mevol's picture
Upload 25 files
ce5220b
raw
history blame contribute delete
No virus
113 kB
Biochemical B-experimental_method
analysis I-experimental_method
reveals O
that O
these O
outer B-protein_type
membrane I-protein_type
- I-protein_type
anchored I-protein_type
proteins I-protein_type
are O
in O
fact O
exquisitely O
specific O
for O
the O
highly O
branched O
xyloglucan B-chemical
( O
XyG B-chemical
) O
polysaccharide B-chemical
. O
However O
, O
there O
is O
a O
paucity O
of O
data O
regarding O
how O
the O
vast O
array O
of O
complex B-chemical
carbohydrate I-chemical
structures O
are O
selectively O
recognized O
and O
imported O
by O
members O
of O
the O
microbiota B-taxonomy_domain
, O
a O
critical O
process O
that O
enables O
these O
organisms O
to O
thrive O
in O
the O
competitive O
gut O
environment O
. O
The O
location O
of O
SGBP B-protein
- I-protein
A I-protein
/ O
B B-protein
is O
presented O
in O
this O
work O
; O
the O
location O
of O
GH5 B-protein
has O
been O
empirically O
determined O
, O
and O
the O
enzymes O
have O
been O
placed O
based O
upon O
their O
predicted O
cellular O
location O
. O
These O
data O
extend O
our O
current O
understanding O
of O
the O
Sus O
- O
like O
glycan B-chemical
uptake O
paradigm O
within O
the O
Bacteroidetes B-taxonomy_domain
and O
reveals O
how O
the O
complex O
dietary O
polysaccharide B-chemical
xyloglucan B-chemical
is O
recognized O
at O
the O
cell O
surface O
. O
In O
contrast O
, O
SGBP B-protein
- I-protein
B I-protein
, O
encoded O
by O
locus O
tag O
Bacova_02650 B-gene
, O
displays O
little O
sequence O
similarity O
to O
the O
products O
of O
similarly O
positioned O
genes O
in O
syntenic O
XyGUL B-gene
nor O
to O
any O
other O
gene O
product O
among O
the O
diversity O
of O
Bacteroidetes B-taxonomy_domain
PUL B-gene
. O
Formalin O
- O
fixed O
, O
nonpermeabilized O
B B-species
. I-species
ovatus I-species
cells O
were O
grown O
in O
minimal O
medium O
plus O
XyG B-chemical
, O
probed O
with O
custom O
rabbit O
antibodies O
to O
SGBP B-protein
- I-protein
A I-protein
or O
SGBP B-protein
- I-protein
B I-protein
, O
and O
then O
stained O
with O
Alexa O
Fluor O
488 O
goat O
anti O
- O
rabbit O
IgG O
. O
( O
A O
) O
Overlay B-experimental_method
of O
bright B-evidence
- I-evidence
field I-evidence
and I-evidence
FITC I-evidence
images I-evidence
of O
B B-species
. I-species
ovatus I-species
cells O
labeled O
with O
anti O
- O
SGBP O
- O
A O
. O
( O
B O
) O
Overlay B-experimental_method
of O
bright B-evidence
- I-evidence
field I-evidence
and I-evidence
FITC I-evidence
images I-evidence
of O
B B-species
. I-species
ovatus I-species
cells O
labeled O
with O
anti O
- O
SGBP O
- O
B O
. O
( O
C O
) O
Bright B-evidence
- I-evidence
field I-evidence
image I-evidence
of O
ΔSGBP B-mutant
- I-mutant
B I-mutant
cells O
labeled O
with O
anti O
- O
SGBP O
- O
B O
antibodies O
. O
The O
vanguard O
endo B-protein_type
- I-protein_type
xyloglucanase I-protein_type
of O
the O
XyGUL B-gene
, O
BoGH5 B-protein
, O
preferentially O
cleaves O
the O
polysaccharide B-chemical
at O
unbranched O
glucosyl B-chemical
residues O
to O
generate O
xylogluco B-chemical
- I-chemical
oligosaccharides I-chemical
( O
XyGOs B-chemical
) O
comprising O
a O
Glc4 B-structure_element
backbone I-structure_element
with O
variable B-structure_element
side I-structure_element
- I-structure_element
chain I-structure_element
galactosylation I-structure_element
( O
XyGO1 B-chemical
) O
( O
Fig O
. O
1A O
; O
n O
= O
1 O
) O
as O
the O
limit O
of O
digestion O
products O
in O
vitro O
; O
controlled B-experimental_method
digestion I-experimental_method
and I-experimental_method
fractionation I-experimental_method
by O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
allow O
the O
production O
of O
higher O
- O
order O
oligosaccharides B-chemical
( O
e O
. O
g O
., O
XyGO2 B-chemical
) O
( O
Fig O
. O
1A O
; O
n O
= O
2 O
). O
The O
approximate O
length O
of O
each O
glycan B-site
- I-site
binding I-site
site I-site
is O
displayed O
, O
colored O
to O
match O
the O
protein B-evidence
structures I-evidence
. O
( O
E O
) O
Stereo O
view O
of O
the O
xyloglucan B-site
- I-site
binding I-site
site I-site
of O
SGBP B-protein
- I-protein
A I-protein
, O
displaying O
all O
residues O
within O
4 O
Å O
of O
the O
ligand O
. O
Most O
surprising O
in O
light O
of O
the O
saccharide B-evidence
- I-evidence
binding I-evidence
data I-evidence
, O
however O
, O
was O
a O
lack O
of O
extensive O
recognition O
of O
the O
XyG B-chemical
side O
chains O
; O
only O
Y84 B-residue_name_number
appeared O
to O
provide O
a O
hydrophobic B-site
interface I-site
for O
a O
xylosyl B-chemical
residue O
( O
Xyl1 B-residue_name_number
). O
Domains O
A B-structure_element
, O
B B-structure_element
, O
and O
C B-structure_element
display O
similar O
β B-structure_element
- I-structure_element
sandwich I-structure_element
folds I-structure_element
; O
domains O
B B-structure_element
( O
residues O
134 B-residue_range
to I-residue_range
230 I-residue_range
) O
and O
C B-structure_element
( O
residues O
231 B-residue_range
to I-residue_range
313 I-residue_range
) O
can O
be O
superimposed B-experimental_method
onto O
domain O
A B-structure_element
( O
residues O
34 B-residue_range
to I-residue_range
133 I-residue_range
) O
with O
RMSDs B-evidence
of O
1 O
. O
1 O
and O
1 O
. O
2 O
Å O
, O
respectively O
, O
for O
47 O
atom O
pairs O
( O
23 O
% O
and O
16 O
% O
sequence O
identity O
, O
respectively O
). O
While O
neither O
the O
full B-protein_state
- I-protein_state
length I-protein_state
protein O
nor O
domain O
D B-structure_element
displays O
structural O
homology O
to O
known O
XyG B-protein_type
- I-protein_type
binding I-protein_type
proteins I-protein_type
, O
the O
topology O
of O
SGBP B-protein
- I-protein
B I-protein
resembles O
the O
xylan B-protein_type
- I-protein_type
binding I-protein_type
protein I-protein_type
Bacova_04391 B-protein
( O
PDB O
3ORJ O
) O
encoded O
within O
a O
xylan B-chemical
- O
targeting O
PUL B-gene
of O
B B-species
. I-species
ovatus I-species
( O
Fig O
. O
5C O
). O
Six O
glucosyl B-chemical
residues O
, O
comprising O
the O
main O
chain O
, O
and O
three O
branching O
xylosyl B-chemical
residues O
of O
XyGO2 B-chemical
can O
be O
modeled O
in O
the O
density B-evidence
( O
Fig O
. O
5D O
; O
cf O
. O
Complementation B-experimental_method
of O
ΔSGBP B-mutant
- I-mutant
A I-mutant
with O
the O
SGBP B-mutant
- I-mutant
A I-mutant
* I-mutant
( O
W82A B-mutant
W283A B-mutant
W306A B-mutant
) O
variant O
, O
which O
does O
not B-protein_state
bind I-protein_state
XyG B-chemical
, O
supports O
growth O
on O
XyG B-chemical
and O
XyGOs B-chemical
( O
Fig O
. O
6 O
; O
ΔSGBP B-mutant
- I-mutant
A I-mutant
:: O
SGBP B-mutant
- I-mutant
A I-mutant
*), I-mutant
with O
growth O
rates O
that O
are O
~ O
70 O
% O
that O
of O
the O
WT B-protein_state
. O
However O
, O
combined B-experimental_method
deletion I-experimental_method
of I-experimental_method
the I-experimental_method
genes I-experimental_method
encoding I-experimental_method
GH9 B-protein
( O
encoded O
by O
Bacova_02649 B-gene
) O
and O
SGBP B-protein
- I-protein
B I-protein
does O
not O
exacerbate O
the O
growth O
defect O
on O
XyGO1 B-chemical
( O
Fig O
. O
6 O
; O
ΔSGBP B-mutant
- I-mutant
B I-mutant
/ O
ΔGH9 B-mutant
). O
However O
, O
unlike O
the O
Sus B-complex_assembly
, O
in O
which O
elimination B-experimental_method
of I-experimental_method
SusE B-protein
and O
SusF B-protein
does O
not O
affect O
growth O
on O
starch B-chemical
, O
SGBP B-protein
- I-protein
B I-protein
appears O
to O
have O
a O
dedicated O
role O
in O
growth O
on O
small O
xylogluco B-chemical
- I-chemical
oligosaccharides I-chemical
. O
Our O
observation O
here O
that O
the O
physical O
presence O
of O
the O
SusD B-protein
homolog O
SGBP B-protein
- I-protein
A I-protein
, O
independent O
of O
XyG B-chemical
- O
binding O
ability O
, O
is O
both O
necessary O
and O
sufficient O
for O
XyG B-chemical
utilization O
further O
supports O
a O
model O
of O
glycan B-chemical
import O
whereby O
the O
SusC B-protein_type
- I-protein_type
like I-protein_type
TBDTs I-protein_type
and O
the O
SusD B-protein_type
- I-protein_type
like I-protein_type
SGBPs I-protein_type
must O
be O
intimately O
associated O
to O
support O
glycan B-chemical
uptake O
( O
Fig O
. O
1C O
). O
Because O
the O
intestinal O
ecosystem O
is O
a O
dense O
consortium O
of O
bacteria B-taxonomy_domain
that O
must O
compete O
for O
their O
nutrients O
, O
these O
multimodular O
SGBPs B-protein_type
may O
reflect O
ongoing O
evolutionary O
experiments O
to O
enhance O
glycan B-chemical
uptake O
efficiency O
. O
In O
conclusion O
, O
the O
present O
study O
further O
illuminates O
the O
essential O
role O
that O
surface B-protein_type
- I-protein_type
glycan I-protein_type
binding I-protein_type
proteins I-protein_type
play O
in O
facilitating O
the O
catabolism O
of O
complex O
dietary O
carbohydrates B-chemical
by O
Bacteroidetes B-taxonomy_domain
. O
The O
PTAC B-protein_type
predominantly O
associated O
with O
metabolosomes B-complex_assembly
( O
PduL B-protein_type
) O
has O
no O
sequence O
homology O
to O
the O
PTAC B-protein_type
ubiquitous O
among O
fermentative B-taxonomy_domain
bacteria I-taxonomy_domain
( O
Pta B-protein_type
). O
Here O
, O
we O
report O
two O
high O
- O
resolution O
PduL B-protein_type
crystal B-evidence
structures I-evidence
with B-protein_state
bound I-protein_state
substrates I-protein_state
. O
Recently O
, O
a O
new O
type O
of O
phosphotransacylase B-protein_type
was O
described O
that O
shares O
no O
evolutionary O
relation O
to O
Pta B-protein_type
. O
Not O
only O
does O
PduL B-protein_type
facilitate O
substrate O
level O
phosphorylation O
, O
but O
it O
also O
is O
critical O
for O
cofactor O
recycling O
within O
, O
and O
product O
efflux O
from O
, O
the O
organelle O
. O
The O
reactions O
carried O
out O
in O
the O
majority O
of O
catabolic B-protein_state
BMCs B-complex_assembly
( O
also O
known O
as O
metabolosomes B-complex_assembly
) O
fit O
a O
generalized O
biochemical O
paradigm O
for O
the O
oxidation O
of O
aldehydes B-chemical
( O
Fig O
1 O
). O
Reaction O
1 O
: O
acetyl B-chemical
- I-chemical
S I-chemical
- I-chemical
CoA I-chemical
+ O
Pi B-chemical
←→ O
acetyl B-chemical
phosphate I-chemical
+ O
CoA B-chemical
- I-chemical
SH I-chemical
( O
PTAC B-protein_type
) O
The O
canonical O
PTAC B-protein_type
, O
Pta B-protein_type
, O
is O
an O
ancient O
enzyme O
found O
in O
some O
eukaryotes B-taxonomy_domain
and O
archaea B-taxonomy_domain
, O
and O
widespread O
among O
the O
bacteria B-taxonomy_domain
; O
90 O
% O
of O
the O
bacterial B-taxonomy_domain
genomes O
in O
the O
Integrated O
Microbial O
Genomes O
database O
contain O
a O
gene O
encoding O
the O
PTA_PTB B-protein_type
phosphotransacylase I-protein_type
( O
Pfam O
domain O
PF01515 B-structure_element
). O
This O
protein O
, O
PduL B-protein_type
( O
Pfam O
domain O
PF06130 B-structure_element
), O
was O
shown O
to O
catalyze O
the O
conversion O
of O
propionyl B-chemical
- I-chemical
CoA I-chemical
to O
propionyl B-chemical
- I-chemical
phosphate I-chemical
and O
is O
associated O
with O
a O
BMC B-complex_assembly
involved O
in O
propanediol O
utilization O
, O
the O
PDU B-complex_assembly
BMC I-complex_assembly
. O
In O
contrast O
, O
the O
structure B-evidence
of O
PduL B-protein_type
, O
the O
PTAC B-protein_type
found O
in O
the O
vast O
majority O
of O
catabolic B-protein_state
BMCs B-complex_assembly
, O
has O
not O
been O
determined O
. O
Here O
we O
report O
high O
- O
resolution O
crystal B-evidence
structures I-evidence
of O
a O
PduL B-protein_type
- I-protein_type
type I-protein_type
PTAC I-protein_type
in O
both O
CoA B-protein_state
- I-protein_state
and O
phosphate B-protein_state
- I-protein_state
bound I-protein_state
forms O
, O
completing O
our O
understanding O
of O
the O
structural O
basis O
of O
catalysis O
by O
the O
metabolosome B-complex_assembly
common O
core O
enzymes O
. O
Structure B-experimental_method
Determination I-experimental_method
of O
PduL B-protein_type
( O
a O
) O
Primary O
and O
secondary O
structure O
of O
rPduL B-protein
( O
tubes O
represent O
α B-structure_element
- I-structure_element
helices I-structure_element
, O
arrows O
β B-structure_element
- I-structure_element
sheets I-structure_element
and O
dashed O
line O
residues O
disordered O
in O
the O
structure B-evidence
. O
Coenzyme B-chemical
A I-chemical
is O
shown O
in O
magenta O
sticks O
and O
Zinc B-chemical
( O
grey O
) O
as O
spheres O
. O
There O
are O
two O
PduL B-protein_type
molecules O
in O
the O
asymmetric O
unit O
of O
the O
P212121 O
unit O
cell O
. O
Structurally O
, O
PduL B-protein_type
consists O
of O
two O
domains B-structure_element
( O
Fig O
2 O
, O
blue O
/ O
red O
), O
each O
a O
beta B-structure_element
- I-structure_element
barrel I-structure_element
that O
is O
capped O
on O
both O
ends O
by O
short O
α B-structure_element
- I-structure_element
helices I-structure_element
. O
Residues O
in O
this O
region O
( O
Gln42 B-residue_name_number
, O
Pro43 B-residue_name_number
, O
Gly44 B-residue_name_number
), O
covering O
the O
active B-site
site I-site
, O
are O
strongly B-protein_state
conserved I-protein_state
( O
Fig O
3 O
). O
The O
position O
numbers O
shown O
correspond O
to O
the O
residue O
numbering O
of O
rPduL B-protein
; O
note O
that O
some O
positions O
in O
the O
logo O
represent O
gaps O
in O
the O
rPduL B-protein
sequence O
. O
The O
folds O
of O
the O
two O
chains O
in O
the O
asymmetric O
unit O
are O
very O
similar O
, O
superimposing B-experimental_method
with O
a O
rmsd B-evidence
of O
0 O
. O
16 O
Å O
over O
2 O
, O
306 O
aligned O
atom O
pairs O
. O
( O
d O
)( O
f O
): O
Chromatograms B-evidence
of O
