mevol's picture
Upload 25 files
ce5220b
raw
history blame
105 kB
In O
particular O
, O
the O
molecular O
basis O
of O
complex B-chemical
polysaccharide I-chemical
recognition O
, O
an O
essential O
prerequisite O
to O
hydrolysis O
by O
cell O
surface O
glycosidases B-protein_type
and O
subsequent O
metabolism O
, O
is O
generally O
poorly O
understood O
. O
The O
unique O
, O
tetra B-structure_element
- I-structure_element
modular I-structure_element
structure B-evidence
of O
SGBP B-protein
- I-protein
B I-protein
is O
comprised O
of O
tandem B-structure_element
Ig I-structure_element
- I-structure_element
like I-structure_element
folds I-structure_element
, O
with O
XyG B-chemical
binding O
mediated O
at O
the O
distal O
C B-structure_element
- I-structure_element
terminal I-structure_element
domain I-structure_element
. O
A O
remarkable O
feature O
of O
the O
Bacteroidetes B-taxonomy_domain
is O
the O
packaging O
of O
genes O
for O
carbohydrate O
catabolism O
into O
discrete O
polysaccharide B-gene
utilization I-gene
loci I-gene
( O
PUL B-gene
), O
which O
are O
transcriptionally O
regulated O
by O
specific O
substrate O
signatures O
. O
The O
importance O
of O
PUL B-gene
as O
a O
successful O
evolutionary O
strategy O
is O
underscored O
by O
the O
observation O
that O
Bacteroidetes B-taxonomy_domain
such O
as O
B B-species
. I-species
thetaiotaomicron I-species
and O
Bacteroides B-species
ovatus I-species
devote O
~ O
18 O
% O
of O
their O
genomes O
to O
these O
systems O
. O
Xyloglucan B-chemical
and O
the O
Bacteroides B-species
ovatus I-species
xyloglucan B-gene
utilization I-gene
locus I-gene
( O
XyGUL B-gene
). O
( O
A O
) O
Representative O
structures B-evidence
of O
common O
xyloglucans B-chemical
using O
the O
Consortium O
for O
Functional O
Glycomics O
Symbol O
Nomenclature O
( O
http O
:// O
www O
. O
functionalglycomics O
. O
org O
/ O
static O
/ O
consortium O
/ O
Nomenclature O
. O
shtml O
). O
We O
describe O
here O
the O
detailed O
functional B-experimental_method
and I-experimental_method
structural I-experimental_method
characterization I-experimental_method
of O
the O
noncatalytic B-protein_state
SGBPs B-protein_type
encoded O
by O
Bacova_02651 B-gene
and O
Bacova_02650 B-gene
of O
the O
XyGUL B-gene
, O
here O
referred O
to O
as O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
, O
to O
elucidate O
their O
molecular O
roles O
in O
carbohydrate O
acquisition O
in O
vivo O
. O
Here O
, O
the O
SGBPs B-protein_type
very O
likely O
work O
in O
concert O
with O
the O
cell B-protein_type
- I-protein_type
surface I-protein_type
- I-protein_type
localized I-protein_type
endo I-protein_type
- I-protein_type
xyloglucanase I-protein_type
B B-species
. I-species
ovatus I-species
GH5 B-protein
( O
BoGH5 B-protein
) O
to O
recruit O
and O
cleave O
XyG B-chemical
for O
subsequent O
periplasmic O
import O
via O
the O
SusC B-protein_type
- I-protein_type
like I-protein_type
TBDT I-protein_type
of O
the O
XyGUL B-gene
( O
Fig O
. O
1B O
and O
C O
). O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
visualized O
by O
immunofluorescence B-experimental_method
. O
( O
D O
) O
FITC B-evidence
images I-evidence
of O
ΔSGBP B-mutant
- I-mutant
B I-mutant
cells O
labeled O
with O
anti O
- O
SGBP O
- O
B O
antibodies O
. O
All O
samples O
were O
loaded O
on O
the O
same O
gel O
next O
to O
the O
BSA B-protein
controls O
; O
thin O
black O
lines O
indicate O
where O
intervening O
lanes O
were O
removed O
from O
the O
final O
image O
for O
both O
space O
and O
clarity O
. O
ITC B-experimental_method
demonstrates O
that O
SGBP B-protein
- I-protein
A I-protein
binds O
to O
XyG B-chemical
polysaccharide B-chemical
and O
XyGO2 B-chemical
( O
based O
on O
a O
Glc8 B-structure_element
backbone I-structure_element
) O
with O
essentially O
equal O
affinities B-evidence
, O
while O
no O
binding O
of O
XyGO1 B-chemical
( O
Glc4 B-structure_element
backbone I-structure_element
) O
was O
detectable O
( O
Table O
1 O
; O
see O
Fig O
. O
S2 O
and O
S3 O
in O
the O
supplemental O
material O
). O
Together O
, O
these O
data O
clearly O
suggest O
that O
polysaccharide B-chemical
binding O
of O
both O
SGBPs B-protein_type
is O
fulfilled O
by O
a O
dimer B-oligomeric_state
of O
the O
minimal B-structure_element
repeat I-structure_element
, O
corresponding O
to O
XyGO2 B-chemical
( O
cf O
. O
Summary O
of O
thermodynamic O
parameters O
for O
wild B-protein_state
- I-protein_state
type I-protein_state
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
obtained O
by O
isothermal B-experimental_method
titration I-experimental_method
calorimetry I-experimental_method
at O
25 O
° O
Ca O
Specifically O
, O
SGBP B-protein
- I-protein
A I-protein
overlays B-experimental_method
B B-species
. I-species
thetaiotaomicron I-species
SusD B-protein
( O
BtSusD B-protein
) O
with O
a O
root B-evidence
mean I-evidence
square I-evidence
deviation I-evidence
( O
RMSD B-evidence
) O
value O
of O
2 O
. O
2 O
Å O
for O
363 O
Cα O
pairs O
, O
which O
is O
notable O
given O
the O
26 O
% O
amino O
acid O
identity O
( O
40 O
% O
similarity O
) O
between O
these O
homologs O
( O
Fig O
. O
4C O
). O
The O
apo B-protein_state
structure B-evidence
is O
color O
ramped O
from O
