
3Mut B-mutant
, O
5630 O
± O
70 O
nM O
. O
The O
average O
KA B-evidence
and O
s O
. O
e O
. O
m O
. O
for O
three O
independent O
titrations O
are O
plotted O
. O
( O
b O
) O
Representative O
RT B-experimental_method
- I-experimental_method
PCR I-experimental_method
of O
pyPY B-chemical
transcripts O
from O
HEK293T O
cells O
co B-experimental_method
- I-experimental_method
transfected I-experimental_method
with O
constructs O
encoding O
the O
pyPY B-chemical
minigene O
and O
either O
wild B-protein_state
- I-protein_state
type I-protein_state
( O
WT B-protein_state
) O
U2AF65 B-protein
or O
a O
triple O
U2AF65 B-protein
mutant B-protein_state
( O
3Mut B-mutant
) O
of O
Q147A B-mutant
, O
R227A B-mutant
and O
V254P B-mutant
residues O
. O
( O
c O
) O
A O
bar O
graph O
of O
the O
average O
percentage O
of O
the O
py B-chemical
- O
spliced O
mRNA B-chemical
relative O
to O
total O
detected O
pyPY B-chemical
transcripts O
( O
spliced O
and O
unspliced O
) O
for O
the O
corresponding O
gel O
lanes O
( O
black O
, O
no O
U2AF65 B-protein
added O
; O
white O
, O
WT B-protein_state
U2AF65 B-protein
; O
grey O
, O
3Mut B-mutant
U2AF65 B-protein
). O
Schematic O
models O
of O
U2AF65 B-protein
recognizing O
the O
Py B-chemical
tract I-chemical
. O
Alternatively O
, O
a O
conformation O
of O
U2AF65 B-protein
corresponding O
to O
O
0 O
. O
45 O
FRET B-evidence
value I-evidence
can O
directly O
bind O
to O
RNA B-chemical
; O
RNA B-chemical
binding O
stabilizes O
the O
O
open B-protein_state
', O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
conformation O
and O
thus O
shifts O
the O
U2AF65 B-protein
population O
towards O
the O
O
0 O
. O
45 O
FRET B-evidence
value I-evidence
. O
However O
, O
there O
is O
still O
no O
general O
consensus O
within O
the O
field O
on O
how O
to O
minimize O
RD O
during O
MX B-experimental_method
data O
collection O
, O
and O
debates O
on O
the O
dependence O
of O
RD O
progression O
on O
incident O
X O
- O
ray O
energy O
( O
Shimizu O
et O
al O
., O
2007 O
; O
Liebschner O
et O
al O
., O
2015 O
) O
and O
the O
efficacy O
of O
radical O
scavengers O
( O
Allan O
et O
al O
., O
2013 O
) O
have O
yet O
to O
be O
resolved O
. O
Specific B-experimental_method
radiation I-experimental_method
damage I-experimental_method
( O
SRD B-experimental_method
) O
is O
observed O
in O
the O
real B-evidence
- I-evidence
space I-evidence
electron I-evidence
density I-evidence
, O
and O
has O
been O
detected O
at O
much O
lower O
doses O
than O
any O
observable O
decay O
in O
the O
intensity O
of O
reflections O
. O
It O
binds O
with O
high O
affinity O
( O
K B-evidence
d I-evidence
O
1 O
. O
0 O
nM O
) O
to O
RNA B-chemical
segments O
containing O
11 O
GAG B-structure_element
/ I-structure_element
UAG I-structure_element
triplets I-structure_element
separated O
by O
two O
or O
three O
spacer B-structure_element
nucleotides I-structure_element
( O
Elliott O
et O
al O
., O
2001 O
) O
to O
regulate O
the O
transcription O
of O
tryptophan B-chemical
biosynthetic O
genes O
in O
Bacillus B-species
subtilis I-species
( O
Antson O
et O
al O
., O
1999 O
). O
Ten O
successive O
1 O
. O
98 O
Å O
resolution O
MX B-experimental_method
data O
sets O
were O
collected O
from O
the O
same O
TRAP B-complex_assembly
I-complex_assembly
RNA I-complex_assembly
crystal B-evidence
to O
analyse O
X O
- O
ray O
- O
induced O
structural O
changes O
over O
a O
large O
dose O
range O
( O
d O
1 O
= O
1 O
. O
3 O
MGy O
to O
d O
10 O
= O
25 O
. O
0 O
MGy O
). O
The O
substrate O
Trp B-chemical
amino O
- O
acid O
ligands O
also O
exhibited O
disordering O
of O
the O
free O