sPduL B-protein
( O
d O
), O
rPduL B-protein
( O
e O
), O
and O
pPduL B-protein
( O
f O
) O
post O
- O
preparative O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
with O
different O
size O
fractions O
separated O
, O
applied O
over O
an O
analytical O
size O
exclusion O
column O
( O
see O
Materials O
and O
Methods O
). O
The O
large O
differences O
between O
the O
anomalous O
signals O
confirm O
the O
presence O
of O
zinc B-chemical
at O
both O
metal O
sites O
( O
S3 O
Fig O
). O
Oligomeric O
States O
of O
PduL B-protein_type
Orthologs O
Are O
Influenced O
by O
the O
EP B-structure_element
It O
has O
been O
proposed O
that O
the O
catabolic B-protein_state
BMCs B-complex_assembly
may O
assemble O
in O
a O
core O
- O
first O
manner O
, O
with O
the O
luminal O
enzymes O
( O
signature O
enzyme O
, O
aldehyde B-protein_type
, I-protein_type
and I-protein_type
alcohol I-protein_type
dehydrogenases I-protein_type
and O
the O
BMC B-complex_assembly
PTAC B-protein_type
) O
forming O
an O
initial O
bolus O
, O
or O
prometabolosome O
, O
around O
which O
a O
shell B-structure_element
assembles O
. O
However O
, O
when O
the O
putative O
EP B-structure_element
( O
residues O
1 B-residue_range
I-residue_range
27 I-residue_range
) O
was O
removed B-experimental_method
( O
sPduL B-mutant
ΔEP I-mutant
), O
the O
truncated B-protein_state
protein O
was O
stable O
and O
eluted O
as O
a O
single O
peak O
( O
Fig O
5a O
) O
consistent O
with O
the O
size O
of O
a O
monomer B-oligomeric_state
( O
Fig O
5d O
, O
blue O
curve O
). O
rPduL B-protein
full B-protein_state
length I-protein_state
runs O
as O
Mw B-evidence
= O
140 O
. O
3 O
kDa O
+/O
1 O
. O
2 O
% O
and O
Mn B-evidence
= O
140 O
. O
5 O
kDa O
+/O
1 O
. O
2 O
%. O
Our O
structure B-evidence
reveals O
that O
the O
two O
assigned O
PF06130 B-structure_element
domains O
( O
Fig O
3 O
) O
do O
not O
form O
structurally O
discrete O
units O
; O
this O
reduces O
the O
apparent O
sequence O
conservation O
at O
the O
level O
of O
primary O
structure O
. O
The O
closest O
structural O
homolog O
of O
the O
PduL B-protein_type
barrel B-structure_element
domain I-structure_element
is O
a O
subdomain O
of O
a O
multienzyme O
complex O
, O
the O
alpha B-structure_element
subunit I-structure_element
of O
ethylbenzene B-protein_type
dehydrogenase I-protein_type
( O
S5b O
Fig O
, O
rmsd B-evidence
of O
2 O
. O
26 O
Å O
over O
226 O
aligned O
atoms O
consisting O
of O
one O
beta B-structure_element
barrel I-structure_element
and O
one O
capping B-structure_element
helix I-structure_element
). O
The O
PduL B-protein_type
signature O
primary O
structure O
, O
two O
PF06130 B-structure_element
domains O
, O
occurs O
in O
some O
multidomain O
proteins O
, O
most O
of O
them O
annotated O
as O
Acks B-protein_type
, O
suggesting O
that O
PduL B-protein_type
may O
also O
replace O
Pta B-protein_type
in O
variants O
of O
the O
phosphotransacetylase B-protein_type
- O
Ack B-protein_type
pathway O
. O
These O
PduL B-protein_type
homologs O
lack B-protein_state
EPs B-structure_element
, O
and O
their B-protein_type
fusion O
to O
Ack B-protein_type
may O
have O
evolved O
as O
a O
way O
to O
facilitate O
substrate O
channeling O
between O
the O
two O
enzymes O
. O
sPduL B-protein
has O
also O
previously O
been O
reported O
to O
localize O
to O
inclusion O
bodies O
when O
overexpressed B-experimental_method
; O
we O
show O
here O
that O
this O
is O
dependent O
on O
the O
presence O
of O
the O
EP B-structure_element
. O
Structured O
aggregation O
of O
the O
core O
enzymes O
has O
been O
proposed O
to O
be O
the O
initial O
step O
in O
metabolosome B-complex_assembly
assembly O
and O
is O
known O
to O
be O
the O
first O
step O
of O
β O
- O
carboxysome O
biogenesis O
, O
where O
the O
core O
enzyme O
Ribulose B-protein_type
Bisphosphate I-protein_type
Carboxylase I-protein_type
/ I-protein_type
Oxygenase I-protein_type
( O
RuBisCO B-protein_type
) O
is O
aggregated O
by O
the O
CcmM B-protein_type
protein O
. O
As O
expected O
, O
the O
amino O
acid O
sequence O
conservation O
is O
highest O
in O
the O
region O
around O
the O
proposed O
active B-site
site I-site
( O
Fig O
4d O
); O
highly B-protein_state
conserved I-protein_state
residues O
are O
also O
involved O
in O
CoA B-chemical
binding O
( O
Figs O
2a O
and O
3 O
, O
residues O
Ser45 B-residue_name_number
, O
Lys70 B-residue_name_number
, O
Arg97 B-residue_name_number
, O
Leu99 B-residue_name_number
, O
His204 B-residue_name_number
, O
Asn211 B-residue_name_number
). O
In O
contrast O
, O
in O
the O
rPduL B-protein
structure B-evidence
, O
there O
are O
no O
conserved O
aspartate B-residue_name
residues O
in O
or O
around O
the O
active B-site
site I-site
, O
and O
the O
only O
well B-protein_state
- I-protein_state
conserved I-protein_state
glutamate B-residue_name
residue O
in O
the O
active B-site
site I-site
is O
involved O
in O
coordinating O
one O
of O
the O
metal O
ions O
. O
These O
observations O
strongly O
suggest O
that O
an O
acidic B-protein_state
residue B-structure_element
is O
not O
directly O
involved O
in O
catalysis O
by O
PduL B-protein_type
. O
Instead O
, O
the O
dimetal B-site
active I-site
site I-site
of O
PduL B-protein_type
may O
create O
a O
nucleophile O
from O
one O
of O
the O
hydroxyl O
groups O
on O
free O
phosphate B-chemical
to O
attack O
the O
carbonyl O
carbon O
of O
the O
thioester O
bond O
of O
an O
acyl B-chemical
- I-chemical
CoA I-chemical
. O
In O
the O
reverse O
direction O
, O
the O
metal O
ion O
( O
s O
) O
could O
stabilize O
the O
thiolate O
anion O
that O
would O
attack O
the O
carbonyl O
carbon O
of O
an O
acyl B-chemical
- I-chemical
phosphate I-chemical
; O
a O
similar O
mechanism O
has O
been O
described O
for O
phosphatases B-protein_type
where O
hydroxyl O
groups O
or O
hydroxide O
ions O
can O
act O
as O
a O
base O
when O
coordinated O
by O
a O
dimetal B-site
active I-site
site I-site
. O
Our O
structures B-evidence
provide O
the O
foundation O
for O
studies O
to O
elucidate O
the O
details O
of O
the O
catalytic O
mechanism O
of O
PduL B-protein_type
. O
Conserved B-protein_state
residues O
in O
the O
active B-site
site I-site
that O
may O
contribute O
to O
substrate O
binding O
and O
/ O
or O
transition O
state O
stabilization O
include O
Ser127 B-residue_name_number
, O
Arg103 B-residue_name_number
, O
Arg194 B-residue_name_number
, O
Gln107 B-residue_name_number
, O
Gln74 B-residue_name_number
, O
and O
Gln B-residue_name_number
/ O
Glu77 B-residue_name_number
. O
The O
free O
CoA B-protein_state
- I-protein_state
bound I-protein_state
form O
is O
presumably O
poised O
for O
attack O
upon O
an O
acyl B-chemical
- I-chemical
phosphate I-chemical
, O
indicating O
that O
the O
enzyme O
initially O
binds O
CoA B-chemical
as O
opposed O
to O
acyl B-chemical
- I-chemical
phosphate I-chemical
. O
PduL B-protein_type
and O
Pta B-protein_type
are O
mechanistically O
and O
structurally O
distinct O
enzymes O
that O
catalyze O
the O
same O
reaction O
, O
a O
prime O
example O
of O
evolutionary O
convergence O
upon O
a O
function O
. O
However O
, O
apparently O
less O
frequent O
is O
functional O
convergence O
that O
is O
supported O
by O
distinctly O
different O
active B-site
sites I-site
and O
accordingly O
catalytic O
mechanism O
, O
as O
revealed O
by O
comparison O
of O
the O
structures O
of O
Pta B-protein_type
and O
PduL B-protein_type
. O
One O
well O
- O
studied O
example O
of O
this O
is O
the O
β B-protein_type
- I-protein_type
lactamase I-protein_type
family O
of O
enzymes O
, O
in O
which O
the O
active B-site
site I-site
of O
Class O
A O
and O
Class O
C O
enzymes O
involve O
serine O
- O
based O
catalysis O
, O
but O
Class O
B O
enzymes O
are O
metalloproteins B-protein_type
. O
This O
is O
not O
surprising O
, O
as O
β B-protein_type
- I-protein_type
lactamases I-protein_type
are O
not O
so O
widespread O
among O
bacteria B-taxonomy_domain
and O
therefore O
would O
be O
expected O
to O
have O
evolved O
independently O
several O
times O
as O
a O
defense O
mechanism O
against O
β O
- O
lactam O
antibiotics O
. O
Cysteine B-protein_type
peptidases I-protein_type
play O
crucial O
roles O
in O
the O
virulence O
of O
bacterial B-taxonomy_domain
and O
other O
eukaryotic B-taxonomy_domain
pathogens O
. O
Clostripain B-protein
has O
been O
described O
as O
an O
arginine B-protein_type
- I-protein_type
specific I-protein_type
peptidase I-protein_type
with O
a O
requirement O
for O
Ca2 B-chemical
+ I-chemical
and O
loss O
of O
an O
internal B-structure_element
nonapeptide I-structure_element
for O
full B-protein_state
activation I-protein_state
; O
lack O
of O
structural O
information O
on O
the O
family O
appears O
to O
have O
prohibited O
further O
investigation O
. O
The O
structure B-evidence
also O
includes O
two O
short O
β B-structure_element
- I-structure_element
hairpins I-structure_element
( O
βA B-structure_element
I-structure_element
βB I-structure_element
and O
βD B-structure_element
I-structure_element
βE I-structure_element
) O
and O
a O
small B-structure_element
β I-structure_element
- I-structure_element
sheet I-structure_element
( O
βC B-structure_element
I-structure_element
βF I-structure_element
), O
which O
is O
formed O
from O
two O
distinct O
regions O
of O
the O
sequence O
( O
βC B-structure_element
precedes O
α11 B-structure_element
, O
α12 B-structure_element
and O
β9 B-structure_element
, O
whereas O
βF B-structure_element
follows O
the O
βD B-structure_element
- I-structure_element
βE I-structure_element
hairpin B-structure_element
) O
in O
the O
middle O
of O
the O
CTD B-structure_element
( O
Fig O
. O
1B O
). O
Six O
of O
the O
central O
β B-structure_element
- I-structure_element
strands I-structure_element
in O
PmC11 B-protein
( O
β1 B-structure_element
I-structure_element
β2 I-structure_element
and O
β5 B-structure_element
I-structure_element
β8 I-structure_element
) O
share O
the O
same O
topology O
as O
the O
six B-structure_element
- I-structure_element
stranded I-structure_element
β I-structure_element
- I-structure_element
sheet I-structure_element
found O
in O
caspases B-protein_type
, O
with O
strands B-structure_element
β3 B-structure_element
, O
β4 B-structure_element
, O
and O
β9 B-structure_element
located O
on O
the O
outside O
of O
this O
core B-structure_element
structure I-structure_element
( O
Fig O
. O
1B O
, O
box O
). O
Summary O
of O
PDBeFOLD B-experimental_method
superposition I-experimental_method
of O
structures O
found O
to O
be O
most O
similar O
to O
PmC11 B-protein
in O
the O
PBD O
based O
on O
DaliLite B-experimental_method
B O
, O
size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
of O
PmC11 B-protein
. O
PmC11C179A O
( O
20 O
μg O
) O
was O
incubated O
overnight O
at O
37 O
° O
C O
with O
increasing O
amounts O
of O
processed O
PmC11 B-protein
and O
analyzed O
on O
a O
10 O
% O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
gel O
. O
Inactive O
PmC11C179A B-mutant
was O
not O
processed O
to O
a O
major O
extent O
by O
active B-protein_state
PmC11 B-protein
until O
around O
a O
ratio O
of O
1 O
: O
4 O
( O
5 O
μg O
of O
active B-protein_state
PmC11 B-protein
). O
Incubation B-experimental_method
of O
PmC11 B-protein
at O
37 O
° O
C O
for O
16 O
h O
, O
resulted O
in O
a O
fully B-protein_state
processed I-protein_state
enzyme O
that O
remained O
as O
an O
intact B-protein_state
monomer B-oligomeric_state
when O
applied O
to O
a O
size O
- O
exclusion O
column O
( O
Fig O
. O
2B O
). O
The O
single O
cleavage B-site
site I-site
of O
PmC11 B-protein
at O
Lys147 B-residue_name_number
is O
found O
immediately O
after O
α3 B-structure_element
, O
in O
loop B-structure_element
L5 B-structure_element
within O
the O
central O
β B-structure_element
- I-structure_element
sheet I-structure_element
( O
Figs O
. O
1 O
, O
A O
and O
B O
, O
and O
2A O
). O
The O
two O
ends O
of O
the O
cleavage B-site
site I-site
are O
remarkably O
well O
ordered O
in O
the O
crystal B-evidence
structure I-evidence
and O
displaced O
from O
one O
another O
by O
19 O
. O
5 O
O
( O
Fig O
. O
2A O
). O
Initial O
SDS B-experimental_method
- I-experimental_method
PAGE I-experimental_method
and O
Western B-experimental_method
blot I-experimental_method
analysis O
of O
both O
mutants O
revealed O
no O
discernible O
processing O
occurred O
as O
compared O
with O
active B-protein_state
PmC11 B-protein
( O
Fig O
. O
2C O
). O
C O
, O
divalent O
cations O
do O
not O
increase O
the O
activity O
of O
PmC11 B-protein
. O
Furthermore O
, O
Cu2 B-chemical
+, I-chemical
Fe2 B-chemical
+, I-chemical
and O
Zn2 B-chemical
+ I-chemical
appear O
to O
inhibit B-protein_state
PmC11 B-protein
. O
In O
addition O
, O
the O
predicted O
primary O
S1 B-site
- I-site
binding I-site
residue I-site
in O
PmC11 B-protein
Asp177 B-residue_name_number
also O
overlays B-experimental_method
with O
the O
residue O
predicted O
to O
be O
the O
P1 B-site
specificity I-site
determining I-site
residue I-site
in O
clostripain B-protein
( O
Asp229 B-residue_name_number
, O
Fig O
. O
1A O
). O
Surprisingly O
, O
Ca2 B-chemical
+ I-chemical
did O
not O
enhance O
PmC11 B-protein
activity O
and O
, O
furthermore O
, O
other O
divalent O
cations O
, O
Mg2 B-chemical
+, I-chemical
Mn2 B-chemical
+, I-chemical
Co2 B-chemical
+, I-chemical
Fe2 B-chemical
+, I-chemical
Zn2 B-chemical
+, I-chemical
and O
Cu2 B-chemical
+, I-chemical
were O
not O
necessary O
for O
PmC11 B-protein
activity O
( O
Fig O
. O
3D O
). O
In O
addition O
, O
the O
structure B-evidence
suggested O
a O
mechanism O
of O
self O
- O
inhibition O
in O
both O
PmC11 B-protein
and O
clostripain B-protein
and O
an O
activation O
mechanism O
that O
requires O
autoprocessing B-ptm
. O
All O
other O
clan B-protein_type
CD I-protein_type
members I-protein_type
requiring O
cleavage B-ptm
for O