blue O
to O
red O
. O
Binding O
thermodynamics O
are O
based O
on O
the O
concentration O
of O
the O
binding O
unit O
, O
XyGO2 B-chemical
. O
The O
structure B-experimental_method
- I-experimental_method
based I-experimental_method
alignment I-experimental_method
of O
these O
proteins O
reveals O
17 O
% O
sequence O
identity O
, O
with O
a O
core O
RMSD B-evidence
of O
3 O
. O
6 O
Å O
for O
253 O
aligned O
residues O
. O
While O
there O
is O
no O
substrate O
- O
complexed O
structure O
of O
Bacova_04391 B-protein
available O
, O
the O
binding B-site
site I-site
is O
predicted O
to O
include O
W241 B-residue_name_number
and O
Y404 B-residue_name_number
, O
which O
are O
proximal O
to O
the O
XyGO B-site
binding I-site
site I-site
in O
SGBP B-protein
- I-protein
B I-protein
. O
However O
, O
the O
opposing B-protein_state
, I-protein_state
clamp I-protein_state
- I-protein_state
like I-protein_state
arrangement I-protein_state
of O
these B-structure_element
residues I-structure_element
in O
Bacova_04391 B-protein
is O
clearly O
distinct O
from O
the O
planar B-site
surface I-site
arrangement I-site
of O
the O
residues B-structure_element
that O
interact O
with O
XyG B-chemical
in O
SGBP B-protein
- I-protein
B I-protein
( O
described O
below O
). O
Inspection O
of O
the O
tertiary O
structure B-evidence
indicates O
that O
domains O
C B-structure_element
and O
D B-structure_element
are O
effectively O
inseparable O
, O
with O
a O
contact O
interface O
of O
396 O
Å2 O
. O
The O
backbone O
is O
flat O
, O
with O
less O
of O
the O
O
twisted O
- O
ribbon O
O
geometry O
observed O
in O
some O
cello B-chemical
- I-chemical
and I-chemical
xylogluco I-chemical
- I-chemical
oligosaccharides I-chemical
. O
The O
aromatic B-site
platform I-site
created O
by O
W330 B-residue_name_number
, O
W364 B-residue_name_number
, O
and O
Y363 B-residue_name_number
spans O
four O
glucosyl B-chemical
residues O
, O
compared O
to O
the O
longer B-protein_state
platform B-site
of O
SGBP B-protein
- I-protein
A I-protein
, O
which O
supports O
six O
glucosyl B-chemical
residues O
( O
Fig O
. O
5E O
). O
Additional O
residues B-structure_element
surrounding O
the O
binding B-site
site I-site
, O
including O
Y369 B-residue_name_number
and O
E412 B-residue_name_number
, O
may O
contribute O
to O
the O
recognition O
of O
more O
highly O
decorated O
XyG B-chemical
, O
but O
precisely O
how O
this O
is O
mediated O
is O
presently O
unclear O
. O
While O
this O
may O
occur O
for O
a O
number O
of O
reasons O
in O
crystal B-evidence
structures I-evidence
, O
it O
is O
likely O
that O
the O
poor O
ligand O
density O
even O
at O
higher O
resolution O
is O
due O
to O
movement O
or O
multiple O
orientations O
of O
the O
sugar B-chemical
averaged O
throughout O
the O
lattice O
. O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
have O
distinct O
, O
coordinated O
functions O
in O
vivo O
. O
To O
disentangle O
the O
functions O
of O
SGBP B-protein
- I-protein
A I-protein
and O
SGBP B-protein
- I-protein
B I-protein
in O
XyG B-chemical
recognition O
and O
uptake O
, O
we O
created O
individual O
in B-experimental_method
- I-experimental_method
frame I-experimental_method
deletion I-experimental_method
and I-experimental_method
complementation I-experimental_method
mutant I-experimental_method
strains O
of O
B B-species
. I-species
ovatus I-species
. O
A O
strain O
in O
which O
the O
entire O
XyGUL B-gene
is O
deleted B-experimental_method
displays O
a O
lag B-evidence
of O
24 O
. O
5 O
h O
during O
growth O
on O
glucose B-chemical
compared O
to O
the O
isogenic O
parental O
wild B-protein_state
- I-protein_state
type I-protein_state
( O
WT B-protein_state
) O
Δtdk B-mutant
strain O
, O
for O
which O
exponential O
growth O
lags B-evidence
for O
19 O
. O
8 O
h O
( O
see O
Fig O
. O
S8D O
). O
Complementation B-experimental_method
of O
the O
ΔSGBP B-mutant
- I-mutant
A I-mutant
strain O
( O
ΔSGBP B-mutant
- I-mutant
A I-mutant
:: O
SGBP B-protein
- I-protein
A I-protein
) O
restores O
growth O
to O
wild B-protein_state
- I-protein_state
type I-protein_state
rates O
on O
xyloglucan B-chemical
and O
XyGO1 B-chemical
, O
yet O
the O
calculated O
rate O
of O
the O
complemented O
strain O
is O
~ O
72 O
% O
that O
of O
the O
WT B-protein_state
Δtdk B-mutant
strain O
on O
XyGO2 B-chemical
; O
similar O
results O
were O
obtained O
for O
the O
SGBP B-protein
- I-protein
B I-protein
complemented O
strain O
despite O
the O
fact O
that O
the O
growth O
curves O
do O
not O
appear O
much O
different O
( O
see O
Fig O
. O
S8C O
and O
F O
). O
This O
result O
mirrors O
our O
previous O
data O
for O
the O
canonical O
Sus B-complex_assembly
of O
B B-species
. I-species
thetaiotaomicron I-species
, O
which O
revealed O
that O
a O
homologous O
ΔsusD B-mutant
mutant B-protein_state
is O
unable O
to O
grow O
on O
starch B-chemical
or O
malto B-chemical
- I-chemical
oligosaccharides I-chemical
, O
despite O
normal O
cell O
surface O
expression O
of O
all O
other O
PUL B-gene
- O
encoded O
proteins O
. O
More O
recently O
, O
we O
demonstrated O
that O
this O
phenotype O
is O
due O
to O
the O
loss O
of O
the O
physical O
presence O
of O
SusD B-protein
; O
complementation B-experimental_method
of O