terminal O
carboxyl O
groups O
at O
higher O
doses O
( O
Fig O
. O
2 O
O
a O
); O
however O
, O
no O
clear O
Fourier B-evidence
difference I-evidence
peaks I-evidence
could O
be O
observed O
visually O
. O
A O
significant O
reduction O
in O
D B-evidence
loss I-evidence
is O
seen O
for O
Glu36 B-residue_name_number
in O
RNA B-protein_state
- I-protein_state
bound I-protein_state
compared O
with O
nonbound B-protein_state
TRAP B-complex_assembly
, O
indicative O
of O
a O
lower O
rate O
of O
side O
- O
chain O
decarboxylation O
( O
Fig O
. O
5 O
O
a O
; O
p O
= O
6 O
. O
06 O
× O
10 O
O
5 O
). O
RNA B-chemical
binding O
reduces O
radiation O
- O
induced O
disorder O
on O
the O
atomic O
scale O
RNA B-chemical
backbone O
disordering O
thus O
appears O
to O
be O
the O
main O
radiation O
- O
induced O
effect O
in O
RNA B-chemical
, O
with O
the O
protein O
O
base O
interactions O
maintained O
even O
at O
high O
doses O
(> O
20 O
MGy O
). O
The O
U4 B-residue_name_number
phosphate B-chemical
exhibited O
marginally O
larger O
D B-evidence
loss I-evidence
values O
above O
20 O
MGy O
than O
G1 B-residue_name_number
, O
A2 B-residue_name_number
and O
G3 B-residue_name_number
( O
Supplementary O
Fig O
. O
S4 O
). O
The O
Glu36 B-residue_name_number
carboxyl O
side O
chain O
also O
potentially O
forms O
hydrogen O
bonds O
to O
His34 B-residue_name_number
and O
Lys56 B-residue_name_number
, O
but O
since O
these O
interactions O
are O
conserved B-protein_state
irrespective O
of O
G3 B-residue_name_number
nucleotide O
binding O
, O
this O
cannot O
directly O
account O
for O
the O
stabilization O
effect O
on O
Glu36 B-residue_name_number
in O
RNA B-protein_state
- I-protein_state
bound I-protein_state
TRAP B-complex_assembly
. O
By O
comparing O
equivalent O
acidic O
residues O
with B-protein_state
and O
without B-protein_state
RNA B-chemical
, O
we O
have O
now O
deconvoluted O
the O
role O
of O
solvent O
accessibility O
from O
other O
local O
protein O
environment O
factors O
, O
and O
thus O
propose O
a O
suitable O
mechanism O
by O
which O
exceptionally O
low O
solvent O
accessibility O
can O
reduce O
the O
rate O
of O
decarboxylation O
. O
Apart O
from O
these O
RNA B-site
- I-site
binding I-site
interfaces I-site
, O
RNA B-chemical
binding O
was O
seen O
to O
enhance O
decarboxylation O
for O
residues O
Glu50 B-residue_name_number
, O
Glu71 B-residue_name_number
and O
Glu73 B-residue_name_number
, O
all O
of O
which O
are O
involved O
in O
crystal O
contacts O
between O
TRAP B-complex_assembly
rings B-structure_element
( O
Fig O
. O
4 O
O
c O
). O
In O
TRAP B-complex_assembly
, O
D B-evidence
loss I-evidence
increased O
at O
a O
similar O
rate O
for O
both O
the O
Tyr B-residue_name
O O
atoms O
and O
aromatic O
ring B-structure_element
atoms O
, O
suggesting O
that O
full O
ring B-structure_element
conformational O
disordering O
is O
more O
likely O
. O
Within O
the O
cellular O
environment O
, O
this O
mechanism O
could O
reduce O
the O
risk O
that O
radiation O
- O
damaged O
proteins O
might O
bind O
to O
RNA B-chemical
, O
thus O
avoiding O
the O
detrimental O
introduction O
of O
incorrect O
DNA B-chemical
- O
repair O
, O
transcriptional O
and O
base O
- O
modification O
pathways O
. O
RNA B-site
- I-site
binding I-site
interface I-site
interactions O
are O
shown O
for O
TRAP B-complex_assembly
chain O
N O
, O
with O
the O
F O
obs O
( O
d O
7 O
) O
O
F O
obs O
( O
d O
1 O
) O
Fourier O
difference O
map O
( O
dose O
16 O
. O
7 O
MGy O
) O
overlaid O
and O
contoured O
at O
a O
± O
4σ O
level O
. O
Plants B-taxonomy_domain
constantly O
renew O
during O