full B-protein_state
activation I-protein_state
do O
so O
at O
sites B-site
external O
to O
their O
central O
sheets B-structure_element
. O
The O
PmC11 B-protein
structure B-evidence
should O
provide O
a O
good O
basis O
for O
structural B-experimental_method
modeling I-experimental_method
and O
, O
given O
the O
importance O
of O
other O
clan B-protein_type
CD I-protein_type
enzymes I-protein_type
, O
this O
work O
should O
also O
advance O
the O
exploration O
of O
these O
peptidases B-protein_type
and O
potentially O
identify O
new O
biologically O
important O
substrates O
. O
Here O
, O
we O
report O
the O
crystal B-evidence
structures I-evidence
of O
YfiB B-protein
alone B-protein_state
and O
of O
an O
active B-protein_state
mutant B-protein_state
YfiBL43P B-mutant
complexed B-protein_state
with I-protein_state
YfiR B-protein
with O
2 O
: O
2 O
stoichiometry O
. O
Bis B-chemical
-( I-chemical
3 I-chemical
- I-chemical
5 I-chemical
)- I-chemical
cyclic I-chemical
dimeric I-chemical
GMP I-chemical
( O
c B-chemical
- I-chemical
di I-chemical
- I-chemical
GMP I-chemical
) O
is O
a O
ubiquitous O
second O
messenger O
that O
bacteria B-taxonomy_domain
use O
to O
facilitate O
behavioral O
adaptations O
to O
their O
ever O
- O
changing O
environment O
. O
The O
YfiBNR B-complex_assembly
system O
contains O
three O
protein O
members O
and O
modulates O
intracellular O
c B-chemical
- I-chemical
di I-chemical
- I-chemical
GMP I-chemical
levels O
in O
response O
to O
signals O
received O
in O
the O
periplasm O
( O
Malone O
et O
al O
.,). O
It O
has O
been O
reported O
that O
the O
activation O
of O
YfiN B-protein
may O
be O
induced O
by O
redox O
- O
driven O
misfolding O
of O
YfiR B-protein
( O
Giardina O
et O
al O
.,; O
Malone O
et O
al O
.,; O
Malone O
et O
al O
.,). O
It O
is O
also O
proposed O
that O
the O
sequestration O
of O
YfiR B-protein
by O
YfiB B-protein
can O
be O
induced O
by O
certain O
YfiB B-protein
- O
mediated O
cell O
wall O
stress O
, O
and O
mutagenesis B-experimental_method
studies I-experimental_method
revealed O
a O
number O
of O
activation B-structure_element
residues I-structure_element
of O
YfiB B-protein
that O
were O
located O
in O
close O
proximity O
to O
the O
predicted B-protein_state
first B-structure_element
helix I-structure_element
of O
the O
periplasmic B-structure_element
domain I-structure_element
( O
Malone O
et O
al O
.,). O
In O
the O
present O
study O
, O
we O
solved O
the O
crystal B-evidence
structures I-evidence
of O
an O
N O
- O
terminal O
truncated B-protein_state
form O
of O
YfiB B-protein
( O
34 B-residue_range
I-residue_range
168 I-residue_range
) O
and O
YfiR B-protein
in B-protein_state
complex I-protein_state
with I-protein_state
an O
active B-protein_state
mutant B-protein_state
YfiBL43P B-mutant
. O
Compared O
with O
the O
reported O
complex O
structure O
, O
YfiBL43P B-mutant
in O
our O
YfiB B-complex_assembly
- I-complex_assembly
YfiR I-complex_assembly
complex O
structure B-evidence
has O
additional O
visible O
N O
- O
terminal O
residues O
44 B-residue_range
I-residue_range
58 I-residue_range
that O
are O
shown O
to O
play O
essential O
roles O
in O
YfiB B-protein
activation O
and O
biofilm O
formation O
. O
In O
addition O
, O
we O
found O
that O
the O
YfiBL43P B-mutant
shows O
a O
much O
higher O
PG B-evidence
- I-evidence
binding I-evidence
affinity I-evidence
than O
wild B-protein_state
- I-protein_state
type I-protein_state
YfiB B-protein
, O
most O
likely O
due O
to O
its O
more O
compact O
PG B-site
- I-site
binding I-site
pocket I-site
. O
Overall O
structure B-evidence
of O
YfiB B-protein
The O
residues O
proposed O
to O
contribute O
to O
YfiB B-protein
activation O
are O
illustrated O
in O
sticks O
. O
As O
expected O
, O
both O
mutants O
form O
a O
stable B-protein_state
complex B-protein_state
with I-protein_state
YfiR B-protein
. O
Finally O
, O
we O
crystalized B-experimental_method
YfiR B-protein
in B-protein_state
complex I-protein_state
with I-protein_state
the O
YfiBL43P B-mutant
mutant B-protein_state
and O
solved O
the O
structure B-evidence
at O
1 O
. O
78 O
Å O
resolution O
by O
molecular B-experimental_method
replacement I-experimental_method
using O
YfiR B-protein
and O
YfiB B-protein
as O
models O
. O
The O
YfiB B-site
- I-site
YfiR I-site
interface I-site
can O
be O
divided O
into O
two O
regions O
( O
Fig O
. O
3A O
and O
3D O
). O
( O
C O
) O
Close O
- O
up O
view O
showing O
the O
key O
residues O
of O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
interacting O
with O
a O
sulfate B-chemical
ion O
. O
Apo B-protein_state
YfiB B-protein
is O
shown O
in O
yellow O
and O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
in O
cyan O
. O
( O
E O
and O
F O
) O
MST B-experimental_method
data O
and O
analysis O
for O
binding B-evidence
affinities I-evidence
of O
( O
E O
) O
YfiB B-protein
wild B-protein_state
- I-protein_state
type I-protein_state
and O
( O
F O
) O
YfiBL43P B-mutant
with O
PG B-chemical
. O
( O
G O
) O
The O
sequence B-experimental_method
alignment I-experimental_method
of O
P B-species
. I-species
aeruginosa I-species
and O
E B-species
. I-species
coli I-species
sources O
of O
YfiB B-protein
, O
Pal B-protein_type
and O
the O
periplasmic B-structure_element
domain I-structure_element
of O
OmpA B-protein_type
In O
parallel O
, O
to O
better O
understand O
the O
putative O
functional O
role O
of O
VB6 B-chemical
and O
L B-chemical
- I-chemical
Trp I-chemical
, O
yfiB B-gene
was O
deleted B-experimental_method
in O
a O
PAO1 B-species
wild B-protein_state
- I-protein_state
type I-protein_state
strain O
, O
and O
a O
construct B-experimental_method
expressing I-experimental_method
the O
YfiBL43P B-mutant
mutant B-protein_state
was O
transformed B-experimental_method
into I-experimental_method
the O
PAO1 B-species
ΔyfiB B-mutant
strain O
to O
trigger O
YfiBL43P B-mutant
- O
induced O
biofilm O
formation O
. O
To O
answer O
the O
question O
whether O
competition O
of O
VB6 B-chemical
or O
L B-chemical
- I-chemical
Trp I-chemical
for O
the O
YfiB B-protein
F57 B-site
- I-site
binding I-site
pocket I-site
of O
YfiR B-protein
plays O
an O
essential O
role O
in O
inhibiting O
biofilm O
formation O
, O
we O
measured O
the O
binding B-evidence
affinities I-evidence
of O
VB6 B-chemical
and O
L B-chemical
- I-chemical
Trp I-chemical
for O
YfiR B-protein
via O
BIAcore B-experimental_method
experiments O
. O
In O
addition O
to O
the O
preceding B-residue_range
8 I-residue_range
aa I-residue_range
loop B-structure_element
( O
from O
the O
lipid O
acceptor O
Cys26 B-residue_range
to I-residue_range
Gly34 I-residue_range
), O
the O
full B-protein_state
length I-protein_state
of O
the O
periplasmic O
portion O
of O
apo B-protein_state
YfiB B-protein
can O
reach O
approximately O
60 O
Å O
. O
It O
was O
reported O
that O
the O
distance O
between O
the O
outer O
membrane O
and O
the O
cell O
wall O
is O
approximately O
50 O
Å O
and O
that O
the O
thickness O
of O
the O
PG O
layer O
is O
approximately O
70 O
Å O
( O
Matias O
et O
al O
.,). O
By O
contrast O
, O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
( O
residues O
44 B-residue_range
I-residue_range
168 I-residue_range
) O
has O
a O
stretched B-protein_state
conformation I-protein_state
of O
approximately O
55 O
Å O
in O
length O
. O
Regulatory O
model O
of O
the O
YfiBNR B-complex_assembly
tripartite B-protein_state
system O
. O
The O
lipid O
acceptor O
Cys26 B-residue_name_number
is O
indicated O
as O
blue O
ball O
. O
The O
loop B-structure_element
connecting O
Cys26 B-residue_name_number
and O
Gly34 B-residue_name_number
of O
YfiB B-protein
is O
modeled O
. O
Once O
activated B-protein_state
by O
certain O
cell O
stress O
, O
the O
dimeric B-oligomeric_state
YfiB B-protein
transforms O
from O
a O
compact B-protein_state
conformation I-protein_state
to O
a O
stretched B-protein_state
conformation I-protein_state
, O
allowing O
the O
periplasmic B-structure_element
domain I-structure_element
of O
the O
membrane B-protein_state
- I-protein_state
anchored I-protein_state
YfiB B-protein
to O
penetrate O
the O
cell O
wall O
and O
sequester O
the O
YfiR B-protein
dimer B-oligomeric_state
, O
thus O
relieving O
the O
repression O
of O
YfiN B-protein
These O
results O
, O
together O
with O
our O
observation O
that O
activated B-protein_state
YfiB B-protein
has O
a O
much O
higher O
cell B-evidence
wall I-evidence
binding I-evidence
affinity I-evidence
, O
and O
previous O
mutagenesis O
data O
showing O
that O
( O
1 O
) O
both O
PG B-chemical
binding O
and O
membrane O
anchoring O
are O
required O
for O
YfiB B-protein
activity O
and O
( O
2 O
) O
activating O
mutations O
possessing O
an O
altered O
N O
- O
terminal O
loop B-structure_element
length O
are O
dominant O
over O
the O
loss O
of O
PG B-chemical
binding O
( O
Malone O
et O
al O
.,), O
suggest O
an O
updated O
regulatory O
model O
of O
the O
YfiBNR B-complex_assembly
system O
( O
Fig O
. O
7 O
). O
In O
this O
model O
, O
in O
response O
to O
a O
particular O
cell O
stress O
that O
is O
yet O
to O
be O
identified O
, O
the O
dimeric B-oligomeric_state
YfiB B-protein
is O
activated B-protein_state
from O
a O
compact B-protein_state
, O
inactive B-protein_state
conformation B-protein_state
to O
a O
stretched B-protein_state
conformation I-protein_state
, O
which O
possesses O
increased O
PG B-chemical
binding O
affinity O
. O
A O
regulatory B-structure_element
loop I-structure_element
, O
which O
is O
phosphorylated B-protein_state
at O
the O
key O
functional O
phosphorylation B-site
site I-site
of O
fungal B-taxonomy_domain
ACC B-protein_type
, O
wedges O
into O
a O
crevice O
between O
two O
domains O
of O
CD B-structure_element
. O
In O
contrast O
to O
related O
carboxylases B-protein_type
, O
large O
- O
scale O
conformational O
changes O
are O
required O
for O
substrate O
turnover O
, O
and O
are O
mediated O
by O
the O
CD B-structure_element
under O
phosphorylation B-ptm
control O
. O
By O
catalysing O
this O
rate O
- O
limiting O
step O
in O
fatty O
- O
acid O
biosynthesis O
, O
ACC B-protein_type
plays O
a O
key O
role O
in O
anabolic O
metabolism O
. O
The O
principal O
functional O
protein O
components O
of O
ACCs B-protein_type
have O
been O
described O
already O
in O
the O
late O
1960s O
for O
Escherichia B-species
coli I-species
( O
E B-species
. I-species
coli I-species
) O
ACC B-protein_type
: O
Biotin B-protein_type
carboxylase I-protein_type
( O
BC B-protein_type
) O
catalyses O
the O
ATP B-chemical
- O
dependent O
carboxylation O
of O
a O
biotin B-chemical
moiety O
, O
which O
is O
covalently O
linked O
to O
the O
biotin B-protein_type
carboxyl I-protein_type
carrier I-protein_type
protein I-protein_type
( O
BCCP B-protein_type
). O
Human B-species
ACC B-protein_type
occurs O
in O
two O
closely O
related O
isoforms B-protein_state
, O
ACC1 B-protein
and O
2 B-protein
, O
located O
in O
the O
cytosol O
and O
at O
the O
outer O
mitochondrial O
membrane O
, O
respectively O
. O
However O
, O
crystal B-evidence
structures I-evidence
of O
individual O
components O
or O
domains O
from O
prokaryotic B-taxonomy_domain
and O
eukaryotic B-taxonomy_domain
ACCs B-protein_type
, O
respectively O
, O
have O
been O
solved O
. O
AMPK B-protein
phosphorylates O
ACC1 B-protein
in O
vitro O
at O
Ser80 B-residue_name_number
, O
Ser1201 B-residue_name_number
and O
Ser1216 B-residue_name_number
and O
PKA B-protein
at O
Ser78 B-residue_name_number
and O
Ser1201 B-residue_name_number
. O
Despite O
the O
outstanding O
relevance O
of O
ACC B-protein_type
in O
primary O
metabolism O
and O
disease O
, O
the O
dynamic O
organization O
and O
regulation O
of O
the O
giant O
eukaryotic B-taxonomy_domain
, O
and O
in O
particular O
fungal B-taxonomy_domain
ACC B-protein_type
, O
remain O
poorly O
characterized O
. O
First O
, O
we O
focused O
on O
structure B-experimental_method
determination I-experimental_method
of O
the O
82 O
- O
kDa O
CD B-structure_element
. O
The O
overall O
extent O
of O
the O
SceCD B-species
is O
70 O
by O
75 O
Å O
( O
Fig O
. O
1b O
and O
Supplementary O
Fig O
. O
1a O
, O
b O
), O
and O
the O
attachment O
points O
of O
the O
N O
- O
terminal O
26 B-structure_element
- I-structure_element
residue I-structure_element
linker I-structure_element
to O
the O
BCCP B-structure_element
domain O
and O
the O
C O
- O
terminal O
CT B-structure_element
domain O
are O
separated O
by O
46 O
Å O
( O
the O
N O
- O
and O
C O
termini O
are O
indicated O
with O
spheres O
in O
Fig O
. O
1b O
). O
On O
the O
basis O
of O
a O
root B-evidence
mean I-evidence
square I-evidence
deviation I-evidence
of O
main O
chain O
atom O
positions O
of O
2 O
. O
2 O
Å O
, O
CDC1 B-structure_element
/ O
CDC2 B-structure_element
are O
structurally O
more O
closely O
related O
to O
each O
other O
than O
to O
any O
other O
protein O
( O
Fig O
. O
1c O
); O
they O
may O
thus O
have O
evolved O
by O
duplication O
. O
Additional O
phosphorylation B-ptm
was O
detected O
for O
Ser2101 B-residue_name_number
and O
Tyr2179 B-residue_name_number
; O
however O
, O
these O
sites O
are O
neither B-protein_state
conserved I-protein_state
across O
fungal B-taxonomy_domain
ACC B-protein_type
nor B-protein_state
natively I-protein_state
phosphorylated I-protein_state
in O
yeast B-taxonomy_domain
. O
MS B-experimental_method
analysis O
of O
dissolved B-experimental_method
crystals I-experimental_method
confirmed O
the O
phosphorylated B-protein_state
state O
of O
Ser1157 B-residue_name_number
also O
in O
SceCD B-species
crystals B-evidence
. O
Owing O
to O
the O
limited O
resolution O
the O
discussion O
of O
structures B-evidence
of O
CthCD B-mutant
- I-mutant
CT I-mutant
and O
CthΔBCCP B-mutant
is O
restricted O
to O
the O
analysis O
of O
domain O
localization O
. O
In O
all O
these O
crystal B-evidence
structures I-evidence