ΔsusD B-mutant
with O
SusD B-mutant
*, I-mutant
a O
triple B-protein_state
site I-protein_state
- I-protein_state
directed I-protein_state
mutant I-protein_state
( O
W96A B-mutant
W320A B-mutant
Y296A B-mutant
) O
that O
ablates B-protein_state
glycan I-protein_state
binding I-protein_state
, O
restores O
B B-species
. I-species
thetaiotaomicron I-species
growth O
on O
malto B-chemical
- I-chemical
oligosaccharides I-chemical
and O
starch B-chemical
when O
sus B-gene
transcription O
is O
induced O
by O
maltose B-chemical
addition O
. O
The O
specific O
glycan B-chemical
signal O
that O
upregulates O
BoXyGUL B-gene
is O
currently O
unknown O
. O
The O
precise O
reason O
for O
this O
lag B-evidence
is O
unclear O
, O
but O
recapitulating O
our O
findings O
on O
the O
role O
of O
SusD B-protein
in O
malto B-chemical
- I-chemical
oligosaccharide I-chemical
sensing O
in O
B B-species
. I-species
thetaiotaomicron I-species
, O
this O
extended O
lag B-evidence
may O
be O
due O
to O
inefficient O
import O
and O
thus O
sensing O
of O
xyloglucan B-chemical
in O
the O
environment O
in O
the O
absence O
of O
glycan B-chemical
binding O
by O
essential O
SGBPs B-protein_type
. O
Our O
previous O
work O
demonstrates O
that O
B B-species
. I-species
ovatus I-species
cells O
grown O
in O
minimal O
medium O
plus O
glucose B-chemical
express O
low O
levels O
of O
the O
XyGUL B-gene
transcript O
. O
Thus O
, O
in O
our O
experiments O
, O
we O
presume O
that O
each O
strain O
, O
initially O
grown O
in O
glucose B-chemical
, O
expresses O
low O
levels O
of O
the O
XyGUL B-gene
transcript O
and O
thus O
low O
levels O
of O
the O
XyGUL B-gene
- O
encoded O
surface O
proteins O
, O
including O
the O
vanguard O
GH5 B-protein
. O
Presumably O
without O
glycan B-chemical
binding O
by O
the O
SGBPs B-protein_type
, O
the O
GH5 B-protein
protein O
cannot O
efficiently O
process O
xyloglucan B-chemical
, O
and O
/ O
or O
the O
lack O
of O
SGBP B-protein_type
function O
prevents O
efficient O
capture O
and O
import O
of O
the O
processed O
oligosaccharides B-chemical
. O
Likewise O
, O
such O
cognate O
interactions O
between O
homologous O
protein O
pairs O
such O
as O
SGBP B-protein
- I-protein
A I-protein
and O
its O
TBDT B-protein_type
may O
underlie O
our O
observation O
that O
a O
ΔSGBP B-mutant
- I-mutant
A I-mutant
mutant B-protein_state
cannot O
grow O
on O
xyloglucan B-chemical
. O
The O
ability O
of O
gut O
- O
adapted O
microorganisms B-taxonomy_domain
to O
thrive O
in O
the O
gastrointestinal O
tract O
is O
critically O
dependent O
upon O
their O
ability O
to O
efficiently O
recognize O
, O
cleave O
, O
and O
import O
glycans B-chemical
. O
PUL B-gene
- O
encoded O
TBDTs B-protein_type
in O
Bacteroidetes B-taxonomy_domain
are O
larger O
than O
the O
well O
- O
characterized O
iron B-protein_type
- I-protein_type
targeting I-protein_type
TBDTs I-protein_type
from O
many O
Proteobacteria B-taxonomy_domain
and O
are O
further O
distinguished O
as O
the O
only O
known O
glycan B-protein_type
- I-protein_type
importing I-protein_type
TBDTs I-protein_type
coexpressed O
with O
an O
SGBP B-protein_type
. O
On O
the O
other O
hand O
, O
there O
is O
clear O
evidence O
for O
independent O
TBDTs B-protein_type
in O
Bacteroidetes B-taxonomy_domain
that O
do O
not O
require O
SGBP B-protein_type
association O
for O
activity O
. O
Furthermore O
, O
considering O
the O
broader O
distribution O
of O
TBDTs B-protein_type
in O
PUL B-gene
lacking O
SGBPs B-protein_type
( O
sometimes O
known O
as O
carbohydrate B-gene
utilization I-gene
containing I-gene
TBDT I-gene
[ I-gene
CUT I-gene
] I-gene
loci I-gene
; O
see O
reference O
and O
reviewed O
in O
reference O
) O
across O
bacterial B-taxonomy_domain
phyla O
, O
it O
appears O
that O
the O
intimate O
biophysical O
association O
of O
these O
substrate O
- O
transport O
and O
- O
binding O
proteins O
is O
the O
result O
of O
specific O
evolution O
within O
the O
Bacteroidetes B-taxonomy_domain
. O
Such O
is O
the O
case O
for O
XyGUL B-gene
from O
related O
Bacteroides B-taxonomy_domain
species O
, O
which O
may O
encode O
either O
one O
or O
two O
of O
these O
predicted O
SGBPs B-protein_type
, O
and O
these O
proteins O
vary O
considerably O
in O
length O
. O
Mucosal O
glycan B-chemical
foraging O
enhances O
fitness O
and O
transmission O
of O
a O
saccharolytic O
human O
gut O
bacterial O
symbiont O
The O
PduL B-protein_type
fold B-structure_element
is O
unrelated O
to O
that B-structure_element
of O
Pta B-protein_type
; O
it O
contains O
a O
dimetal B-site
active I-site
site I-site
involved O
in O
a O
catalytic O
mechanism O
distinct O
from O
that O
of O
the O
housekeeping B-protein_state
PTAC B-protein_type
. O
Substrates O
and O
cofactors O
involving O
the O
PTAC B-protein_type
reaction O
are O
shown O
in O
red O
; O
other O
substrates O
and O
enzymes O
are O
shown O
in O
black O
, O
and O
other O
cofactors O
are O
shown O
in O
gray O
. O
Both O
enzymes O
are O
, O
however O
, O
not O
restricted O
to O
fermentative B-taxonomy_domain
organisms I-taxonomy_domain
. O
Remarkably O
, O
after O
removing B-experimental_method
the O
N O
- O
terminal O
putative O
EP B-structure_element
( O
27 B-residue_range
amino I-residue_range