their O
life O
cycle O
and O
thus O
require O
to O
shed O
senescent O
and O
damaged O
organs O
. O
Here O
we O
show O
that O
IDA B-protein
is O
sensed O
directly O
by O
the O
HAESA B-protein
ectodomain B-structure_element
. O
This O
sequence O
pattern O
is O
conserved B-protein_state
among O
diverse O
plant B-taxonomy_domain
peptides B-chemical
, O
suggesting O
that O
plant B-taxonomy_domain
peptide B-protein_type
hormone I-protein_type
receptors I-protein_type
may O
share O
a O
common O
ligand O
binding O
mode O
and O
activation O
mechanism O
. O
The O
experiments O
show O
that O
IDA B-protein
binds B-protein_state
directly I-protein_state
to I-protein_state
a O
canyon B-protein_state
shaped I-protein_state
pocket B-site
in O
HAESA B-protein
that O
extends O
out O
from O
the O
surface O
of O
the O
cell O
. O
The O
next O
step O
following O
on O
from O
this O
work O
is O
to O
understand O
what O
signals O
are O
produced O
when O
IDA B-protein
activates O
HAESA B-protein
. O
The O
calculated O
molecular O
mass O
is O
65 O
. O
7 O
kDa O
, O
the O
actual O
molecular O
mass O
obtained O
by O
mass B-experimental_method
spectrometry I-experimental_method
is O
74 O
, O
896 O
Da O
, O
accounting O
for O
the O
N B-chemical
- I-chemical
glycans I-chemical
. O
( O
B O
) O
Ribbon O
diagrams O
showing O
front O
( O
left O
panel O
) O
and O
side O
views O
( O
right O
panel O
) O
of O
the O
isolated O
HAESA B-protein
LRR B-structure_element
domain I-structure_element
. O
The O
N O
- O
( O
residues O
20 B-residue_range
I-residue_range
88 I-residue_range
) O
and O
C O
- O
terminal O
( O
residues O
593 B-residue_range
I-residue_range
615 I-residue_range
) O
capping B-structure_element
domains I-structure_element
are O
shown O
in O
yellow O
, O
the O
central O
21 O
LRR B-structure_element
motifs I-structure_element
are O
in O
blue O
and O
disulphide B-ptm
bonds I-ptm
are O
highlighted O
in O
green O
( O
in O
bonds O
representation O
). O
( O
C O
) O
Structure B-experimental_method
based I-experimental_method
sequence I-experimental_method
alignment I-experimental_method
of O
the O
21 O
leucine B-structure_element
- I-structure_element
rich I-structure_element
repeats I-structure_element
in O
HAESA B-protein
with O
the O
plant B-taxonomy_domain
LRR B-structure_element
consensus O
sequence O
shown O
for O
comparison O
. O
During O
their O
growth O
, O
development O
and O
reproduction O
plants B-taxonomy_domain
use O
cell O
separation O
processes O
to O
detach O
no O
- O
longer O
required O
, O
damaged O
or O
senescent O
organs O
. O
Abscission O
of O
floral O
organs O
in O
Arabidopsis B-taxonomy_domain
is O
a O
model O
system O
to O
study O
these O
cell O
separation O
processes O
in O
molecular O
detail O
. O
The O
LRR B-structure_element
- I-structure_element
RKs I-structure_element
HAESA B-protein
( O
greek O
: O
to O
adhere O
to O
) O
and O
HAESA B-protein
- I-protein
LIKE I-protein
2 I-protein
( O
HSL2 B-protein
) O
redundantly O
control O
floral O
abscission O
. O
Transphosphorylation O
activity O
from O
the O
active B-protein_state
kinase O
to O
the O
mutated B-protein_state
form O
can O
be O
observed O
in O
both O
directions O
( O
lanes O
5 O
+ O
6 O
). O
IDL1 B-protein
, O
which O
can O
rescue O
IDA B-protein
loss O
- O
of O
- O
function O
mutants O
when O
introduced O
in O
abscission O
zone O
cells O
, O
can O
also O
be O
sensed O
by O
HAESA B-protein
, O
albeit O
with O
lower O
affinity B-evidence
( O
Figure O
2D O
). O
Notably O
, O
HAESA B-protein
can O
discriminate O
between O
IDLs B-protein_type
and O
functionally B-protein_state
unrelated I-protein_state