, O
the O
CT B-structure_element
domains O
build O
a O
canonical O
head B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
tail I-protein_state
dimer B-oligomeric_state
, O
with O
active B-site
sites I-site
formed O
by O
contributions O
from O
both O
protomers B-oligomeric_state
( O
Fig O
. O
2 O
and O
Supplementary O
Fig O
. O
3a O
). O
The O
connecting B-structure_element
region I-structure_element
is O
remarkably O
similar O
in O
isolated B-protein_state
CD B-structure_element
and O
CthCD B-mutant
- I-mutant
CTCter I-mutant
structures B-evidence
, O
indicating O
inherent O
conformational O
stability O
. O
The O
CDN B-structure_element
domain O
positioning O
relative O
to O
CDL B-structure_element
/ O
CDC1 B-structure_element
is O
highly O
variable O
with O
three O
main O
orientations O
observed O
in O
the O
structures B-evidence
of O
SceCD B-species
and O
the O
larger B-mutant
CthACC I-mutant
fragments I-mutant
: O
CDN B-structure_element
tilts O
, O
resulting O
in O
a O
displacement O
of O
its O
N O
terminus O
by O
23 O
Å O
( O
Fig O
. O
4a O
, O
observed O
in O
both O
protomers B-oligomeric_state
of O
CthCD B-mutant
- I-mutant
CT I-mutant
and O
one O
protomer B-oligomeric_state
of O
CthΔBCCP B-mutant
, O
denoted O
as O
CthCD B-mutant
- I-mutant
CT1 I-mutant
/ I-mutant
2 I-mutant
and O
CthΔBCCP1 B-mutant
, O
respectively O
). O
Most O
recently O
, O
a O
crystal B-evidence
structure I-evidence
of O
near B-protein_state
full I-protein_state
- I-protein_state
length I-protein_state
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
ACC B-protein_type
from O
S B-species
. I-species
cerevisae I-species
( O
lacking B-protein_state
only I-protein_state
21 B-residue_range
N O
- O
terminal O
amino O
acids O
, O
here O
denoted O
as O
flACC B-mutant
) O
was O
published O
by O
Wei O
and O
Tong O
. O
In O
flACC B-mutant
, O
the O
ACC B-protein_type
dimer B-oligomeric_state
obeys O
twofold O
symmetry O
and O
assembles O
in O
a O
triangular B-protein_state
architecture I-protein_state
with O
dimeric B-oligomeric_state
BC B-structure_element
domains O
( O
Supplementary O
Fig O
. O
5a O
). O
Comparison B-experimental_method
of O
flACC B-mutant
with O
our O
CthΔBCCP B-mutant
structure B-evidence
reveals O
the O
CDC2 B-structure_element
/ I-structure_element
CT I-structure_element
hinge I-structure_element
as O
a O
major O
contributor O
to O
conformational O
flexibility O
( O
Supplementary O
Fig O
. O
5b O
, O
c O
). O
In O
flACC B-mutant
, O
the O
regulatory B-structure_element
loop I-structure_element
is O
mostly B-protein_state
disordered I-protein_state
, O
illustrating O
the O
increased O
flexibility O
due O
to O
the O
absence O
of O
the O
phosphoryl B-chemical
group O
. O
Applying B-experimental_method
the O
conformation O
of O
the O
CDC1 B-structure_element
/ I-structure_element
CDC2 I-structure_element
hinge I-structure_element
observed O
in O
SceCD B-species
on O
flACC B-mutant
leads O
to O
CDN B-structure_element
sterically O
clashing O
with O
CDC2 B-structure_element
and O
BT B-structure_element
/ O
CDN B-structure_element
clashing O
with O
CT B-structure_element
( O
Supplementary O
Fig O
. O
6a O
, O
b O
). O
In O
addition O
, O
EM B-experimental_method
micrographs B-evidence
of O
phosphorylated B-protein_state
and O
dephosphorylated B-protein_state
SceACC B-protein
display O
for O
both O
samples O
mainly O
elongated B-protein_state
and I-protein_state
U I-protein_state
- I-protein_state
shaped I-protein_state
conformations I-protein_state
and O
reveal O
no O
apparent O
differences O
in O
particle B-evidence
shape I-evidence
distributions I-evidence
( O
Supplementary O
Fig O
. O
7 O
). O
It O
disfavours O
the O
adoption O
of O
a O
rare B-protein_state
, I-protein_state
compact I-protein_state
conformation I-protein_state
, O
in O
which O
intramolecular O
dimerization O
of O
the O
BC B-structure_element
domains O
results O
in O
catalytic O
turnover O
. O
Cartoon O
representation O
of O
crystal B-evidence
structures I-evidence
of O
multidomain B-mutant
constructs I-mutant
of O
CthACC B-protein
. O
( O
a O
) O
Hinge B-structure_element
properties O
of O
the O
CDC2 B-structure_element
I-structure_element
CT I-structure_element
connection I-structure_element
analysed O
by O
a O
CT B-experimental_method
- I-experimental_method
based I-experimental_method
superposition I-experimental_method
of O
eight O
instances O
of O
the O
CDC2 B-mutant
- I-mutant
CT I-mutant
segment I-mutant
. O
The O
range O
of O
hinge O
bending O
is O
indicated O
and O
the O
connection O
points O
between O
CDC2 B-structure_element
and O
CT B-structure_element
( O
blue O
) O
as O
well O
as O
between O
CDC1 B-structure_element
and O
CDC2 B-structure_element
( O
green O
and O
grey O
) O
are O
marked O
as O
spheres O
. O
The O
conformational O
dynamics O
of O
fungal B-taxonomy_domain
ACC B-protein_type
. O
Comparison B-experimental_method
with O
each O
other O
and O
with O
available O
structures B-evidence
uncovers O
differences O
between O
LdcI B-protein
and O
LdcC B-protein
explaining O
why O
only O
the O
acid B-protein_type
stress I-protein_type
response I-protein_type
enzyme I-protein_type
is O
capable O
of O
binding O
RavA B-protein
. O
We O
identify O
interdomain O
movements O
associated O
with O
the O
pH B-protein_state
- I-protein_state
dependent I-protein_state
enzyme O
activation O
and O
with O
the O
RavA B-protein
binding O
. O
Enterobacterial B-taxonomy_domain
inducible B-protein_state
decarboxylases B-protein_type
of O
basic B-protein_state
amino B-chemical
acids I-chemical
lysine B-residue_name
, O
arginine B-residue_name
and O
ornithine B-residue_name
have O
a O
common O
evolutionary O
origin O
and O
belong O
to O
the O
α B-protein_type
- I-protein_type
family I-protein_type
of O
pyridoxal B-chemical
- I-chemical
5 I-chemical
- I-chemical
phosphate I-chemical
( O
PLP B-chemical
)- O
dependent O
enzymes O
. O
Each O
decarboxylase B-protein_type
is O
induced O
by O
an O
excess O
of O
the O
target O
amino B-chemical
acid I-chemical
and O
a O
specific O
range O
of O
extracellular O
pH O
, O
and O
works O
in O
conjunction O
with O
a O
cognate O
inner B-protein_type
membrane I-protein_type
antiporter I-protein_type
. O
In O
particular O
, O
the O
inducible B-protein_state
lysine B-protein_type
decarboxylase I-protein_type
LdcI B-protein
( O
or O
CadA B-protein
) O
attracts O
attention O
due O
to O
its O
broad B-protein_state
pH I-protein_state
range I-protein_state
of O
activity O
and O
its O
capacity O
to O
promote O
survival O
and O
growth O
of O
pathogenic O
enterobacteria B-taxonomy_domain
such O
as O
Salmonella B-species
enterica I-species
serovar I-species
Typhimurium I-species
, O
Vibrio B-species
cholerae I-species
and O
Vibrio B-species
vulnificus I-species
under O
acidic O
conditions O
. O
This O
effect O
is O
attributed O
to O
cadaverine B-chemical
, O
the O
diamine O
produced O
by O
decarboxylation O
of O
lysine B-residue_name
by O
LdcI B-protein
and O
LdcC B-protein
, O
that O
was O
shown O
to O
enhance O
UPEC B-species
colonisation O
of O
the O
bladder O
. O
The O
crystal B-evidence
structure I-evidence
of O
the O
E B-species
. I-species
coli I-species
LdcI B-protein
as O
well O
as O
its O
low O
resolution O
characterisation O
by O
electron B-experimental_method
microscopy I-experimental_method
( O
EM B-experimental_method
) O
showed O
that O
it O
is O
a O
decamer B-oligomeric_state
made O
of O
two O
pentameric B-oligomeric_state
rings B-structure_element
. O
Each O
monomer B-oligomeric_state
is O
composed O
of O
three O
domains O
O
an O
N O
- O
terminal O
wing B-structure_element
domain I-structure_element
( O
residues O
1 B-residue_range
I-residue_range
129 I-residue_range
), O
a O
PLP B-structure_element
- I-structure_element
binding I-structure_element
core I-structure_element
domain I-structure_element
( O
residues O
130 B-residue_range
I-residue_range
563 I-residue_range
), O
and O
a O
C B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
( O
CTD B-structure_element
, O
residues O
564 B-residue_range
I-residue_range
715 I-residue_range
). O
This O
comparison O
pinpointed O
differences O
between O
the O
biodegradative B-protein_state
and O
the O
biosynthetic B-protein_state
lysine B-protein_type
decarboxylases I-protein_type
and O
brought O
to O
light O
interdomain O
movements O
associated O
to O
pH B-protein_state
- I-protein_state
dependent I-protein_state
enzyme O
activation O
and O
RavA B-protein
binding O
, O
notably O
at O
the O
predicted O
RavA B-site
binding I-site
site I-site
at O
the O
level O
of O
the O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheet I-structure_element
of O
LdcI B-protein
. O
Consequently O
, O
we O
tested O
the O
capacity O
of O
cage O
formation O
by O
LdcI B-mutant
- I-mutant
LdcC I-mutant
chimeras I-mutant
where O
we O
interchanged B-experimental_method
the O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheets I-structure_element
in O
question O
. O
Based O
on O
these O
reconstructions B-evidence
, O
reliable O
pseudoatomic B-evidence
models I-evidence
of O
the O
three O
assemblies O
were O
obtained O
by O
flexible B-experimental_method
fitting I-experimental_method
of I-experimental_method
either O
the O
crystal B-evidence
structure I-evidence
of O
LdcIi B-protein
or O
a O
derived O
structural B-experimental_method
homology I-experimental_method
model I-experimental_method
of O
LdcC B-protein
( O
Table O
S1 O
). O
As O
a O
first O
step O
of O
a O
comparative O
analysis O
, O
we O
superimposed B-experimental_method
the O
three O
cryoEM B-experimental_method
reconstructions B-evidence
( O
LdcIa B-protein
, O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
and O
LdcC B-protein
) O
and O
the O
crystal B-evidence
structure I-evidence
of O
the O
LdcIi B-protein
decamer B-oligomeric_state
( O
Fig O
. O
2 O
and O
Movie O
S1 O
). O
This O
superposition B-experimental_method
reveals O
that O
the O
densities B-evidence
lining O
the O
central B-structure_element
hole I-structure_element
of O
the O
toroid B-structure_element
are O
roughly O
at O
the O
same O
location O
, O
while O
the O
rest O
of O
the O
structure B-evidence
exhibits O
noticeable O
changes O
. O
In O
addition O
, O
our O
earlier O
biochemical B-experimental_method
observation I-experimental_method
that O
the O
enzymatic O
activity O
of O
LdcIa B-protein
is O
unaffected O
by O
RavA B-protein
binding O
is O
consistent O
with O
the O
relatively O
small O
changes O
undergone O
by O
the O
active B-site
site I-site
upon O
transition O
from O
LdcIa B-protein
to O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
. O
Rearrangements O
of O
the O
ppGpp B-site
binding I-site
pocket I-site
upon O
pH B-protein_state
- I-protein_state
dependent I-protein_state
enzyme O
activation O
and O
LARA B-structure_element
binding O
Indeed O
, O
all O
CTDs B-structure_element
have O
very O
similar O
structures O
( O
RMSDmin B-evidence
< O
1 O
Å O
). O
In O
our O
previous O
contribution O
, O
based O
on O
the O
fit O
of O
the O
LdcIi B-protein
and O
the O
LARA B-structure_element
crystal B-evidence
structures I-evidence
into O
the O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
cryoEM B-experimental_method
density B-evidence
, O
we O
predicted O
that O
the O
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
interaction O
should O
involve O
the O
C O
- O
terminal O
two B-structure_element
- I-structure_element
stranded I-structure_element
β I-structure_element
- I-structure_element
sheet I-structure_element
of O
the O
LdcI B-protein
. O
Our O
present O
cryoEM B-experimental_method
maps B-evidence
and O
pseudoatomic B-evidence
models I-evidence
provide O
first O
structure O
- O
based O
insights O
into O
the O
differences O
between O
the O
inducible B-protein_state
and O
the O
constitutive B-protein_state
lysine B-protein_type
decarboxylases I-protein_type
. O
Our O
current O
analysis O
shows O
that O
Y697 B-residue_name_number
is O
strictly B-protein_state
conserved I-protein_state
in O
the O
O
LdcI B-protein_type
- I-protein_type
like I-protein_type
O
group O
whereas O
the O
O
LdcC B-protein_type
- I-protein_type
like I-protein_type
O
enzymes O
always B-protein_state
have I-protein_state
a O
lysine B-residue_name
in O
this O
position O
; O
it O
also O
uncovers O
several O
other O
residues O
potentially O
essential O
for O
the O
interaction O
with O
RavA B-protein
which O
can O
now O
be O
addressed O
by O
site B-experimental_method
- I-experimental_method
directed I-experimental_method
mutagenesis I-experimental_method
. O
The O
conformational O
rearrangements O
of O
LdcI B-protein
upon O
enzyme O
activation O
and O
RavA B-protein
binding O
revealed O
in O
this O
work O
, O
and O
our O
amazing O
finding O
that O
the O
molecular O
determinant O
of O
the O
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
interaction O
is O
the O
one O
that O
straightforwardly O
determines O
if O
a O
particular O
enterobacterial B-taxonomy_domain
lysine B-protein_type
decarboxylase I-protein_type
belongs O
to O
O
LdcI B-protein_type
- I-protein_type
like I-protein_type
O
or O
O
LdcC B-protein_type
- I-protein_type
like I-protein_type
O
proteins O
, O
should O
give O
a O
new O
impetus O
to O
functional O
studies O
of O
the O
unique O
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
cage O
. O
3D O
cryoEM B-experimental_method
reconstructions B-evidence
of O
LdcC B-protein
, O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
and O
LdcIa B-protein
. O
Only O
one O
of O
the O
two O
rings B-structure_element
of O
the O
double B-structure_element
toroid I-structure_element
is O
shown O
for O
clarity O
. O
The O
PLP B-chemical
moieties O
of O
the O
cartoon O
ring B-structure_element
are O
shown O
in O
red O
. O
Stretching O
of O
the O
LdcI B-protein
monomer B-oligomeric_state
upon O