acids I-residue_range
), O
most O
of O
the O
sPduLΔEP B-mutant
protein O
was O
in O
the O
soluble O
fraction O
upon O
cell O
lysis O
. O
Similar O
differences O
in O
solubility O
were O
observed O
for O
pPduL B-protein
and O
rPduL B-protein
when O
comparing O
EP B-protein_state
- I-protein_state
truncated I-protein_state
forms O
to O
the O
full B-protein_state
- I-protein_state
length I-protein_state
protein O
, O
but O
none O
were O
quite O
as O
dramatic O
as O
for O
sPduL B-protein
. O
We O
confirmed O
that O
all O
homologs O
were O
active B-protein_state
( O
S1a O
and O
S1b O
Fig O
). O
Structural O
overview O
of O
R B-species
. I-species
palustris I-species
PduL B-protein_type
from O
the O
grm3 B-gene
locus I-gene
. O
Metal B-site
coordination I-site
residues I-site
are O
highlighted O
in O
light O
blue O
and O
CoA B-site
contacting I-site
residues I-site
in O
magenta O
, O
residues O
contacting O
the O
CoA B-chemical
of O
the O
other O
chain O
are O
also O
outlined O
. O
( O
b O
) O
Cartoon O
representation O
of O
the O
structure B-evidence
colored O
by O
domains O
and O
including O
secondary O
structure B-evidence
numbering O
. O
Residues O
100 O
% O
conserved O
across O
all O
PduL B-protein_type
homologs O
in O
our O
dataset O
are O
noted O
with O
an O
asterisk O
, O
and O
residues O
conserved O
in O
over O
90 O
% O
of O
sequences O
are O
noted O
with O
a O
colon O
. O
The O
sequences O
aligning O
to O
the O
PF06130 B-structure_element
domain O
( O
determined O
by O
BLAST O
) O
are O
highlighted O
in O
red O
and O
blue O
. O
Distances O
between O
atom O
centers O
are O
indicated O
in O
Å O
. O
( O
a O
) O
Coenzyme B-chemical
A I-chemical
containing O
, O
( O
b O
) O
phosphate B-protein_state
- I-protein_state
bound I-protein_state
structure B-evidence
. O
The O
asterisk O
and O
double O
arrow O
marks O
the O
location O
of O
the O
π O
O
π O
interaction O
between O
F116 B-residue_name_number
and O
the O
CoA B-chemical
base O
of O
the O
other O
dimer B-oligomeric_state
chain O
. O
The O
first O
zinc B-chemical
ion O
( O
Zn1 B-chemical
) O
is O
in O
a O
tetrahedral O
coordination O
state O
with O
His48 B-residue_name_number
, O
His50 B-residue_name_number
, O
Glu109 B-residue_name_number
, O
and O
the O
CoA B-chemical
sulfur B-chemical
( O
Fig O
4a O
). O
The O
phosphate B-protein_state
- I-protein_state
bound I-protein_state
structure B-evidence
aligns B-experimental_method
well O
with O
the O
CoA B-protein_state
- I-protein_state
bound I-protein_state
structure B-evidence
( O
0 O
. O
43 O
Å O
rmsd B-evidence
over O
2 O
, O
361 O
atoms O
for O
the O
monomer B-oligomeric_state
, O
0 O
. O
83 O
Å O
over O
5 O
, O
259 O
aligned O
atoms O
for O
the O
dimer B-oligomeric_state
). O
Upon O
deletion B-experimental_method
of O
the O
putative O
EP B-structure_element
( O
residues O
1 B-residue_range
I-residue_range
47 I-residue_range
for O
rPduL B-protein
, O
and O
1 B-residue_range
I-residue_range
20 I-residue_range
for O
pPduL B-protein
), O
there O
was O
a O
distinct O
change O
in O
the O
elution O
profiles O
( O
Fig O
5b O
and O
5c O
respectively O
, O
blue O
curves O
). O
In O
contrast O
, O
rPduLΔEP B-mutant
eluted O
as O
one O
smaller O
oligomer O
, O
possibly O
a O
dimer B-oligomeric_state
. O
Curiously O
, O
while O
the O
housekeeping B-protein_state
Pta B-protein_type
could O
provide O
this O
function O
, O
and O
indeed O
does O
so O
in O
the O
case O
of O
one O
type O
of O
ethanolamine B-complex_assembly
- I-complex_assembly
utilizing I-complex_assembly
( I-complex_assembly
EUT I-complex_assembly
) I-complex_assembly
BMC I-complex_assembly
, O
the O
evolutionarily O
unrelated O
PduL B-protein_type
fulfills O
this O
function O
for O
the O
majority O
of O
metabolosomes B-complex_assembly
using O
a O
novel O
structure B-evidence
and O
active B-site
site I-site
for O
convergent O
evolution O
of O
function O
. O
Refined O
domain O
assignment O
based O
on O
our O
structure B-evidence
should O
be O
able O
to O
predict O
domains O
of O
PF06130 B-structure_element
homologs O
much O
more O
accurately O
. O
For O
BMC B-complex_assembly
- O
encapsulated O
proteins O
to O
properly O
function O
together O
, O
they O
must O
be O
targeted O
to O
the O
lumen O
and O
assemble O
into O
an O
organization O
that O
facilitates O
substrate O
/ O
product O
channeling O
among O
the O
different O
catalytic B-site
sites I-site
of O
the O
signature O
and O
core O
enzymes O
. O
All O
of O
the O
metal B-site
- I-site
coordinating I-site
residues I-site
( O
Fig O
2a O
) O
are O
absolutely B-protein_state
conserved I-protein_state
, O
implicating O
them O
in O
catalysis O
or O
the O
correct O
spatial O
orientation O
of O
the O
substrates O
. O
However O
, O
for O
the O
clostripain B-protein_type
family I-protein_type
( O
denoted O
C11 B-protein_type
), O
little O
is O
currently O
known O
. O
The O
structure B-experimental_method
was I-experimental_method
analyzed I-experimental_method
, O
and O
the O
enzyme O
was O
biochemically B-experimental_method
characterized I-experimental_method
to O
provide O
the O
first O
structure O
/ O
function O
correlation O
for O
a O
C11 B-protein_type
peptidase I-protein_type
. O
A O
single B-ptm
cleavage I-ptm
was O
observed O