dodecamer B-structure_element
peptides B-chemical
with O
Hyp B-ptm
modifications I-ptm
, O
such O
as O
CLV3 B-protein
( O
Figures O
2D O
, O
7 O
). O
Our O
binding B-experimental_method
assays I-experimental_method
reveal O
that O
IDA B-chemical
family I-chemical
peptides I-chemical
are O
sensed O
by O
the O
isolated B-protein_state
HAESA B-protein
ectodomain B-structure_element
with O
relatively O
weak O
binding B-evidence
affinities I-evidence
( O
Figures O
1B O
, O
2A O
O
D O
). O
Possibly O
because O
SERKs B-protein_type
have O
additional O
roles O
in O
plant O
development O
such O
as O
in O
pollen O
formation O
and O
brassinosteroid O
signaling O
, O
we O
found O
that O
higher O
- O
order O
SERK O
mutants O
exhibit O
pleiotropic O
phenotypes O
in O
the O
flower O
, O
rendering O
their O
analysis O
and O
comparison O
by O
quantitative B-experimental_method
petal I-experimental_method
break I-experimental_method
- I-experimental_method
strength I-experimental_method
assays I-experimental_method
difficult O
. O
Ribbon O
diagrams O
of O
HAESA B-protein
( O
in O
blue O
) O
and O
SERK1 B-protein
( O
in O
orange O
) O
are O
shown O
with O
selected O
interface B-site
residues I-site
( O
in O
bonds O
representation O
). O
HAESA B-protein
LRRs B-structure_element
16 I-structure_element
I-structure_element
21 I-structure_element
and O
its O
C O
- O
terminal O
capping B-structure_element
domain I-structure_element
undergo O
a O
conformational O
change O
upon O
SERK1 B-protein
binding O
( O
Figure O
4B O
). O
Deletion B-experimental_method
of O
the O
C O
- O
terminal O
Asn69IDA B-residue_name_number
completely O
inhibits B-protein_state
complex O
formation O
. O
For O
a O
rapidly O
growing O
number O
of O
plant B-taxonomy_domain
signaling O
pathways O
, O
SERK B-protein_type
proteins I-protein_type
act O
as O
these O
essential O
co B-protein_type
- I-protein_type
receptors I-protein_type
(; O
). O
Importantly O
, O
our O
calorimetry B-experimental_method
assays I-experimental_method
reveal O
that O
the O
SERK1 B-protein
ectodomain B-structure_element
binds B-protein_state
HAESA B-protein
with O
nanomolar O
affinity O
, O
but O
only O
in O
the O
presence B-protein_state
of I-protein_state
IDA B-protein
( O
Figure O
3C O
). O
SERK1 B-protein
uses O
partially O
overlapping O
surface O
areas O
to O
activate O
different O
plant B-taxonomy_domain
signaling B-protein_type
receptors I-protein_type
. O
Residues O
interacting O
with O
the O
HAESA B-protein
or O
BRI1 B-protein
LRR B-structure_element
domains I-structure_element
are O
shown O
in O
orange O
or O
magenta O
, O
respectively O
. O
Comparison B-experimental_method
of O
our O
HAESA B-complex_assembly
I-complex_assembly
IDA I-complex_assembly
I-complex_assembly
SERK1 I-complex_assembly
structure B-evidence
with O
the O
brassinosteroid O
receptor O
signaling O
complex O
, O
where O
SERK1 B-protein
also O
acts O
as O
co B-protein_type
- I-protein_type
receptor I-protein_type
, O
reveals O
an O
overall O
conserved B-protein_state
mode O
of O
SERK1 B-protein
binding O
, O
while O
the O
ligand B-site
binding I-site
pockets I-site
map O
to O
very O
different O
areas O
in O
the O
corresponding O
receptors O
( O
LRRs B-structure_element
2 I-structure_element
I-structure_element
14 I-structure_element
; O
HAESA B-protein
; O
LRRs B-structure_element
21 I-structure_element
I-structure_element
25 I-structure_element
, O
BRI1 B-protein
) O
and O
may O
involve O
an O
island O
domain O
( O
BRI1 B-protein
) O
or O
not O
( O
HAESA B-protein
) O
( O
Figure O
6A O
). O
Several O
residues O
in O
the O
SERK1 B-protein
N O
- O