pH B-protein_state
- I-protein_state
dependent I-protein_state
enzyme O
activation O
and O
LARA B-structure_element
binding O
. O
( O
D O
O
F O
) O
Inserts O
zooming O
at O
the O
CTD B-structure_element
part O
in O
proximity O
of O
the O
LARA B-site
binding I-site
site I-site
. O
( O
A O
) O
Maximum B-evidence
likelihood I-evidence
tree I-evidence
with O
the O
O
LdcC B-protein_type
- I-protein_type
like I-protein_type
O
and O
the O
O
LdcI B-protein_type
- I-protein_type
like I-protein_type
O
groups O
highlighted O
in O
green O
and O
pink O
, O
respectively O
. O
Numbering O
as O
in O
E B-species
. I-species
coli I-species
. O
( O
C O
) O
Signature O
sequences O
of O
LdcI B-protein
and O
LdcC B-protein
in O
the O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheet I-structure_element
. O
Polarity O
differences O
are O
highlighted O
. O
( O
D O
) O
Position O
and O
nature O
of O
these O
differences O
at O
the O
surface O
of O
the O
respective O
cryoEM B-experimental_method
maps B-evidence
with O
the O
color O
code O
as O
in O
B O
. O
See O
also O
Fig O
. O
S7 O
and O
Tables O
S3 O
and O
S4 O
. O
The O
crystal B-evidence
structure I-evidence
of O
phosphorylation B-protein_state
- I-protein_state
mimicking I-protein_state
Mep2 B-mutant
variants I-mutant
from O
C B-species
. I-species
albicans I-species
show O
large O
conformational O
changes O
in O
a O
conserved B-protein_state
and O
functionally O
important O
region O
of O
the O
CTR B-structure_element
. O
One O
of O
the O
most O
important O
unresolved O
questions O
in O
the O
field O
is O
how O
the O
transceptors B-protein_type
couple O
to O
downstream O
signalling O
pathways O
. O
One O
hypothesis O
is O
that O
downstream O
signalling O
is O
dependent O
on O
a O
specific O
conformation O
of O
the O
transporter B-protein_type
. O
Mep2 B-protein_type
( B-protein_type
methylammonium I-protein_type
( I-protein_type
MA I-protein_type
) I-protein_type
permease I-protein_type
) I-protein_type
proteins I-protein_type
are O
ammonium B-protein_type
transceptors I-protein_type
that O
are O
ubiquitous O
in O
fungi B-taxonomy_domain
. O
By O
contrast O
, O
several O
bacterial B-taxonomy_domain
Amt B-protein_type
orthologues O
have O
been O
characterized O
in O
detail O
via O
high O
- O
resolution O
crystal B-evidence
structures I-evidence
and O
a O
number O
of O
molecular B-experimental_method
dynamics I-experimental_method
( O
MD B-experimental_method
) O
studies O
. O
The O
structures B-evidence
are O
similar O
to O
each O
other O
but O
show O
considerable O
differences O
to O
all O
other O
ammonium B-protein_type
transporter I-protein_type
structures B-evidence
. O
The O
putative O
phosphorylation B-site
site I-site
is O
solvent B-protein_state
accessible I-protein_state
and O
located O
in O
a O
negatively B-site
charged I-site
pocket I-site
O
30 O
Å O
away O
from O
the O
channel B-site
exit I-site
. O
In O
the O
remainder O
of O
the O
manuscript O
, O
we O
will O
specifically O
discuss O
CaMep2 B-protein
due O
to O
the O
superior O
resolution O
of O
the O
structure B-evidence
. O
Moreover O
, O
the O
N O
terminus O
of O
one O
monomer B-oligomeric_state
interacts O
with O
the O
extended O
extracellular B-structure_element
loop I-structure_element
ECL5 B-structure_element
of O
a O
neighbouring O
monomer B-oligomeric_state
. O
Together O
with O
additional O
, O
smaller O
differences O
in O
other O
extracellular B-structure_element
loops I-structure_element
, O
these O
changes O
generate O
a O
distinct O
vestibule B-structure_element
leading O
to O
the O
ammonium B-site
binding I-site
site I-site
that O
is O
much O
more O
pronounced O
than O
in O
the O
bacterial B-taxonomy_domain
proteins O
. O
However O
, O
given O
that O
an O
N O
- O
terminal O
deletion B-protein_state
mutant I-protein_state
( O
2 B-mutant
- I-mutant
27Δ I-mutant
) O
grows O
as O
well O
as O
wild B-protein_state
- I-protein_state
type I-protein_state
( O
WT B-protein_state
) O
Mep2 B-protein
on O
minimal O
ammonium B-chemical
medium O
( O
Fig O
. O
3 O
and O
Supplementary O
Fig O
. O
1 O
), O
the O
importance O
of O
the O
N O
terminus O
for O
Mep2 B-protein
activity O
is O
not O
clear O
. O
In O
the O
vicinity O
of O
the O
Mep2 B-protein
channel B-site
exit I-site
, O
the O
cytoplasmic O
end O
of O
TM2 B-structure_element
has O
unwound O
, O
generating O
a O
longer O
ICL1 B-structure_element
even O
though O
there O
are O
no O
insertions O
in O
this O
region O
compared O
to O
the O
bacterial B-taxonomy_domain
proteins O
( O
Figs O
2 O
and O
4 O
). O
At O
the O
C O
- O
terminal O
end O
of O
TM1 B-structure_element
, O
the O
side O
- O
chain O
hydroxyl O
group O
of O
the O
relatively B-protein_state
conserved I-protein_state
Tyr49 B-residue_name_number
( O
Tyr53 B-residue_name_number
in O
ScMep2 B-protein
) O
makes O
a O
strong O
hydrogen O
bond O
with O
the O
ɛ2 O
nitrogen O
atom O
of O
the O
absolutely B-protein_state
conserved I-protein_state
His342 B-residue_name_number
of O
the O
twin B-structure_element
- I-structure_element
His I-structure_element
motif I-structure_element
( O
His348 B-residue_name_number
in O
ScMep2 B-protein
), O
closing O
the O
channel B-site
( O
Figs O
4 O
and O
5 O
). O
Compared O
with O
ICL1 B-structure_element
, O
the O
backbone O
conformational O
changes O
observed O
for O
the O
neighbouring O
ICL2 B-structure_element
are O
smaller O
, O
but O
large O
shifts O
are O
nevertheless O
observed O
for O
the O
conserved B-protein_state
residues O
Glu140 B-residue_name_number
and O
Arg141 B-residue_name_number
( O
Fig O
. O
4 O
). O
The O
closed B-protein_state
state O
of O
the O
channel B-site
might O
also O
explain O
why O
no B-evidence
density I-evidence
, O
which O
could O
correspond O
to O
ammonium B-chemical
( O
or O
water B-chemical
), O
is O
observed O
in O
the O
hydrophobic O
part O
of O
the O
Mep2 B-protein
channel B-site
close O
to O
the O
twin B-structure_element
- I-structure_element
His I-structure_element
motif I-structure_element
. O
The O
result O
of O
these O
interactions O
is O
that O
the O
CTR B-structure_element
O
hugs O
' O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
half I-structure_element
of O
the O
transporters B-protein_type
( O
Fig O
. O
4 O
). O
Despite O
its O
location O
at O
the O
periphery O
of O
the O
trimer B-oligomeric_state
, O
the O
electron B-evidence
density I-evidence
for O
the O
serine B-residue_name
is O
well O
defined O
in O
both O
Mep2 B-protein
structures B-evidence
and O
corresponds O
to O
the O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
state O
( O
Fig O
. O
6 O
). O
The O
data O
behind O
this O
hypothesis O
is O
the O
observation O
that O
a O
ScMep2 B-protein
449 B-mutant
- I-mutant
485Δ I-mutant
deletion B-protein_state
mutant I-protein_state
lacking B-protein_state
the O
AI B-structure_element
region I-structure_element
is O
highly B-protein_state
active I-protein_state
in O
MA B-chemical
uptake O
both O
in O
the O
triple B-mutant
mepΔ I-mutant
and O
triple B-mutant
mepΔ I-mutant
npr1Δ I-mutant
backgrounds O
, O
implying O
that O
this O
Mep2 B-mutant
variant I-mutant
has O
a O
constitutively B-protein_state
open I-protein_state
channel B-site
. O
The O
latter O
model O
would O
fit O
well O
with O
the O
NH3 B-chemical
/ O
H B-chemical
+ I-chemical
symport O
model O
in O
which O
the O
proton O
is O
relayed O
by O
the O
twin B-structure_element
- I-structure_element
His I-structure_element
motif I-structure_element
. O
The O
side O
- O
chain O
hydroxyl O
of O
Ser457 B-residue_name_number
/ O
453 B-residue_number
is O
located O
in O
a O
well O
- O
defined O
electronegative B-site
pocket I-site
that O
is O
solvent B-protein_state
accessible I-protein_state
( O
Fig O
. O
6 O
). O
The O
closest O
atoms O
to O
the O
serine B-residue_name
hydroxyl O
group O
are O
the O
backbone O
carbonyl O
atoms O
of O
Asp419 B-residue_name_number
, O
Glu420 B-residue_name_number
and O
Glu421 B-residue_name_number
, O
which O
are O
3 O
O
4 O
Å O
away O
. O
The O
ammonium B-chemical
uptake O
activity O
of O
the O
S B-species
. I-species
cerevisiae I-species
version O
of O
the O
DD B-mutant
mutant I-mutant
is O
the O
same O
as O
that O
of O
WT B-protein_state
Mep2 B-protein
and O
the O
S453D B-mutant
mutant B-protein_state
, O
indicating O
that O
the O
mutations O
do O
not O
affect O
transporter O
functionality O
in O
the O
triple B-mutant
mepΔ I-mutant
background O
( O
Fig O
. O
3 O
). O
By O
contrast O
, O
the O
conserved B-protein_state
part O
of O
the O
CTR B-structure_element
has O
undergone O
a O
large O
conformational O
change O
involving O
formation O
of O
a O
12 B-structure_element
- I-structure_element
residue I-structure_element
- I-structure_element
long I-structure_element
α I-structure_element
- I-structure_element
helix I-structure_element
from O
Leu427 B-residue_range
to I-residue_range
Asp438 I-residue_range
. O
As O
shown O
in O
Supplementary O
Fig O
. O
4 O
, O
the O
consequence O
of O
the O
single B-mutant
D I-mutant
mutation B-experimental_method
is O
very O
similar O
to O
that O
of O
the O
DD B-mutant
substitution I-mutant
, O
with O
conformational O
changes O
and O
increased O
dynamics O
confined O
to O
the O
conserved B-protein_state
part O
of O
the O
CTR B-structure_element
( O
Supplementary O
Fig O
. O
4 O
). O
As O
the O
simulation B-experimental_method
proceeds O
, O
the O
side O
chains O
of O
the O
acidic O
residues O
move O
away O
from O
Asp452 B-residue_name_number
and O
Asp453 B-residue_name_number
, O
presumably O
to O
avoid O
electrostatic O
repulsion O
. O
The O
short B-structure_element
helix I-structure_element
formed O
by O
residues O
Leu427 B-residue_range
to I-residue_range
Asp438 I-residue_range
unravels O
during O
the O
simulations B-experimental_method
to O
a O
disordered B-protein_state
state O
. O
One O
possible O
explanation O
is O
that O
the O
mutants B-mutant
do O
not O
accurately O
mimic O
a O
phosphoserine B-residue_name
, O
but O
the O
observation O
that O
the O
S453D B-mutant
and O
DD B-mutant
mutants I-mutant
are O
fully B-protein_state
active I-protein_state
in O
the O
absence B-protein_state
of I-protein_state
Npr1 B-protein
suggests O
that O
the O
mutations B-experimental_method
do O
mimic O
the O
effect O
of O
phosphorylation B-ptm
( O
Fig O
. O
3 O
). O
Interestingly O
, O
phosphomimetic B-mutant
mutations I-mutant
introduced O
into O
one O
monomer B-oligomeric_state
inactivate O
the O
entire O
trimer B-oligomeric_state
, O
indicating O
that O
( O
i O
) O
heterotrimerization O
occurs O
and O
( O
ii O
) O
the O
CTR B-structure_element
mediates O
allosteric O
regulation O
of O
ammonium B-chemical
transport O
activity O
via O
phosphorylation B-ptm
. O
Such O
mutations O
likely O
cause O
structural O
changes O
in O
the O
CTR B-structure_element
that O
prevent O
close O
contacts O
between O
the O
CTR B-structure_element
and O
ICL1 B-structure_element
/ O
ICL3 B-structure_element
, O
thereby O
stabilizing O
a O
closed B-protein_state
state O
that O
may O
be O
similar O
to O
that O
observed O
in O
Mep2 B-protein
. O
However O
, O
the O
absence B-protein_state
of I-protein_state
GlnK B-protein_type
proteins I-protein_type
in O
eukaryotes B-taxonomy_domain
suggests O
that O
phosphorylation B-ptm
- O
based O
regulation O
of O
ammonium B-chemical
transport O
may O
be O
widespread O
. O
The O
conserved B-protein_state
RxK B-structure_element
motif I-structure_element
in O
ICL1 B-structure_element
is O
boxed O
in O
blue O
, O
the O
ER B-structure_element
motif I-structure_element
in O
ICL2 B-structure_element
in O
cyan O
, O
the O
conserved B-protein_state
ExxGxD B-structure_element
motif I-structure_element
of O
the O
CTR B-structure_element
in O
red O
and O
the O
AI B-structure_element
region I-structure_element
in O
yellow O
. O
Coloured O
residues O
are O
functionally O
important O
and O
correspond O
to O
those O
of O
the O
Phe B-site
gate I-site
( O
blue O
), O
the O
binding B-site
site I-site
Trp B-residue_name
residue O
( O
magenta O
) O
and O
the O
twin O
- O
His O
motif O
( O
red O
). O
( O
a O
) O
The O
triple B-mutant
mepΔ I-mutant
strain O
( O
black O
) O
and O
triple O
mepΔ O
npr1Δ O
strain O
( O
grey O
) O
containing O
plasmids O
expressing O
WT B-protein_state
and O
variant B-mutant
ScMep2 I-mutant
were O
grown B-experimental_method
on I-experimental_method
minimal I-experimental_method
medium I-experimental_method
containing O
1 O
mM O
ammonium B-chemical
sulphate I-chemical
. O
Channel O
closures O
in O
Mep2 B-protein
. O
( O
c O
) O
Cytoplasmic O
view O
of O
the O
Mep2 B-protein
trimer B-oligomeric_state
indicating O
the O
large O
distance O
between O
Ser453 B-residue_name_number
and O
the O
channel B-site
exits I-site
( O
circles O
; O
Ile52 B-residue_name_number
lining O
the O
channel B-site
exit I-site
is O
shown O
). O
Side O
chains O
for O
residues O
452 B-residue_number
and O
453 B-residue_number
are O
shown O
as O
stick O
models O
. O
( O
a O
) O
In O
the O
closed B-protein_state
, O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
state O
( O
i O
), O
the O
CTR B-structure_element
( O
magenta O
) O
and O
ICL3 B-structure_element
( O
green O
) O
are O
far O
apart O
with O
the O
latter O
blocking O
the O
intracellular O
channel B-site
exit I-site
( O
indicated O
with O
a O
hatched O
circle O
). O
We O
determined B-experimental_method
four I-experimental_method
structures I-experimental_method
of O
an O
extended B-protein_state
U2AF65 B-structure_element
I-structure_element
RNA I-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
bound B-protein_state
to I-protein_state
Py B-chemical
- I-chemical
tract I-chemical
oligonucleotides I-chemical
at O
resolutions O
between O
2 O
. O
0 O
and O
1 O
. O
5 O
Å O
. O
These O
structures B-evidence
together O
with O
RNA B-experimental_method
binding I-experimental_method