in O
the O
polypeptide O
chain O
at O
Lys147 B-residue_name_number
( O
Fig O
. O
1 O
, O
A O
and O
B O
), O
where O
both O
ends O
of O
the O
cleavage B-site
site I-site
are O
fully O
visible O
and O
well O
ordered O
in O
the O
electron B-evidence
density I-evidence
. O
The O
secondary O
structure O
of O
PmC11 B-protein
from O
the O
crystal B-evidence
structure I-evidence
is O
mapped O
onto O
its O
sequence O
with O
the O
position O
of O
the O
PmC11 B-protein
catalytic B-site
dyad I-site
, O
autocatalytic B-site
cleavage I-site
site I-site
( O
Lys147 B-residue_name_number
), O
and O
S1 B-site
binding I-site
pocket I-site
Asp B-residue_name
( O
Asp177 B-residue_name_number
) O
highlighted O
by O
a O
red O
star O
, O
a O
red O
downturned O
triangle O
, O
and O
a O
red O
upturned O
triangle O
, O
respectively O
. O
Sequences O
around O
the O
catalytic B-site
site I-site
of O
clostripain B-protein
and O
PmC11 B-protein
align O
well O
. O
The O
CTD B-structure_element
of O
PmC11 B-protein
is O
composed O
of O
a O
tight B-structure_element
helical I-structure_element
bundle I-structure_element
formed O
from O
helices B-structure_element
α8 B-structure_element
I-structure_element
α14 I-structure_element
and O
includes O
strands B-structure_element
βC B-structure_element
and O
βF B-structure_element
, O
and O
β B-structure_element
- I-structure_element
hairpin I-structure_element
βD B-structure_element
I-structure_element
βE I-structure_element
. O
The O
CTD B-structure_element
sits O
entirely O
on O
one O
side O
of O
the O
enzyme O
interacting O
only O
with O
α3 B-structure_element
, O
α5 B-structure_element
, O
β9 B-structure_element
, O
and O
the O
loops B-structure_element
surrounding O
β8 B-structure_element
. O
Biochemical B-experimental_method
and I-experimental_method
structural I-experimental_method
characterization I-experimental_method
of O
PmC11 B-protein
. O
A O
, O
ribbon O
representation O
of O
the O
overall O
structure O
of O
PmC11 B-protein
illustrating O
the O
catalytic B-site
site I-site
, O
cleavage O
site O
displacement O
, O
and O
potential O
S1 B-site
binding I-site
site I-site
. O
Km O
and O
Vmax B-evidence
of O
PmC11 B-protein
and O
K147A B-mutant
mutant O
were O
determined O
by O
monitoring O
change O
in O
the O
fluorescence O
corresponding O
to O
AMC O
release O
from O
Bz B-chemical
- I-chemical
R I-chemical
- I-chemical
AMC I-chemical
. O
Five O
of O
the O
α B-structure_element
- I-structure_element
helices I-structure_element
surrounding O
the O
β B-structure_element
- I-structure_element
sheet I-structure_element
of O
PmC11 B-protein
( O
α1 B-structure_element
, O
α2 B-structure_element
, O
α4 B-structure_element
, O
α6 B-structure_element
, O
and O
α7 B-structure_element
) O
are O
found O
in O
similar O
positions O
to O
the O
five O
structurally B-protein_state
conserved I-protein_state
helices B-structure_element
in O
caspases B-protein_type
and O
other O
members O
of O
clan B-protein_type
CD I-protein_type
, O
apart O
from O
family O
C80 B-protein_type
. O
Autoprocessing B-ptm
of O
PmC11 B-protein
Substrate O
Specificity O
of O
PmC11 B-protein
The O
autocatalytic B-ptm
cleavage I-ptm
of O
PmC11 B-protein
at O
Lys147 B-residue_name_number
( O
sequence O
KLK O
O
A O
) O
demonstrates O
that O
the O
enzyme O
accepts O
substrates O
with O
Lys B-residue_name
in O
the O
P1 B-residue_number
position O
. O
This O
pocket B-site
is O
lined O
with O
the O
potential O
functional O
side O
chains O
of O
Asn50 B-residue_name_number
, O
Asp177 B-residue_name_number
, O
and O
Thr204 B-residue_name_number
with O
Gly134 B-residue_name_number
, O
Asp207 B-residue_name_number
, O
and O
Met205 B-residue_name_number
also O
contributing O
to O
the O
pocket B-site
( O
Fig O
. O
2A O
). O
Thus O
, O
Asn50 B-residue_name_number
, O
Asp177 B-residue_name_number
, O
and O
Asp207 B-residue_name_number
are O
most O
likely O
responsible O
for O
the O
substrate O
specificity O
of O
PmC11 B-protein
. O
Cleavage O
of O
Bz B-chemical
- I-chemical
R I-chemical
- I-chemical
AMC I-chemical
by O
PmC11 B-protein
was O
measured O
in O
a O
fluorometric B-experimental_method
activity I-experimental_method
assay I-experimental_method
with O
(+, O
purple O
) O
and O
without O
(, O
red O
) O
Z B-chemical
- I-chemical
VRPR I-chemical
- I-chemical
FMK I-chemical
. O
A O
three B-experimental_method
- I-experimental_method
dimensional I-experimental_method
structural I-experimental_method
overlay I-experimental_method
of O
Z B-chemical
- I-chemical
VRPR I-chemical
- I-chemical
FMK I-chemical
from O
the O
MALT1 B-protein
- I-protein
P I-protein
complex O
onto O
PmC11 B-protein
. O
Comparison O
with O
Clostripain B-protein
In O
support O
of O
these O
findings O
, O
EGTA B-chemical
did O
not O
inhibit O
PmC11 B-protein
suggesting O
that O
, O
unlike O
clostripain B-protein
, O
PmC11 B-protein
does O
not O
require O
Ca2 B-chemical
+ I-chemical
or O
other O
divalent O
cations O
, O
for O
activity O
. O
Several O
other O
members O
of O
clan B-protein_type
CD I-protein_type
require O
processing B-ptm
for O
full B-protein_state
activation I-protein_state
including O
legumain B-protein
, O
gingipain B-protein
- I-protein
R I-protein
, O
MARTX B-protein
- I-protein