terminal O
capping B-structure_element
domain I-structure_element
( O
Thr59SERK1 B-residue_name_number
, O
Phe61SERK1 B-residue_name_number
) O
and O
the O
LRR B-site
inner I-site
surface I-site
( O
Asp75SERK1 B-residue_name_number
, O
Tyr101SERK1 B-residue_name_number
, O
SER121SERK1 B-residue_name_number
, O
Phe145SERK1 B-residue_name_number
) O
contribute O
to O
the O
formation O
of O
both O
complexes O
( O
Figures O
4C O
, O
D O
, O
6B O
). O
This O
fact O
together O
with O
the O
largely O
overlapping O
SERK1 B-site
binding I-site
surfaces I-site
in O
HAESA B-protein
and O
BRI1 B-protein
allows O
us O
to O
speculate O
that O
SERK1 B-protein
may O
promote O
high O
- O
affinity O
peptide B-protein_type
hormone I-protein_type
and O
brassinosteroid O
sensing O
by O
simply O
slowing O
down O
dissociation O
of O
the O
ligand O
from O
its O
cognate O
receptor O
. O
The O
conserved B-protein_state
( B-structure_element
Arg I-structure_element
)- I-structure_element
His I-structure_element
- I-structure_element
Asn I-structure_element
motif I-structure_element
is O
highlighted O
in O
red O
, O
the O
central O
Hyp B-residue_name
residue O
in O
IDLs B-protein_type
and O
CLEs B-protein_type
is O
marked O
in O
blue O
. O
Owing O
to O
some O
differences O
in O
their O
genomic O
distribution O
, O
the O
crotonyllysine B-residue_name
and O
acetyllysine B-residue_name
( O
Kac B-residue_name
) O
modifications O
have O
been O
linked O
to O
distinct O
functional O
outcomes O
. O
The O
acetyllysine B-residue_name
binding O
function O
of O
the O
AF9 B-protein
YEATS B-structure_element
domain I-structure_element
is O
essential O
for O
the O
recruitment O
of O
the O
histone B-protein_type
methyltransferase I-protein_type
DOT1L B-protein
to O
H3K9ac B-protein_type
- O
containing O
chromatin O
and O
for O
DOT1L B-protein
- O
mediated O
H3K79 B-protein_type
methylation B-ptm
and O
transcription O
. O
To O
elucidate O
the O
molecular O
basis O
for O
recognition O
of O
the O
H3K9cr B-protein_type
mark O
, O
we O
obtained O
a O
crystal B-evidence
structure I-evidence
of O
the O
Taf14 B-protein
YEATS B-structure_element
domain I-structure_element
in B-protein_state
complex I-protein_state
with I-protein_state
H3K9cr5 B-chemical
- I-chemical
13 I-chemical
( O
residues O
5 B-residue_range
I-residue_range
13 I-residue_range
of O
H3 B-protein_type
) O
peptide O
( O
Fig O
. O
1 O
, O
Supplementary O
Results O
, O
Supplementary O
Fig O
. O
1 O
and O
Supplementary O
Table O
1 O
). O
The O
hydroxyl O
group O
of O
Thr61 B-residue_name_number
also O
participates O
in O
a O
hydrogen O
bond O
with O
the O
amide O
nitrogen O
of O
the O
K9cr B-residue_name_number
side O
chain O
( O
Fig O
. O
1d O
). O
This O
value O
is O
in O
the O
range O
of O
binding B-evidence
affinities I-evidence
exhibited O
by O
the O
majority O
of O
histone O
readers O
, O
thus O
attesting O
to O
the O
physiological O
relevance O
of O
the O
H3K9cr B-protein_type
recognition O
by O
Taf14 B-protein
. O
As O
shown O
in O
Figure O
2a O
, O
b O
and O
Supplementary O
Fig O
. O
3e O
, O
H3K9cr B-protein_type
levels O
were O
abolished O
or O
reduced O
considerably O
in O
the O
HAT B-protein_type
deletion B-experimental_method
strains O
, O
whereas O
they O
were O
dramatically O
increased O
in O
the O
HDAC B-protein_type
deletion B-experimental_method
strains O
. O
We O
have O
previously O
shown O
that O
among O
acetylated B-protein_state
histone B-protein_type
marks O
, O
the O
Taf14 B-protein
YEATS B-structure_element
domain I-structure_element
prefers O
acetylated B-protein_state
H3K9 B-protein_type
( O
also O
see O