and I-experimental_method
splicing I-experimental_method
assays I-experimental_method
reveal O
unforeseen O
roles O
for O
U2AF65 B-protein
inter B-site
- I-site
domain I-site
residues I-site
in O
recognizing O
a O
contiguous B-structure_element
, O
nine O
- O
nucleotide B-chemical
Py B-chemical
tract I-chemical
. O
In O
turn O
, O
the O
ternary B-complex_assembly
complex I-complex_assembly
of O
U2AF65 B-protein
with O
SF1 B-protein
and O
U2AF35 B-protein
identifies O
the O
surrounding O
BPS B-site
and O
3 B-site
I-site
splice I-site
site I-site
junctions O
. O
Biochemical B-experimental_method
characterizations I-experimental_method
of O
U2AF65 B-protein
demonstrated O
that O
tandem O
RNA B-structure_element
recognition I-structure_element
motifs I-structure_element
( O
RRM1 B-structure_element
and O
RRM2 B-structure_element
) O
recognize O
the O
Py B-chemical
tract I-chemical
( O
Fig O
. O
1a O
). O
Milestone O
crystal B-evidence
structures I-evidence
of O
the O
core B-protein_state
U2AF65 B-protein
RRM1 B-structure_element
and O
RRM2 B-structure_element
connected O
by O
a O
shortened B-protein_state
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
( O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
) O
detailed O
a O
subset O
of O
nucleotide O
interactions O
with O
the O
individual O
U2AF65 B-protein
RRMs B-structure_element
. O
The O
RNA B-evidence
affinity I-evidence
of O
the O
minimal B-protein_state
U2AF651 B-mutant
, I-mutant
2 I-mutant
domain O
comprising O
the O
core B-protein_state
RRM1 B-structure_element
O
RRM2 B-structure_element
folds B-structure_element
( O
U2AF651 B-mutant
, I-mutant
2 I-mutant
, O
residues O
148 B-residue_range
I-residue_range
336 I-residue_range
) O
is O
relatively O
weak O
compared O
with O
full B-protein_state
- I-protein_state
length I-protein_state
U2AF65 B-protein
( O
Fig O
. O
1a O
, O
b O
; O
Supplementary O
Fig O
. O
1 O
). O
The O
U2AF651 B-mutant
, I-mutant
2L I-mutant
RRM1 B-structure_element
and O
RRM2 B-structure_element
associate O
with O
the O
Py B-chemical
tract I-chemical
in O
a O
parallel B-protein_state
, O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
arrangement O
( O
shown O
for O
representative O
structure O
iv O
in O
Fig O
. O
2b O
, O
c O
; O
Supplementary O
Movie O
1 O
). O
Based O
on O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
structures B-evidence
, O
we O
originally O
hypothesized O
that O
the O
U2AF65 B-protein
RRMs B-structure_element
would O
bind O
the O
minimal B-protein_state
seven O
nucleotides B-chemical
observed O
in O
these O
structures B-evidence
. O
The O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
characterize O
ribose B-chemical
( O
r B-chemical
) O
nucleotides B-chemical
at O
all O
of O
the O
binding B-site
sites I-site
except O
the O
seventh B-residue_number
and O
eighth B-residue_number
deoxy B-chemical
-( I-chemical
d I-chemical
) I-chemical
U I-chemical
, O
which O
are O
likely O
to O
lack O
2 O
- O
hydroxyl O
contacts O
based O
on O
the O
RNA B-protein_state
- I-protein_state
bound I-protein_state
dU2AF651 B-mutant
, I-mutant
2 I-mutant
structure B-evidence
. O
The O
rU6 B-residue_name_number
base O
edge O
is O
relatively O
solvent B-protein_state
exposed I-protein_state
; O
accordingly O
, O
the O
rU6 B-residue_name_number
hydrogen O
bonds O
with O
U2AF65 B-protein
are O
water B-chemical
mediated O
apart O
from O
a O
single O
direct O
interaction O
by O
the O
RRM1 B-structure_element
- O
N196 B-residue_name_number
side O
chain O
. O
The O
energetic O
penalties O
due O
to O
these O
mutations O
( O
ΔΔG B-evidence
0 O
. O
8 O
O
0 O
. O
9 O
kcal O
mol O
O
1 O
) O
are O
consistent O
with O
the O
loss O
of O
each O
hydrogen O
bond O
with O
the O
rU5 B-residue_name_number
base O
and O
support O
the O
relevance O
of O
the O
central O
nucleotide O
interactions O
observed O
in O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
. O
Despite O
12 B-experimental_method
concurrent I-experimental_method
mutations I-experimental_method
, O
the O
AdML B-gene
RNA B-evidence
affinity I-evidence
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
- I-mutant
12Gly I-mutant
variant B-protein_state
was O
reduced O
by O
only O
three O
- O
fold O
relative O
to O
the O
unmodified B-protein_state
protein B-protein
( O
Fig O
. O
4b O
), O
which O
is O
less O
than O
the O
penalty O
of O
the O
V254P B-mutant
mutation O
that O
disrupts O
the O
rU5 B-residue_name_number
hydrogen O
bond O
( O
Fig O
. O
3d O
, O
i O
). O
To O
test O
the O
interplay O
of O
the O
U2AF65 B-protein
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
with O
its O
N O
- O
and O
C O
- O
terminal O
RRM B-structure_element
extensions I-structure_element
, O
we O
constructed B-experimental_method
an O
internal O
linker B-experimental_method
deletion I-experimental_method
of O
20 B-residue_range
- I-residue_range
residues I-residue_range
within O
the O
extended B-protein_state
RNA B-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
( O
dU2AF651 B-mutant
, I-mutant
2L I-mutant
). O
Notably O
, O
the O
Q147A B-mutant
/ O
V254P B-mutant
/ O
R227A B-mutant
mutation B-experimental_method
reduced O
the O
RNA B-evidence
affinity I-evidence
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
- I-mutant
3Mut I-mutant
protein O
by O
30 O
- O
fold O
more O
than O
would O
be O
expected O
based O
on O
simple O
addition O
of O
the O
ΔΔG B-evidence
' O
s O
for O
the O
single O
mutations O
. O
This O
difference O
indicates O
that O
the O
linearly B-protein_state
distant I-protein_state
regions B-structure_element
of O
the O
U2AF65 B-protein
primary O
sequence O
, O
including O
Q147 B-residue_name_number
in O
the O
N O
- O
terminal O
RRM1 B-structure_element
extension I-structure_element
and O
R227 B-residue_name_number
/ O
V254 B-residue_name_number
in O
the O
N O
-/ O
C O
- O
terminal O
linker B-structure_element
regions I-structure_element
at O
the O
fifth B-site
nucleotide I-site
site I-site
, O
cooperatively O
recognize O
the O
Py B-chemical
tract I-chemical
. O
As O
a O
representative O
splicing O
substrate O
, O
we O
utilized O
a O
well O
- O
characterized O
minigene B-chemical
splicing I-chemical
reporter I-chemical
( O
called O
pyPY B-chemical
) O
comprising O
a O
weak O
( O
that O
is O
, O
degenerate O
, O
py B-chemical
) O
and O
strong O
( O
that O
is O
, O
U B-structure_element
- I-structure_element
rich I-structure_element
, O
PY B-chemical
) O
polypyrimidine B-chemical
tracts I-chemical
preceding O
two O
alternative O
splice B-site
sites I-site
( O
Fig O
. O
5a O
). O
The O
inter B-structure_element
- I-structure_element
RRM I-structure_element
dynamics O
of O
U2AF65 B-protein
were O
followed O
using O
FRET B-experimental_method
between O
fluorophores B-chemical
attached O
to O
RRM1 B-structure_element
and O
RRM2 B-structure_element
( O
Fig O
. O
6a O
, O
b O
, O
Methods O
). O
Criteria O
included O
( O
i O
) O
residue O
locations O
that O
are O
distant O
from O
and O
hence O
not O
expected O
to O
interfere O
with O
the O
RRM B-complex_assembly
/ I-complex_assembly
RNA I-complex_assembly
or O
inter B-site
- I-site
RRM I-site
interfaces I-site
, O
( O
ii O
) O
inter O
- O
dye O
distances O
( O
50 O
Å O
for O
U2AF651 B-complex_assembly
, I-complex_assembly
2L I-complex_assembly
I-complex_assembly
Py I-complex_assembly
tract I-complex_assembly
and O
30 O
Å O
for O
the O
closed B-protein_state
apo B-protein_state
- O
model O
) O
that O
are O
expected O
to O
be O
near O
the O
Förster B-experimental_method
radius I-experimental_method
( I-experimental_method
Ro I-experimental_method
) I-experimental_method
for O
the O
Cy3 B-chemical
/ O
Cy5 B-chemical
pair O
( O
56 O
Å O
), O
where O
changes O
in O
the O
efficiency O
of O
energy O
transfer O
are O
most O
sensitive O
to O
distance O
, O
and O
( O
iii O
) O
FRET B-evidence
efficiencies I-evidence
that O
are O
calculated O
to O
be O
significantly O
greater O
for O
the O
O
closed B-protein_state
' O
apo B-protein_state
- O
model O
as O
opposed O
to O
the O
O
open B-protein_state
' O
RNA B-protein_state
- I-protein_state
bound I-protein_state
structures B-evidence
( O
by O
O
30 O
%). O
Double O
- O
cysteine B-residue_name
variant B-protein_state
of O
U2AF651 B-mutant
, I-mutant
2 I-mutant
was O
modified B-experimental_method
with O
equimolar O
amount O
of O
Cy3 B-chemical
and O
Cy5 B-chemical
. O
We O
first O
characterized O
the O
conformational O
dynamics O
spectrum O
of O
U2AF65 B-protein
in O
the O
absence B-protein_state
of I-protein_state
RNA B-chemical
( O
Fig O
. O
6c O
, O
d O
; O
Supplementary O
Fig O
. O
7a O
, O
b O
). O
The O
FRET B-evidence
distribution I-evidence
histogram I-evidence
built O
from O
more O
than O
a O
thousand O
traces B-evidence
of O
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
in O
the O
absence B-protein_state
of I-protein_state
ligand B-chemical
showed O
an O
extremely O
broad O
distribution O
centred O
at O
a O
FRET B-evidence
efficiency I-evidence
of O
O
0 O
. O
4 O
( O
Fig O
. O
6d O
). O
Despite O
the O
large O
width O
of O
the O
FRET B-evidence
- I-evidence
distribution I-evidence
histogram I-evidence
, O
the O
majority O
( O
80 O
%) O
of O
traces B-evidence
that O
showed O
fluctuations O
sampled O
only O
two O
distinct O
FRET B-evidence
states I-evidence
( O
for O
example O
, O
Supplementary O
Fig O
. O
7a O
). O
We O
introduced B-experimental_method
an O
rArA B-chemical
purine B-chemical
dinucleotide I-chemical
within O
a O
variant O
of O
the O
AdML B-gene
Py B-chemical
tract I-chemical
( O
detailed O
in O
Methods O
). O
Nevertheless O
, O
the O
predominant O
0 O
. O
45 O
FRET B-evidence
state I-evidence
in O
the O
presence O
of O
RNA B-chemical
agrees O
with O
the O
Py B-protein_state
- I-protein_state
tract I-protein_state
- I-protein_state
bound I-protein_state
crystal B-evidence
structure I-evidence
of O
U2AF651 B-mutant
, I-mutant
2L I-mutant
. O
Notably O
, O
a O
triple B-protein_state
mutation I-protein_state
of O
three O
residues O
( O
V254P B-mutant
, O
Q147A B-mutant
and O
R227A B-mutant
) O
in O
the O
respective O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
, O
N B-structure_element
- I-structure_element
and I-structure_element
C I-structure_element
- I-structure_element
terminal I-structure_element
extensions I-structure_element
non O
- O
additively O
reduce O
RNA B-evidence
binding I-evidence
by O
150 O
- O
fold O
. O
Altogether O
, O
these O
data O
indicate O
that O
interactions O
among O
the O
U2AF65 B-protein
RRM1 B-structure_element
/ O
RRM2 B-structure_element
, O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
, O
N B-structure_element
- I-structure_element
and I-structure_element
C I-structure_element
- I-structure_element
terminal I-structure_element
extensions I-structure_element
are O
mutually O
inter O
- O
dependent O
for O
cognate O
Py B-chemical
- I-chemical
tract I-chemical
recognition O
. O
These O
transitions O
could O
correspond O
to O
rearrangement O
from O
the O
O
closed B-protein_state
' O
NMR B-experimental_method
/ O
PRE B-experimental_method
- O
based O
U2AF65 B-protein
conformation O
in O
which O
the O
RNA B-site
- I-site
binding I-site
surface I-site
of O
only O
a O
single B-protein_state
RRM B-structure_element
is O
exposed O
and O
available O
for O
RNA O
binding O
, O
to O
the O
structural O
state O
seen O
in O
the O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
, O
RNA B-protein_state
- I-protein_state
bound I-protein_state
crystal B-evidence
structure I-evidence
. O
The O
regions O
of O
RRM1 B-structure_element
, O
RRM2 B-structure_element
and O
linker B-structure_element
contacts O
are O
indicated O
above O
by O
respective O
black O
and O
blue O
arrows O
from O
N O
- O
to O
C O
- O
terminus O
. O
Crystallographic O
statistics O
are O
given O
in O
Table O
1 O
and O
the O
overall O
conformations O
of O
U2AF651 B-mutant
, I-mutant
2L I-mutant
and O
prior O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
/ O
U2AF651 B-mutant
, I-mutant
2 I-mutant
structures B-evidence
are O
compared O
in O
Supplementary O
Fig O
. O
2 O
. O
Residues O
V249 B-residue_name_number
, O
V250 B-residue_name_number
, O
V254 B-residue_name_number
( O
yellow O
) O
are O
mutated B-experimental_method
to O
V249G B-mutant
/ O
V250G B-mutant
/ O
V254G B-mutant
in O
the O
3Gly B-mutant
mutant I-mutant
; O
residues O
S251 B-residue_name_number
, O
T252 B-residue_name_number
, O
V253 B-residue_name_number
, O
P255 B-residue_name_number
( O
red O
) O
along O
with O
V254 B-residue_name_number
are O
mutated B-experimental_method
to O
S251G B-mutant
/ O
T252G B-mutant
/ O
V253G B-mutant
/ O
V254G B-mutant
/ O
P255G B-mutant
in O
the O
5Gly B-mutant
mutant I-mutant
or O
to O
S251N B-mutant
/ O
T252L B-mutant
/ O
V253A B-mutant
/ O
V254L B-mutant
/ O
P255A B-mutant
in O
the O
NLALA B-mutant
mutant I-mutant
; O
residues O
M144 B-residue_name_number
, O
L235 B-residue_name_number
, O
M238 B-residue_name_number
, O
V244 B-residue_name_number
, O
V246 B-residue_name_number
( O
orange O
) O
along O
with O
V249 B-residue_name_number
, O
V250 B-residue_name_number
, O
S251 B-residue_name_number
, O
T252 B-residue_name_number
, O
V253 B-residue_name_number
, O
V254 B-residue_name_number
, O
P255 B-residue_name_number
are O
mutated B-experimental_method
to O
M144G B-mutant
/ O
L235G B-mutant
/ O
M238G B-mutant
/ O
V244G B-mutant
/ O
V246G B-mutant
/ O
V249G B-mutant
/ O
V250G B-mutant
/ O
S251G B-mutant
/ O
T252G B-mutant
/ O
V253G B-mutant
/ O
V254G B-mutant
/ O
P255G B-mutant
in O
the O
12Gly B-mutant
mutant I-mutant
. O
Other O
linker B-structure_element
residues O
are O
coloured O
either O
dark O
blue O
for O
new O
residues O
in O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structure O
or O
light O
blue O
for O
the O
remaining O
inter B-structure_element
- I-structure_element
RRM I-structure_element