CPD I-protein
, O
and O
the O
effector B-protein_type
caspases I-protein_type
, O
e O
. O
g O
. O
caspase B-protein
- I-protein
7 I-protein
. O
Structural O
insights O
into O
the O
regulatory O
mechanism O
of O
the O
Pseudomonas B-species
aeruginosa I-species
YfiBNR B-complex_assembly
system O
In O
response O
to O
cell O
stress O
, O
YfiB B-protein
in O
the O
outer O
membrane O
can O
sequester O
the O
periplasmic O
protein O
YfiR B-protein
, O
releasing O
its O
inhibition O
of O
YfiN B-protein
on O
the O
inner O
membrane O
and O
thus O
provoking O
the O
diguanylate O
cyclase O
activity O
of O
YfiN B-protein
to O
induce O
c B-chemical
- I-chemical
di I-chemical
- I-chemical
GMP I-chemical
production O
. O
Biofilm O
formation O
protects O
pathogenic O
bacteria B-taxonomy_domain
from O
antibiotic O
treatment O
, O
and O
c O
- O
di O
- O
GMP O
- O
regulated O
biofilm O
formation O
has O
been O
extensively O
studied O
in O
P B-species
. I-species
aeruginosa I-species
( O
Evans O
,; O
Kirisits O
et O
al O
.,; O
Malone O
,; O
Reinhardt O
et O
al O
.,). O
Recently O
, O
Malone O
and O
coworkers O
identified O
the O
tripartite B-protein_state
c B-chemical
- I-chemical
di I-chemical
- I-chemical
GMP I-chemical
signaling O
module O
system O
YfiBNR B-complex_assembly
( O
also O
known O
as O
AwsXRO B-complex_assembly
( O
Beaumont O
et O
al O
.,; O
Giddens O
et O
al O
.,) O
or O
Tbp B-complex_assembly
( O
Ueda O
and O
Wood O
,)) O
by O
genetic B-experimental_method
screening I-experimental_method
for O
mutants O
that O
displayed O
SCV O
phenotypes O
in O
P B-species
. I-species
aeruginosa I-species
PAO1 I-species
( O
Malone O
et O
al O
.,; O
Malone O
et O
al O
.,). O
More O
recently O
, O
this O
system O
was O
also O
reported O
in O
other O
Gram B-taxonomy_domain
- I-taxonomy_domain
negative I-taxonomy_domain
bacteria I-taxonomy_domain
, O
such O
as O
Escherichia B-species
coli I-species
( O
Hufnagel O
et O
al O
.,; O
Raterman O
et O
al O
.,; O
Sanchez O
- O
Torres O
et O
al O
.,), O
Klebsiella B-species
pneumonia I-species
( O
Huertas O
et O
al O
.,) O
and O
Yersinia B-species
pestis I-species
( O
Ren O
et O
al O
.,). O
After O
the O
sequestration O
of O
YfiR B-protein
by O
YfiB B-protein
, O
the O
c B-chemical
- I-chemical
di I-chemical
- I-chemical
GMP I-chemical
produced O
by O
activated B-protein_state
YfiN B-protein
increases O
the O
biosynthesis O
of O
the O
Pel B-chemical
and O
Psl B-chemical
EPSs B-chemical
, O
resulting O
in O
the O
appearance O
of O
the O
SCV O
phenotype O
, O
which O
indicates O
enhanced O
biofilm O
formation O
( O
Malone O
et O
al O
.,). O
Recently O
, O
we O
solved O
the O
crystal B-evidence
structure I-evidence
of O
YfiR B-protein
in O
both O
the O
non B-protein_state
- I-protein_state
oxidized I-protein_state
and O
the O
oxidized B-protein_state
states O
, O
revealing O
breakage O
/ O
formation O
of O
one O
disulfide B-ptm
bond I-ptm
( O
Cys71 B-residue_name_number
- O
Cys110 B-residue_name_number
) O
and O
local O
conformational O
change O
around O
the O
other O
one O
( O
Cys145 B-residue_name_number
- O
Cys152 B-residue_name_number
), O
indicating O
that O
Cys145 B-residue_name_number
- O
Cys152 B-residue_name_number
plays O
an O
important O
role O
in O
maintaining O
the O
correct O
folding O
of O
YfiR B-protein
( O
Yang O
et O
al O
.,). O
We O
obtained O
two O
crystal B-evidence
forms I-evidence
of O
YfiB B-protein
( O
residues O
34 B-residue_range
I-residue_range
168 I-residue_range
, O
lacking B-protein_state
the O
signal B-structure_element
peptide I-structure_element
from O
residues O
1 B-residue_range
I-residue_range
26 I-residue_range
and O
periplasmic O
residues O
27 B-residue_range
I-residue_range
33 I-residue_range
), O
crystal O
forms O
I O
and O
II O
, O
belonging O
to O
space O
groups O
P21 O
and O
P41 O
, O
respectively O
. O
The O
O
back B-protein_state
to I-protein_state
back I-protein_state
O
dimer B-oligomeric_state
presents O
a O
Y B-protein_state
shape I-protein_state
. O
Therefore O
, O
we O
constructed B-experimental_method
two I-experimental_method
such I-experimental_method
single I-experimental_method
mutants I-experimental_method
of O
YfiB B-protein
( O
YfiBL43P B-mutant
and O
YfiBF48S B-mutant
). O
The O
N O
- O
terminal O
structural O
conformation O
of O
YfiBL43P B-mutant
, O
from O
the O
foremost O
N O
- O
terminus O
to O
residue O
D70 B-residue_name_number
, O
is O
significantly O
altered O
compared O
with O
that O
of O
the O
apo B-protein_state
YfiB B-protein
. O
The O
majority O
of O
the O
α1 B-structure_element
helix I-structure_element
( O
residues O
34 B-residue_range
I-residue_range
43 I-residue_range
) O
is O
invisible O
on O
the O
electron B-evidence
density I-evidence
map I-evidence
, O
and O
the O
α2 B-structure_element
helix I-structure_element
and O
β1 B-structure_element
and O
β2 B-structure_element
strands I-structure_element
are O
rearranged O
to O
form O
a O
long O
loop B-structure_element
containing O
two O
short O
α B-structure_element
- I-structure_element
helix I-structure_element
turns I-structure_element
( O
Fig O
. O
3B O
and O
3C O
), O
thus O
embracing O
the O
YfiR B-protein
dimer B-oligomeric_state
. O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
is O