Supplementary O
Fig O
. O
3b O
), O
however O
it O
binds O
to O
H3K9cr B-protein_type
tighter O
. O
To O
determine O
if O
the O
binding O
to O
crotonyllysine B-residue_name
is O
conserved B-protein_state
, O
we O
tested O
human B-species
YEATS B-structure_element
domains I-structure_element
by O
pull B-experimental_method
- I-experimental_method
down I-experimental_method
experiments I-experimental_method
using O
singly O
and O
multiply O
acetylated B-protein_state
, O
propionylated B-protein_state
, O
butyrylated B-protein_state
, O
and O
crotonylated B-protein_state
histone B-protein_type
peptides O
( O
Supplementary O
Fig O
. O
6 O
). O
We O
found O
that O
all O
YEATS B-structure_element
domains I-structure_element
tested O
are O
capable O
of O
binding O
to O
crotonyllysine B-residue_name
peptides O
, O
though O
they O
display O
variable O
preferences O
for O
the O
acyl O
moieties O
. O
While O
YEATS2 B-protein
and O
ENL B-protein
showed O
selectivity O
for O
the O
crotonylated B-protein_state
peptides O
, O
GAS41 B-protein
and O
AF9 B-protein
bound O
acylated B-protein_state
peptides O
almost O
equally O
well O
. O
Spectra B-evidence
are O
color O
coded O
according O
to O
the O
protein O
: O
peptide O
molar O
ratio O
. O
Substitution B-experimental_method
of O
Thr1 B-residue_name_number
by O
Cys B-residue_name
disrupts O
the O
interaction O
with O
Lys33 B-residue_name_number
and O
inactivates B-protein_state
the O
proteasome B-complex_assembly
. O
Here O
, O
the O
authors O
use O
structural O
biology O
and O
biochemistry O
to O
investigate O
the O
role O
of O
proteasome B-complex_assembly
active B-site
site I-site
residues O
on O
maturation O
and O
activity O
. O
Its O
seven O
different O
α B-protein
and O
seven O
different O
β B-protein
subunits I-protein
assemble O
into O
four O
heptameric B-oligomeric_state
rings B-structure_element
that O
are O
stacked O
on O
each O
other O
to O
form O
a O
hollow B-structure_element
cylinder I-structure_element
. O
Only O
three O
out O
of O
the O
seven O
different O
β B-protein
subunits I-protein
, O
namely O
β1 B-protein
, O
β2 B-protein
and O
β5 B-protein
, O
bear O
N O
- O
terminal O
proteolytic B-site
active I-site
centres I-site
, O
and O
before O
CP B-complex_assembly
maturation O
these O
are O
protected O
by O
propeptides B-structure_element
. O
In O
principle O
it O
could O
function O
as O
the O
general O
base O
during O
both O
autocatalytic B-ptm
removal I-ptm
of O
the O
propeptide B-structure_element
and O
protein O
substrate O
cleavage O
. O
Proteasome B-complex_assembly
- O
mediated O
degradation O
of O
cell O
- O
cycle O
regulators O
and O
potentially O
toxic O
misfolded O
proteins O
is O
required O
for O
the O
viability O
of O
eukaryotic B-taxonomy_domain
cells O
. O
Inactivation O
of O
the O
active B-site
site I-site
Thr1 B-residue_name_number
by O
mutation B-experimental_method
to I-experimental_method
Ala B-residue_name
has O
been O
used O
to O
study O
substrate O
specificity O
and O
the O
hierarchy O
of O
the O
proteasome B-complex_assembly
active B-site
sites I-site
. O
Viability O
is O
restored O
if O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
subunit O
has O
its O
propeptide B-structure_element
( O
pp B-chemical
) O
deleted B-experimental_method
but I-experimental_method
expressed I-experimental_method
separately I-experimental_method
in O
trans B-protein_state
( O
β5 B-mutant
- I-mutant
T1A I-mutant
pp B-chemical
trans B-protein_state
), O
although O
substantial O
phenotypic O
impairment O
remains O
( O
Table O
1 O
). O
Processing O
of O
β O
- O
subunit O
precursors O
requires O