residues O
. O
The O
central O
panel O
shows O
an O
overall O
view O
with O
stick O
diagrams O
for O
mutated O
residues O
; O
boxed O
regions O
are O
expanded O
to O
show O
the O
C O
- O
terminal O
( O
bottom O
left O
) O
and O
central B-structure_element
linker I-structure_element
regions I-structure_element
( O
top O
) O
at O
the O
inter B-structure_element
- I-structure_element
RRM I-structure_element
interfaces I-structure_element
, O
and O
N O
- O
terminal O
linker O
region O
contacts O
with O
RRM1 B-structure_element
( O
bottom O
right O
). O
The O
apparent O
equilibrium B-evidence
dissociation I-evidence
constants I-evidence
( O
KD B-evidence
) O
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
mutant B-protein_state
proteins O
are O
: O
wild B-protein_state
type I-protein_state
( O
WT B-protein_state
), O
35 O
± O
6 O
nM O
; O
3Gly B-mutant
, O
47 O
± O
4 O
nM O
; O
5Gly B-mutant
, O
61 O
± O
3 O
nM O
; O
12Gly B-mutant
, O
88 O
± O
21 O
nM O
; O
NLALA B-mutant
, O
45 O
± O
3 O
nM O
; O
dU2AF651 B-mutant
, I-mutant
2L I-mutant
, O
123 O
± O
5 O
nM O
; O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
, O
5000 O
± O
100 O
nM O
; O
3Mut B-mutant
, O
5630 O
± O
70 O
nM O
. O
The O
average O
KA B-evidence
and O
s O
. O
e O
. O
m O
. O
for O
three O
independent O
titrations O
are O
plotted O
. O
Schematic O
models O
of O
U2AF65 B-protein
recognizing O
the O
Py B-chemical
tract I-chemical
. O
( O
b O
) O
Following O
binding O
to O
the O
Py B-chemical
- I-chemical
tract I-chemical
RNA I-chemical
, O
a O
conformation O
corresponding O
to O
high B-evidence
FRET I-evidence
and O
consistent O
with O
the O
O
closed B-protein_state
', O
back B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
back I-protein_state
apo B-protein_state
- O
U2AF65 B-protein
model O
resulting O
from O
PRE B-experimental_method
/ O
NMR B-experimental_method
characterization O
( O
PDB O
ID O
2YH0 O
) O
often O
transitions O
to O
a O
conformation O
corresponding O
to O
O
0 O
. O
45 O
FRET B-evidence
value I-evidence
, O
which O
is O
consistent O
with O
O
open B-protein_state
', O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
RRMs B-structure_element
such O
as O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
crystal B-evidence
structures I-evidence
. O
Floral O
abscission O
is O
controlled O
by O
the O
leucine B-protein_type
- I-protein_type
rich I-protein_type
repeat I-protein_type
receptor I-protein_type
kinase I-protein_type
( O
LRR B-protein_type
- I-protein_type
RK I-protein_type
) O
HAESA B-protein
and O
the O
peptide B-protein_type
hormone I-protein_type
IDA B-protein
. O
It O
is O
unknown O
how O
expression O
of O
IDA B-protein
in O
the O
abscission O
zone O
leads O
to O
HAESA B-protein
activation O
. O
Here O
we O
show O
that O
IDA B-protein
is O
sensed O
directly O
by O
the O
HAESA B-protein
ectodomain B-structure_element
. O
However O
, O
the O
molecular O
details O
of O
how O
IDA B-protein
triggers O
organ O
shedding O
are O
not O
clear O
. O
Santiago O
et O
al O
. O
used O
protein B-experimental_method
biochemistry I-experimental_method
, O
structural B-experimental_method
biology I-experimental_method
and O
genetics B-experimental_method
to O
uncover O
how O
the O
IDA B-protein
hormone B-chemical
activates O
HAESA B-protein
. O
HAESA B-protein
is O
shown O
in O
blue O
( O
ribbon O
diagram O
), O
the O
C O
- O
terminal O
Arg B-structure_element
- I-structure_element
His I-structure_element
- I-structure_element
Asn I-structure_element
motif I-structure_element
( O
left O
panel O
), O
the O
central O
Hyp B-structure_element
anchor I-structure_element
( O
center O
) O
and O
the O
N O
- O
terminal O
Pro B-structure_element
- I-structure_element
rich I-structure_element
motif I-structure_element
in O
IDA B-protein
( O
right O
panel O
) O
are O
shown O
in O
yellow O
( O
in O
bonds O
representation O
). O
Structure B-experimental_method
- I-experimental_method
based I-experimental_method
sequence I-experimental_method
alignment I-experimental_method
of O
the O
HAESA B-protein_type
family I-protein_type
members I-protein_type
: O
Arabidopsis B-species
thaliana I-species
HAESA B-protein
( O
Uniprot O
( O
http O
:// O
www O
. O
uniprot O
. O
org O
) O
ID O
P47735 O
), O
Arabidopsis B-species
thaliana I-species
HSL2 B-protein
( O
Uniprot O
ID O
C0LGX3 O
), O
Capsella B-species
rubella I-species
HAESA B-protein
( O
Uniprot O
ID O
R0F2U6 O
), O
Citrus B-species
clementina I-species
HSL2 B-protein
( O
Uniprot O
ID O
V4U227 O
), O
Vitis B-species
vinifera I-species
HAESA B-protein
( O
Uniprot O
ID O
F6HM39 O
). O
The O
alignment O
includes O
a O
secondary O
structure O
assignment O
calculated O
with O
the O
program O
DSSP O
and O
colored O
according O
to O
Figure O
1 O
, O
with O
the O
N O
- O
and O
C O
- O
terminal O
caps B-structure_element
and O
the O
21 O
LRR B-structure_element
motifs I-structure_element
indicated O
in O
orange O
and O
blue O
, O
respectively O
. O
HAESA B-protein
residues O
interacting O
with O
the O
IDA B-chemical
peptide I-chemical
and O
/ O
or O
the O
SERK1 B-protein
co B-protein_type
- I-protein_type
receptor I-protein_type
kinase I-protein_type
ectodomain B-structure_element
are O
highlighted O
in O
blue O
and O
orange O
, O
respectively O
. O
The O
PKGV B-structure_element
motif I-structure_element
present O
in O
our O
N B-protein_state
- I-protein_state
terminally I-protein_state
extended I-protein_state
IDA B-chemical
peptide I-chemical
is O
highlighted O
in O
red O
. O
( O
B O
) O
Isothermal B-experimental_method
titration I-experimental_method
calorimetry I-experimental_method
of O
the O
HAESA B-protein
ectodomain B-structure_element
vs O
. O
IDA B-protein
and O
including O
the O
synthetic B-protein_state
peptide B-chemical
sequence O
. O
IDA B-protein
( O
in O
bonds O
representation O
, O
surface O
view O
included O
) O
is O
depicted O
in O
yellow O
. O
Active B-protein_state
IDA B-protein_type
- I-protein_type
family I-protein_type
peptide I-protein_type
hormones I-protein_type
are O
hydroxyprolinated B-protein_state
dodecamers B-structure_element
. O
Void O
( O
V0 O
) O
volume O
and O
total O
volume O
( O
Vt O
) O
are O
shown O
, O
together O
with O
elution O
volumes O
for O
molecular O
mass O
standards O
( O
A O
, O
Thyroglobulin B-protein
, O
669 O
, O
000 O
Da O
; O
B O
, O
Ferritin B-protein
, O
440 O
, O
00 O
Da O
, O
C O
, O
Aldolase B-protein
, O
158 O
, O
000 O
Da O
; O
D O
, O
Conalbumin B-protein
, O
75 O
, O
000 O
Da O
; O
E O
, O
Ovalbumin B-protein
, O
44 O
, O
000 O
Da O
; O
F O
, O
Carbonic B-protein
anhydrase I-protein
, O
29 O
, O
000 O
Da O
). O
The O
titration B-experimental_method
of O
IDA B-protein
wild B-protein_state
- I-protein_state
type I-protein_state
versus O
the O
isolated O
HAESA B-protein
ectodomain B-structure_element
from O
Figure O
1B O
is O
shown O
for O
comparison O
( O
red O
line O
; O
n O
. O
d O
. O
We O
next O
determined O
crystal B-evidence
structures I-evidence
of O
the O
apo B-protein_state
HAESA B-protein
ectodomain B-structure_element
and O
of O
a O
HAESA B-complex_assembly
- I-complex_assembly
IDA I-complex_assembly
complex O
, O
at O
1 O
. O
74 O
and O
1 O
. O
86 O
Å O
resolution O
, O
respectively O
( O
Figure O
1C O
; O
Figure O
1 O
O
figure O
supplement O
1B O
O
D O
; O
Tables O
1 O
, O
2 O
). O
The O
COO O
- O
group O
of O
Asn69IDA B-residue_name_number
is O
in O
direct O
contact O
with O
Arg407HAESA B-residue_name_number
and O
Arg409HAESA B-residue_name_number
and O
HAESA B-protein
cannot O
bind O
a O
C B-protein_state
- I-protein_state
terminally I-protein_state
extended I-protein_state
IDA B-mutant
- I-mutant
SFVN I-mutant
peptide O
( O
Figures O
1D O
, O
F O
, O
2D O
). O
A O
2 O
. O
56 O
Å O
co B-evidence
- I-evidence
crystal I-evidence
structure I-evidence
with O
IDL1 B-protein
reveals O
that O
different O
IDA B-protein_type
family I-protein_type
members I-protein_type
use O
a O
common O
binding O
mode O
to O
interact O
with O
HAESA B-protein_type
- I-protein_type
type I-protein_type
receptors I-protein_type
( O
Figure O
2A O
O
C O
, O
E O
, O
Table O
2 O
). O
The O
N O
- O
terminal O
capping B-structure_element
domain I-structure_element
of O
SERK1 B-protein
( O
in O
orange O
) O
directly O
contacts O
the O
C O
- O
terminal O
part O
of O
IDA B-protein
( O
in O
yellow O
, O
in O
bonds O
representation O
) O
and O
the O
receptor B-protein_type
HAESA B-protein
( O
in O
blue O
). O
The O
SERK1 B-protein
ectodomain B-structure_element
interacts O
with O
the O
IDA B-site
peptide I-site
binding I-site
site I-site
using O
a O
loop B-structure_element
region I-structure_element
( O
residues O
51 B-residue_range
- I-residue_range
59SERK1 I-residue_range
) O
from O
its O
N O
- O
terminal O
cap B-structure_element
( O
Figure O
4A O
, O
C O
). O
SERK1 B-protein
binds O
HAESA B-protein
using O
these O
two O
distinct O
interaction B-site
surfaces I-site
( O
Figure O
1 O
O
figure O
supplement O
3 O
), O
with O
the O
N B-structure_element
- I-structure_element
cap I-structure_element
of O
the O
SERK1 B-protein
LRR B-structure_element
domain I-structure_element
partially O
covering O
the O
IDA B-site
peptide I-site
binding I-site
cleft I-site
. O
( O
A O
) O
Size B-experimental_method
exclusion I-experimental_method
chromatography I-experimental_method
experiments O
similar O
to O
Figure O
3B O
, O
D O
reveal O
that O
IDA B-protein
mutant B-protein_state
peptides B-chemical
targeting O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
motif I-structure_element
do O
not O
form O
biochemically B-protein_state
stable I-protein_state
HAESA B-complex_assembly
- I-complex_assembly
IDA I-complex_assembly
- I-complex_assembly
SERK1 I-complex_assembly
complexes O
. O
Purified B-experimental_method
HAESA B-protein
and O
SERK1 B-protein
are O
~ O
75 O
and O
~ O
28 O
kDa O
, O
respectively O
. O
Note O
that O
the O
HAESA B-protein
and O
SERK1 B-protein
input O
lanes O
have O
already O
been O
shown O
in O
Figure O
3D O
. O
( O
B O
) O
Isothermal B-evidence
titration I-evidence
thermographs I-evidence
of O
wild B-protein_state
- I-protein_state
type I-protein_state
and O
mutant B-protein_state
IDA B-chemical
peptides I-chemical
titrated B-experimental_method
into O
a O
HAESA B-protein
- O
SERK1 B-protein
mixture O
in O
the O
cell O
. O
Table O
summaries O
for O
calorimetric B-evidence
binding I-evidence
constants I-evidence
and O
stoichoimetries O
for O
different O
IDA B-chemical
peptides I-chemical
binding O
to O
the O
HAESA B-protein
O
SERK1 B-protein
ectodomain B-structure_element
mixture O
( O
± O
fitting O
errors O
; O
n O
. O
d O
. O
Up O
to O
inflorescence O
position O
4 O
, O
petal O
break O
in O
35S B-gene
:: O
IDA B-mutant
K66A I-mutant
/ I-mutant
R67A I-mutant
mutant B-protein_state
plants B-taxonomy_domain
was O
significantly O
increased O
compared O
to O
both O
Col O
- O
0 O
control O
plants B-taxonomy_domain
( O
b O
) O
and O
35S B-gene
:: O
IDA B-protein
plants B-taxonomy_domain
( O
c O
) O
( O
D O
) O
Normalized O
expression O
levels O
( O
relative O
expression O
± O
standard O
error O
; O
ida O
: O
- O
0 O
. O
02 O
± O
0 O
. O
001 O
; O
Col O
- O
0 O
: O
1 O
± O
0 O
. O
11 O
; O
35S B-gene
:: O
IDA B-protein
124 O
± O
0 O
. O
75 O
; O
35S B-gene
:: O
IDA B-mutant
K66A I-mutant
/ I-mutant
R67A I-mutant
: O
159 O
± O
0 O
. O
58 O
) O
of O
IDA B-protein
wild B-protein_state
- I-protein_state
type I-protein_state
and O
mutant B-protein_state
transcripts O
in O
the O
35S B-experimental_method
promoter I-experimental_method
over I-experimental_method
- I-experimental_method
expression I-experimental_method
lines I-experimental_method
analyzed O
in O
( O
C O
). O
( O
E O
) O
Magnified O
view O
of O
representative O
abscission O
zones O
from O
35S B-gene
:: O
IDA B-protein
, O
Col O
- O
0 O
wild B-protein_state
- I-protein_state
type I-protein_state
and O
35S B-gene
:: O
IDA B-mutant
K66A I-mutant
/ I-mutant
R67A I-mutant
double B-protein_state
- I-protein_state
mutant I-protein_state
T3 B-experimental_method
transgenic I-experimental_method
lines I-experimental_method
. O
The O
four O
C O
- O
terminal O
residues O
in O
IDA B-protein
( O
Lys66IDA B-residue_range
- I-residue_range
Asn69IDA I-residue_range
) O
are O
conserved B-protein_state
among O
IDA B-protein_type
family I-protein_type
members I-protein_type
and O
are O
in O
direct O
contact O
with O
SERK1 B-protein
( O
Figures O
1A O
, O
4C O
). O
We O
found O
that O
over B-experimental_method
- I-experimental_method
expression I-experimental_method
of O
wild B-protein_state
- I-protein_state
type I-protein_state
IDA B-protein
leads O
to O
early O
floral O
abscission O
and O
an O
enlargement O
of O
the O
abscission O
zone O
( O
Figure O
5C O
O
E O
). O
SERK1 O
has O
been O
previously O
reported O
as O
a O
positive O
regulator O
in O
plant B-taxonomy_domain
embryogenesis O
, O
male O
sporogenesis O
, O
brassinosteroid O
signaling O
and O
in O
phytosulfokine O
perception O
. O
The O
fact O
that O
SERK1 B-protein
specifically O
interacts O
with O
the O
very O
C O
- O
terminus O
of O
IDLs B-protein_type
may O
allow O
for O
the O
rational O
design O
of O
peptide B-chemical
hormone I-chemical
antagonists I-chemical
, O
as O
previously O
demonstrated O
for O
the O
brassinosteroid O
pathway O
. O
These O
residues O
are O
not O
involved O
in O
the O
sensing O
of O
the O
steroid B-chemical
hormone I-chemical
brassinolide B-chemical
. O
Structure B-experimental_method
- I-experimental_method
guided I-experimental_method
multiple I-experimental_method
sequence I-experimental_method
alignment I-experimental_method
of O
IDA B-protein
and O
IDA B-chemical
- I-chemical
like I-chemical
peptides I-chemical
with O
other O
plant B-taxonomy_domain
peptide B-protein_type
hormone I-protein_type
families I-protein_type
, O
including O
CLAVATA3 B-protein_type