shown O
in O
cyan O
; O
the O
sulfate B-chemical
ion O
, O
in O
green O
; O
and O
the O
water B-chemical
molecule O
, O
in O
yellow O
. O
( O
D O
) O
Structural B-experimental_method
superposition I-experimental_method
of O
the O
PG B-site
- I-site
binding I-site
sites I-site
of O
apo B-protein_state
YfiB B-protein
and O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
, O
the O
key O
residues O
are O
shown O
in O
stick O
. O
Similarly O
, O
in O
the O
YfiR B-protein_state
- I-protein_state
bound I-protein_state
YfiBL43P B-mutant
structure B-evidence
, O
the O
sulfate B-chemical
ion O
interacts O
with O
the O
side O
- O
chain O
atoms O
of O
D102 B-residue_name_number
( O
corresponding O
to O
D71 B-residue_name_number
in O
Pal B-protein_type
) O
and O
R117 B-residue_name_number
( O
corresponding O
to O
R86 B-residue_name_number
in O
Pal B-protein_type
) O
and O
the O
main O
- O
chain O
amide O
of O
N68 B-residue_name_number
( O
corresponding O
to O
D37 B-residue_name_number
in O
Pal B-protein_type
). O
Therefore O
, O
we O
proposed O
that O
the O
PG B-chemical
- O
binding O
ability O
of O
inactive B-protein_state
YfiB B-protein
might O
be O
weaker O
than O
that O
of O
active B-protein_state
YfiB B-protein
. O
To O
validate O
this O
, O
we O
performed O
a O
microscale B-experimental_method
thermophoresis I-experimental_method
( O
MST B-experimental_method
) O
assay O
to O
measure O
the O
binding B-evidence
affinities I-evidence
of O
PG B-chemical
to O
wild B-protein_state
- I-protein_state
type I-protein_state
YfiB B-protein
and O
YfiBL43P B-mutant
, O
respectively O
. O
As O
the O
experiment O
is O
performed O
in B-protein_state
the I-protein_state
absence I-protein_state
of I-protein_state
YfiR B-protein
, O
it O
suggests O
that O
an O
increase O
in O
the O
PG B-evidence
- I-evidence
binding I-evidence
affinity I-evidence
of O
YfiB B-protein
is O
not O
a O
result O
of O
YfiB B-complex_assembly
- I-complex_assembly
YfiR I-complex_assembly
interaction O
and O
is O
highly O
coupled O
to O
the O
activation O
of O
YfiB B-protein
characterized O
by O
a O
stretched B-protein_state
N I-protein_state
- I-protein_state
terminal I-protein_state
conformation I-protein_state
. O
Malone O
JG O
et O
al O
. O
have O
reported O
that O
F151 B-residue_name_number
, O
E163 B-residue_name_number
, O
I169 B-residue_name_number
and O
Q187 B-residue_name_number
, O
located O
near O
the O
C O
- O
terminus O
of O
YfiR B-protein
, O
comprise O
a O
putative O
YfiN B-site
binding I-site
site I-site
( O
Malone O
et O
al O
.,). O
Interestingly O
, O
these O
residues O
are O
part O
of O
the O
conserved B-site
surface I-site
of O
YfiR B-protein
( O
Fig O
. O
3G O
). O
F151 B-residue_name_number
, O
E163 B-residue_name_number
and O
I169 B-residue_name_number
form O
a O
hydrophobic B-site
core I-site
while O
, O
Q187 B-residue_name_number
is O
located O
at O
the O
end O
of O
the O
α6 B-structure_element
helix I-structure_element
. O
E163 B-residue_name_number
and O
I169 B-residue_name_number
are O
YfiB B-site
- I-site
interacting I-site
residues I-site
of O
YfiR B-protein
, O
in O
which O
E163 B-residue_name_number
forms O
a O
hydrogen O
bond O
with O
R96 B-residue_name_number
of O
YfiB B-protein
( O
Fig O
. O
3D O
- O
II O
) O
and O
I169 B-residue_name_number
is O
involved O
in O
forming O
the O
L166 B-residue_name_number
/ O
I169 B-residue_name_number
/ O
V176 B-residue_name_number
/ O
P178 B-residue_name_number
/ O
L181 B-residue_name_number
hydrophobic B-site
core I-site
for O
anchoring O
F57 B-residue_name_number
of O
YfiB B-protein
( O
Fig O
. O
3D O
- O
I O
( O
ii O
)). O
( O
C O
and O
D O
) O
BIAcore B-experimental_method
data O
and O
analysis O
for O
binding B-evidence
affinities I-evidence
of O
( O
C O
) O
VB6 B-chemical
and O
( O
D O
) O
L B-chemical
- I-chemical
Trp I-chemical
with O
YfiR B-protein
. O
( O
E O
O
G O
) O
ITC B-experimental_method
data O
and O
analysis O
for O
titration B-experimental_method
of O
( O
E O
) O
YfiB B-protein
wild B-protein_state
- I-protein_state
type I-protein_state
, O
( O
F O
) O
YfiBL43P O
, O
and O
( O
G O
) O
YfiBL43P B-mutant
/ O
F57A B-mutant
into O
YfiR B-protein
Structural B-experimental_method
analyses I-experimental_method
revealed O
that O
the O
VB6 B-chemical
and O
L B-chemical
- I-chemical
Trp I-chemical
molecules O
are O
bound B-protein_state
at I-protein_state
the O
periphery O
of O
the O
YfiR B-protein
dimer B-oligomeric_state
, O
but O
not O
at O
the O
dimer B-site
interface I-site
. O
To O
evaluate O
the O
importance O
of O
F57 B-residue_name_number
in O
YfiBL43P B-complex_assembly
- I-complex_assembly
YfiR I-complex_assembly
interaction O
, O
the O
binding B-evidence
affinities I-evidence
of O
YfiBL43P B-mutant
and O
YfiBL43P B-mutant
/ O
F57A B-mutant
for O
YfiR B-protein
were O
measured O
by O
isothermal B-experimental_method
titration I-experimental_method
calorimetry I-experimental_method
( O
ITC B-experimental_method
). O
Provided O
that O
the O
diameter O
of O
the O
widest O
part O
of O
the O
YfiB B-protein
dimer B-oligomeric_state
is O
approximately O
64 O
Å O
, O
which O
is O
slightly O
smaller O
than O
the O
smallest O
diameter O
of O
the O
PG O
pore O
( O
70 O
Å O
) O
( O
Meroueh O
et O
al O
.,), O