deprotonation O
of O
Thr1OH B-residue_name_number
; O
however O
, O
the O
general O
base O
initiating O
autolysis B-ptm
is O
unknown O
. O
Remarkably O
, O
eukaryotic B-taxonomy_domain
proteasomal O
β5 B-protein
subunits O
bear O
a O
His B-residue_name
residue O
in O
position O
(- B-residue_number
2 I-residue_number
) I-residue_number
of O
the O
propeptide B-structure_element
( O
Supplementary O
Fig O
. O
3a O
). O
We O
determined O
crystal B-evidence
structures I-evidence
of O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
L I-mutant
- I-mutant
T1A I-mutant
, O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
T I-mutant
- I-mutant
T1A I-mutant
and O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
A I-mutant
- I-mutant
T1A I-mutant
- I-mutant
K81R I-mutant
mutants O
( O
Supplementary O
Table O
1 O
). O
By O
contrast O
, O
the O
prosegments B-structure_element
of O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
L I-mutant
- I-mutant
T1A I-mutant
and O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
T I-mutant
- I-mutant
T1A I-mutant
mutants O
were O
significantly O
better O
resolved O
in O
the O
2FO B-evidence
I-evidence
FC I-evidence
electron I-evidence
- I-evidence
density I-evidence
maps I-evidence
yet O
not O
at O
full O
occupancy O
( O
Supplementary O
Fig O
. O
4b O
, O
c O
and O
Supplementary O
Table O
1 O
), O
suggesting O
that O
the O
natural O
propeptide B-structure_element
bearing O
His B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
is O
most O
favourable O
. O
Next O
, O
we O
determined O
the O
crystal B-evidence
structure I-evidence
of O
a O
chimeric B-protein_state
yCP B-complex_assembly
having O
the O
yeast B-taxonomy_domain
β1 B-protein
- O
propeptide B-structure_element
replaced B-experimental_method
by I-experimental_method
its O
β5 B-protein
counterpart B-structure_element
. O
These O
results O
suggest O
that O
Asp166 B-residue_name_number
and O
Ser129 B-residue_name_number
function O
as O
a O
proton O
shuttle O
and O
affect O
the O
protonation O
state O
of O
Thr1N B-residue_name_number
during O
autolysis B-ptm
and O
catalysis O
. O
On O
the O
basis O
of O
the O
phenotype O
of O
the O
T1C B-mutant
mutant B-protein_state
and O
the O
propeptide B-structure_element
remnant O
identified O
in O
its O
active B-site
site I-site
, O
we O
suppose O
that O
autolysis B-ptm
is O
retarded O
and O
may O
not O
have O
been O
completed O
before O
crystallization B-experimental_method
. O
Owing O
to O
the O
unequal O
positions O
of O
the O
two O
β5 B-protein
subunits O
within O
the O
CP B-complex_assembly
in O
the O
crystal O
lattice O
, O
maturation O
and O
propeptide B-structure_element
displacement O
may O
occur O
at O
different O
timescales O
in O
the O
two O
subunits O
. O
Despite O
propeptide B-ptm
hydrolysis I-ptm
, O
the O
β5 B-mutant
- I-mutant
T1C I-mutant
active B-site
site I-site
is O
catalytically B-protein_state
inactive I-protein_state
( O
Fig O
. O
4b O
and O
Supplementary O
Fig O
. O
9a O
). O
All O
proteasomes B-complex_assembly
strictly B-protein_state
employ I-protein_state
threonine B-residue_name
as O
the O
active B-site
- I-site
site I-site
residue I-site
instead O
of O
serine B-residue_name
. O
From O
these O
data O
we O
conclude O
that O
only O
the O
positioning O
of O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
) I-residue_name_number
and O
Thr1 B-residue_name_number
as O
well O
as O
the O
integrity O
of O
the O
proteasomal O
active B-site
site I-site
are O
required O
for O
autolysis B-ptm
. O
In O
this O
regard O
, O
inappropriate O
N B-ptm
- I-ptm
acetylation I-ptm
of O
the O