I-protein_type
EMBRYO I-protein_type
SURROUNDING I-protein_type
REGION I-protein_type
- I-protein_type
RELATED I-protein_type
( O
CLV3 B-protein_type
/ I-protein_type
CLE I-protein_type
), O
ROOT B-protein_type
GROWTH I-protein_type
FACTOR I-protein_type
I-protein_type
GOLVEN I-protein_type
( O
RGF B-protein_type
/ I-protein_type
GLV I-protein_type
), O
PRECURSOR B-protein_type
GENE I-protein_type
PROPEP1 I-protein_type
( O
PEP1 B-protein_type
) O
from O
Arabidopsis B-species
thaliana I-species
. O
Our O
experiments O
reveal O
that O
SERK1 B-protein
recognizes O
a O
C O
- O
terminal O
Arg B-structure_element
- I-structure_element
His I-structure_element
- I-structure_element
Asn I-structure_element
motif I-structure_element
in O
IDA B-protein
. O
A O
unified O
mechanism O
for O
proteolysis O
and O
autocatalytic B-ptm
activation I-ptm
in O
the O
20S B-complex_assembly
proteasome I-complex_assembly
Here O
we O
use O
mutagenesis B-experimental_method
, O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
and O
biochemical B-experimental_method
assays I-experimental_method
to O
suggest O
that O
Lys33 B-residue_name_number
initiates O
nucleophilic O
attack O
of O
the O
propeptide B-structure_element
by O
deprotonating O
the O
Thr1 B-residue_name_number
hydroxyl O
group O
and O
that O
both O
residues O
together O
with O
Asp17 B-residue_name_number
are O
part O
of O
a O
catalytic B-site
triad I-site
. O
Here O
, O
the O
authors O
use O
structural O
biology O
and O
biochemistry O
to O
investigate O
the O
role O
of O
proteasome B-complex_assembly
active B-site
site I-site
residues O
on O
maturation O
and O
activity O
. O
In O
the O
last O
stage O
of O
CP B-complex_assembly
biogenesis O
, O
the O
prosegments B-structure_element
are O
autocatalytically B-ptm
removed I-ptm
through O
nucleophilic O
attack O
by O
the O
active B-site
site I-site
residue I-site
Thr1 B-residue_name_number
on O
the O
preceding O
peptide O
bond O
involving O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
). I-residue_name_number
Release O
of O
the O
propeptides B-structure_element
creates O
a O
functionally O
active B-protein_state
CP B-complex_assembly
that O
cleaves O
proteins O
into O
short O
peptides O
. O
Viability O
is O
restored O
if O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
subunit O
has O
its O
propeptide B-structure_element
( O
pp B-chemical
) O
deleted B-experimental_method
but I-experimental_method
expressed I-experimental_method
separately I-experimental_method
in O
trans B-protein_state
( O
β5 B-mutant
- I-mutant
T1A I-mutant
pp B-chemical
trans B-protein_state
), O
although O
substantial O
phenotypic O
impairment O
remains O
( O
Table O
1 O
). O
In O
the O
final O
steps O
of O
proteasome B-complex_assembly
biogenesis O
, O
the O
propeptides B-structure_element
are O
autocatalytically B-ptm
cleaved I-ptm
from O
the O
mature B-protein_state
β B-protein
- I-protein
subunit I-protein
domains I-protein
. O
Instead O
, O
the O
plasticity O
of O
the O
β5 B-protein
S1 B-site
pocket I-site
caused O
by O
the O
rotational O
flexibility O
of O
Met45 B-residue_name_number
might O
prevent O
stable O
accommodation O
of O
His B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
in O
the O
S1 B-site
site I-site
and O
thus O
also O
promote O
its O
immediate O
release O
after O
autolysis B-ptm
. O
As O
histidine B-residue_name
commonly O
functions O
as O
a O
proton O
shuttle O
in O
the O
catalytic B-site
triads I-site
of O
serine B-protein_type
proteases I-protein_type
, O
we O
investigated O
the O
role O
of O
His B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
in O
processing O
of O
the O
β5 B-protein
propeptide B-structure_element
by O
exchanging B-experimental_method
it I-experimental_method
for I-experimental_method
Asn B-residue_name
, O
Lys B-residue_name
, O
Phe B-residue_name
and O
Ala B-residue_name
. O
All O
yeast B-taxonomy_domain
mutants O
were O
viable O
at O
30 O
° O
C O
, O
but O
suffered O
from O
growth O
defects O
at O
37 O
° O
C O
with O
the O
H B-mutant
(- I-mutant
2 I-mutant
) I-mutant
N I-mutant
and O
H B-mutant
(- I-mutant
2 I-mutant
) I-mutant
F I-mutant
mutants O
being O
most O
affected O
( O
Supplementary O
Fig O
. O
3b O
and O
Table O
1 O
). O
We O
determined O
crystal B-evidence
structures I-evidence
of O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
L I-mutant
- I-mutant
T1A I-mutant
, O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
T I-mutant
- I-mutant
T1A I-mutant
and O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
A I-mutant
- I-mutant
T1A I-mutant
- I-mutant
K81R I-mutant
mutants O
( O
Supplementary O
Table O
1 O
). O
The O
active B-site
site I-site
of O
the O
proteasome B-complex_assembly
Twenty O
years O
later O
, O
with O
a O
plethora O
of O
yCP B-complex_assembly
X B-evidence
- I-evidence
ray I-evidence
structures I-evidence
in O
hand O
, O
we O
decided O
to O
re O
- O
analyse O
the O
active B-site
site I-site
of O
the O
proteasome B-complex_assembly
and O
to O
resolve O
the O
uncertainty O
regarding O
the O
nature O
of O
the O
general O
base O
. O
As O
determined O
by O
crystallographic B-experimental_method
analysis I-experimental_method
, O
this O
mutant B-protein_state
β5 B-protein
subunit O
was O
partially B-protein_state
processed I-protein_state
( O
Table O
1 O
) O
but O
displayed O
impaired O
reactivity O
towards O
the O
proteasome B-complex_assembly
inhibitor O
carfilzomib B-chemical
compared O
with O
the O
subunits O
β1 B-protein
and O
β2 B-protein
, O
and O
with O
WT B-protein_state
β5 B-protein
( O
Supplementary O
Fig O
. O
7a O
). O
This O
observation O
is O
consistent O
with O
a O
strongly O
reduced O
reactivity O
of O
β5 B-protein
- O
Thr1 B-residue_name_number
and O
the O
crystal B-evidence
structure I-evidence
of O
the O
β5 B-mutant
- I-mutant
D17N I-mutant
pp B-chemical
cis B-protein_state
mutant B-protein_state
in B-protein_state
complex I-protein_state
with I-protein_state
carfilzomib B-chemical
. O
In O
agreement O
, O
an O
E17A B-mutant
mutant B-protein_state
in O
the O
proteasomal O
β B-protein
- I-protein
subunit I-protein
of O
the O
archaeon B-taxonomy_domain
Thermoplasma B-species
acidophilum I-species
prevents O
autolysis B-ptm
and O
catalysis O
. O
This O
model O
is O
also O
consistent O
with O
the O
fact O
that O
no O
defined O
water B-chemical
molecule O
is O
observed O
in O
the O
mature B-protein_state
WT B-protein_state
proteasomal O
active B-site
site I-site
that O
could O
shuttle O
the O
proton O
from O
Thr1Oγ B-residue_name_number
to O
Thr1NH2 B-residue_name_number
. O
The O
β5 B-mutant
- I-mutant
D166N I-mutant
pp B-chemical
cis B-protein_state
yeast B-taxonomy_domain
mutant B-protein_state
is O
significantly O
impaired O
in O
growth O
and O
its O
ChT O
- O
L O
activity O
is O
drastically O
reduced O
( O
Supplementary O
Fig O
. O
6a O
, O
b O
and O
Table O
1 O
). O
Instead O
, O
a O
water B-chemical
molecule O
is O
bound B-protein_state
to I-protein_state
Ser129OH B-residue_name_number
and O
Thr1NH2 B-residue_name_number
( O
Supplementary O
Fig O
. O
8b O
), O
which O
may O
enable O
precursor B-ptm
processing I-ptm
. O
In O
one O
of O
the O
two O
β5 B-protein
subunits O
, O
however O
, O
we O
found O
the O
cleaved B-protein_state
propeptide B-structure_element
still B-protein_state
bound I-protein_state
in O
the O
substrate B-site
- I-site
binding I-site
channel I-site
( O
Fig O
. O
4c O
). O
In O
agreement O
, O
soaking B-experimental_method
crystals I-experimental_method
with O
the O
CP B-complex_assembly
inhibitors O
bortezomib B-chemical
or O
carfilzomib B-chemical
modifies O
only O
the O
β1 B-protein
and O
β2 B-protein
active B-site
sites I-site
, O
while O
leaving O
the O
β5 B-mutant
- I-mutant
T1C I-mutant
proteolytic B-site
centres I-site
unmodified B-protein_state
even O
though O
they O
are O
only O
partially O
occupied O
by O
the O
cleaved B-protein_state
propeptide B-structure_element
remnant O
. O
However O
, O
the O
apo B-protein_state
crystal B-evidence
structure I-evidence
revealed O
that O
Ser1Oγ B-residue_name_number
is O
turned O
away O
from O
the O
substrate B-site
- I-site
binding I-site
channel I-site
( O
Fig O
. O
4g O
). O
Lys33NH2 B-residue_name_number
is O
expected O
to O
act O
as O
the O
proton O
acceptor O
during O
autocatalytic B-ptm
removal I-ptm
of O
the O
propeptides B-structure_element
, O
as O
well O
as O
during O
substrate O
proteolysis O
, O
while O
Asp17Oδ B-residue_name_number
orients O
Lys33NH2 B-residue_name_number
and O
makes O
it O
more O
prone O
to O
protonation O
by O
raising O
its O
pKa O
( O
hydrogen O
bond O
distance O
: O
Lys33NH3 B-residue_name_number
+O
Asp17Oδ B-residue_name_number
: O
2 O
. O
9 O
Å O
). O
Thus O
, O
specific O
protein O
surroundings O
can O
significantly O
alter O
the O
chemical O
properties O
of O
amino O
acids O
such O
as O
Lys B-residue_name
to O
function O
as O
an O
acid O
O
base O
catalyst O
. O
The O
resulting O
uncharged O
Thr1NH2 B-residue_name_number
is O
hydrogen O
- O
bridged O
to O
the O
C3 O
- O
OH O
group O
. O
The O
greater O
suitability O
of O
threonine B-residue_name
for O
the O
proteasome B-complex_assembly
active B-site
site I-site
, O
which O
has O
been O
noted O
in O
biochemical O
as O
well O
as O
in O
kinetic O
studies O
, O
constitutes O
a O
likely O
reason O
for O
the O
conservation B-protein_state
of O
the O
Thr1 B-residue_name_number
residue O
in O
all O
proteasomes B-complex_assembly
from O
bacteria B-taxonomy_domain
to O
eukaryotes B-taxonomy_domain
. O
( O
c O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
β1 B-mutant
- I-mutant
T1A I-mutant
, O
the O
β2 B-mutant
- I-mutant
T1A I-mutant
and O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
- I-mutant
K81R I-mutant
propeptide B-structure_element
remnants O
depict O
their O
differences O
in O
conformation O
. O
While O
residue O
(- B-residue_number
2 I-residue_number
) I-residue_number
of O
the O
β1 B-protein
and O
β2 B-protein
prosegments B-structure_element
fit O
the O
S1 B-site
pocket I-site
, O
His B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
of O
the O
β5 B-protein
propeptide B-structure_element
occupies O
the O
S2 B-site
pocket I-site
. O
( O
a O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
β1 B-mutant
- I-mutant
T1A I-mutant
propeptide B-structure_element
and O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
L I-mutant
- I-mutant
T1A I-mutant
mutant B-protein_state
propeptide B-structure_element
. O
( O
b O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
β5 B-protein
propeptides B-structure_element
in O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
L I-mutant
- I-mutant
T1A I-mutant
, O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
T I-mutant
- I-mutant
T1A I-mutant
, O
β5 B-mutant
-( I-mutant
H I-mutant
- I-mutant
2 I-mutant
) I-mutant
A I-mutant
- I-mutant
T1A I-mutant
- I-mutant
K81R I-mutant
and O
β5 B-mutant
- I-mutant
T1A I-mutant
- I-mutant
K81R I-mutant
mutant B-protein_state
proteasomes B-complex_assembly
. O
( O
d O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
matured B-protein_state
β2 B-protein
active B-site
site I-site
, O
the O
WT B-protein_state
β2 B-mutant
- I-mutant
T1A I-mutant
propeptide B-structure_element
and O
the O
β2 B-mutant
- I-mutant
T I-mutant
(- I-mutant
2 I-mutant
) I-mutant
V I-mutant
mutant B-protein_state
propeptide B-structure_element
. O
( O
a O
) O
Hydrogen B-site
- I-site
bonding I-site
network I-site
at O
the O
mature B-protein_state
WT B-protein_state
β5 B-protein
proteasomal O
active B-site
site I-site
( O
dotted O
lines O
). O
The O
Thr1 B-residue_name_number
N O
terminus O
is O
engaged O
in O
hydrogen O
bonds O
with O
Ser129Oγ B-residue_name_number
, O
the O
carbonyl O
oxygen O
of O
residue O
168 B-residue_number
, O
Ser169Oγ B-residue_name_number
and O
Asp166Oδ B-residue_name_number
. O
( O
b O
) O
The O
orientations O
of O
the O
active B-site
- I-site
site I-site
residues I-site
involved O
in O
hydrogen O
bonding O
are O
strictly B-protein_state
conserved I-protein_state
in O
each O
proteolytic B-site
centre I-site
, O
as O
shown O
by O
superposition B-experimental_method
of O
the O
β B-protein
subunits I-protein
. O
The O
strictly B-protein_state
conserved I-protein_state
oxyanion O
hole O
Gly47NH B-residue_name_number
stabilizing O
the O
negatively O
charged O
intermediate O
is O
illustrated O
as O
a O
semicircle O
. O
On O
hydrolysis O
of O
the O
latter O
, O
the O
active B-site
- I-site
site I-site
Thr1 B-residue_name_number
is O
ready O
for O
catalysis O
( O
right O
set O
of O
structures O
). O
( O
a O
) O
Growth B-experimental_method
tests I-experimental_method
by I-experimental_method
serial I-experimental_method
dilution I-experimental_method
of O
WT B-protein_state
and O
pre2 O
( O
β5 B-protein
) O
mutant B-protein_state
yeast B-taxonomy_domain
cultures O
reveal O
growth O
defects O
of O
the O
active B-site
- I-site
site I-site
mutants B-experimental_method
under O
the O
indicated O
conditions O
after O
2 O
days O
( O
2 O
d O
) O
of O
incubation O
. O
Notably O
, O
His B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
does O
not O
occupy O
the O
S1 B-site
pocket I-site
formed O
by O
Met45 B-residue_name_number
, O
similar O
to O
what O
was O
observed O
for O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
- I-mutant
K81R I-mutant
mutant B-protein_state
. O
( O
g O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
WT B-protein_state
β5 B-protein
and O
β5 B-mutant
- I-mutant
T1S I-mutant
mutant B-protein_state
active B-site
sites I-site
reveals O
different O
orientations O
of O
the O
hydroxyl O
groups O
of O
Thr1 B-residue_name_number
and O
Ser1 B-residue_name_number
, O
respectively O
. O
Ser1 B-residue_name_number
lacks B-protein_state
this O
stabilization O
and O
is O
therefore O
rotated O
by O
60 O
°. O