Thr1 B-residue_name_number
N O
terminus O
cannot O
be O
removed O
by O
Thr1Oγ B-residue_name_number
due O
to O
the O
rotational O
freedom O
and O
flexibility O
of O
the O
acetyl O
group O
. O
Thus O
, O
specific O
protein O
surroundings O
can O
significantly O
alter O
the O
chemical O
properties O
of O
amino O
acids O
such O
as O
Lys B-residue_name
to O
function O
as O
an O
acid O
O
base O
catalyst O
. O
Cleavage O
of O
the O
scissile O
peptide O
bond O
requires O
protonation O
of O
the O
emerging O
free O
amine O
, O
and O
in O
the O
proteasome B-complex_assembly
, O
the O
Thr1 B-residue_name_number
amine O
group O
is O
likely O
to O
assume O
this O
function O
. O
Breakdown O
of O
this O
tetrahedral O
transition O
state O
releases O
the O
Thr1 B-residue_name_number
N O
terminus O
that O
is O
protonated O
by O
aspartic B-residue_name_number
acid I-residue_name_number
166 I-residue_name_number
via O
Ser129OH B-residue_name_number
to O
yield O
Thr1NH3 B-residue_name_number
+. O
While O
Lys33NH2 B-residue_name_number
and O
Asp17Oδ B-residue_name_number
are O
required O
to O
deprotonate O
the O
Thr1 B-residue_name_number
hydroxyl O
side O
chain O
, O
Ser129OH B-residue_name_number
and O
Asp166OH B-residue_name_number
serve O
to O
protonate O
the O
N O
- O
terminal O
amine O
group O
of O
Thr1 B-residue_name_number
. O
However O
, O
owing O
to O
Cys B-residue_name
being O
a O
strong O
nucleophile O
, O
the O
propeptide B-structure_element
can O
still O
be O
cleaved B-protein_state
off O
over O
time O
. O
Notably O
, O
in O
the O
threonine B-protein_type
aspartase I-protein_type
Taspase1 B-protein
, O
mutation B-experimental_method
of O
the O
active B-site
- I-site
site I-site
Thr234 B-residue_name_number
to O
Ser B-residue_name
also O
places O
the O
side O
chain O
in O
the O
position O
of O
the O
methyl O
group O
of O
Thr234 B-residue_name_number
in O
the O
WT B-protein_state
, O
thereby O
reducing O
catalytic O
activity O
. O
Mutations B-experimental_method
of O
residue O
(- B-residue_number
2 I-residue_number
) I-residue_number
and O
their O
influence O
on O
propeptide B-structure_element
conformation O
and O
autolysis B-ptm
. O
The O
(- B-residue_number
2 I-residue_number
) I-residue_number
residues O
of O
both O
prosegments B-structure_element
point O
into O
the O
S1 B-site
pocket I-site
, O
but O
only O
Thr B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
OH O
of O
β2 B-protein
forms O
a O
hydrogen O
bridge O
to O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
) I-residue_name_number
O O
( O
black O
dashed O
line O
). O
Collapse O
of O
the O
transition O
state O
frees O
the O
Thr1 B-residue_name_number
N O
terminus O
( O
by O
completing O
an O
N O
- O
to O
- O
O O
acyl O
shift O
of O
the O
propeptide B-structure_element
), O
which O
is O
subsequently O
protonated O
by O
Asp166OH B-residue_name_number
via O
Ser129OH B-residue_name_number
. O
The O
charged O
Thr1 B-residue_name_number
N O
terminus O
may O
engage O
in O
the O
orientation O
of O
the O
amide O
moiety O
and O
donate O
a O
proton O
to O
the O
emerging O
N O
terminus O
of O
the O
C O
- O
terminal O
cleavage O
product O
. O
( O
g O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
WT B-protein_state
β5 B-protein
and O
β5 B-mutant
- I-mutant
T1S I-mutant
mutant B-protein_state
active B-site
sites I-site
reveals O
different O
orientations O
of O
the O
hydroxyl O
groups O
of O
Thr1 B-residue_name_number
and O
Ser1 B-residue_name_number
, O
respectively O
. O
Ser1 B-residue_name_number
lacks B-protein_state
this O
stabilization O
and O
is O
therefore O
rotated O
by O
60 O
°. O