the O
YfiB B-protein
dimer B-oligomeric_state
should O
be O
able O
to O
penetrate O
the O
PG O
layer O
. O
A O
direct O
link O
between O
ACC B-protein_type
and O
cancer O
is O
provided O
by O
cancer O
- O
associated O
mutations B-mutant
in O
the O
breast B-protein
cancer I-protein
susceptibility I-protein
gene I-protein
1 I-protein
( O
BRCA1 B-protein
), O
which O
relieve O
inhibitory O
interactions O
of O
BRCA1 B-protein
with O
ACC B-protein_type
. O
Structural B-experimental_method
studies I-experimental_method
on O
the O
functional O
architecture O
of O
intact B-protein_state
ACCs B-protein_type
have O
been O
hindered O
by O
their O
huge O
size O
and O
pronounced O
dynamics O
, O
as O
well O
as O
the O
transient B-protein_state
assembly O
mode O
of O
bacterial B-taxonomy_domain
ACCs B-protein_type
. O
Phosphorylated B-protein_state
Ser80 B-residue_name_number
, O
which O
is O
highly B-protein_state
conserved I-protein_state
only O
in O
higher B-taxonomy_domain
eukaryotes I-taxonomy_domain
, O
presumably O
binds O
into O
the O
Soraphen B-site
A I-site
- I-site
binding I-site
pocket I-site
. O
The O
regulatory O
Ser1201 B-residue_name_number
shows O
only O
moderate B-protein_state
conservation I-protein_state
across O
higher B-taxonomy_domain
eukaryotes I-taxonomy_domain
, O
while O
the O
phosphorylated B-protein_state
Ser1216 B-residue_name_number
is O
highly B-protein_state
conserved I-protein_state
across O
all O
eukaryotes B-taxonomy_domain
. O
In O
yeast B-taxonomy_domain
ACC B-protein_type
, O
phosphorylation B-site
sites I-site
have O
been O
identified O
at O
Ser2 B-residue_name_number
, O
Ser735 B-residue_name_number
, O
Ser1148 B-residue_name_number
, O
Ser1157 B-residue_name_number
and O
Ser1162 B-residue_name_number
( O
ref O
.). O
CDL B-structure_element
is O
composed O
of O
a O
small B-structure_element
, I-structure_element
irregular I-structure_element
four I-structure_element
- I-structure_element
helix I-structure_element
bundle I-structure_element
( O
Lα1 B-structure_element
I-structure_element
4 I-structure_element
) O
and O
tightly O
interacts O
with O
the O
open O
face O
of O
CDC1 B-structure_element
via O
an O
interface B-site
of O
1 O
, O
300 O
Å2 O
involving O
helices B-structure_element
Lα3 B-structure_element
and O
Lα4 B-structure_element
. O
To O
define O
the O
functional O
state O
of O
insect B-experimental_method
- I-experimental_method
cell I-experimental_method
- I-experimental_method
expressed I-experimental_method
ACC B-protein_type
variants O
, O
we O
employed O
mass B-experimental_method
spectrometry I-experimental_method
( O
MS B-experimental_method
) O
for O
phosphorylation B-experimental_method
site I-experimental_method
detection I-experimental_method
. O
The O
N O
- O
terminal O
region O
of O
the O
regulatory B-structure_element
loop I-structure_element
also O
directly O
contacts O
the O
C O
- O
terminal O
region O
of O
CDC2 B-structure_element
leading O
into O
CT B-structure_element
. O
Phosphoserine B-residue_name_number
1157 I-residue_name_number
is O
tightly O
bound O
by O
two O
highly B-protein_state
conserved I-protein_state
arginines B-residue_name
( O
Arg1173 B-residue_name_number
and O
Arg1260 B-residue_name_number
) O
of O
CDC1 B-structure_element
( O
Fig O
. O
1d O
). O
The O
values O
obtained O
for O
dephosphorylated B-protein_state
SceACC B-protein
are O
comparable O
to O
earlier O
measurements O
of O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
yeast B-taxonomy_domain
ACC B-protein_type
expressed B-experimental_method
in I-experimental_method
E B-species
. I-species
coli I-species
. O
To O
compare O
the O
organization O
of O
fungal B-taxonomy_domain
and O
human B-species
ACC B-protein_type
CD B-structure_element
, O
we O
determined B-experimental_method
the I-experimental_method
structure I-experimental_method
of O
a O
human B-species
ACC1 B-mutant
fragment I-mutant
that O
comprises O
the O
BT B-structure_element
and O
CD B-structure_element
domains O
( O
HsaBT B-mutant
- I-mutant
CD I-mutant
), O
but O
lacks B-protein_state
the O
mobile O
BCCP B-structure_element
in O
between O
( O
Fig O
. O
1a O
). O
An O
experimentally B-evidence
phased I-evidence
map I-evidence
was O
obtained O
at O
3 O
. O
7 O
Å O
resolution O
for O
a O
cadmium B-chemical
- O
derivatized O
crystal O
and O
was O
interpreted O
by O
a O
poly O
- O
alanine O
model O
( O
Fig O
. O
1e O
and O
Table O
1 O
). O
Each O
of O
the O
four O
CD B-structure_element
domains O
in O
HsaBT B-mutant
- I-mutant
CD I-mutant
individually O
resembles O
the O
corresponding O
SceCD B-species
domain O
; O
however O
, O
human B-species
and O
yeast B-taxonomy_domain
CDs B-structure_element
exhibit O
distinct O
overall O
structures B-evidence
. O
The O
BT B-structure_element
domain O
of O
HsaBT B-mutant
- I-mutant
CD I-mutant
consists O
of O
a O
helix B-structure_element
that O
is O
surrounded O
at O
its O
N O
terminus O
by O
an O
antiparallel B-structure_element
eight I-structure_element
- I-structure_element
stranded I-structure_element
β I-structure_element
- I-structure_element
barrel I-structure_element
. O
It O
resembles O
the O
BT B-structure_element
of O
propionyl B-protein_type
- I-protein_type
CoA I-protein_type
carboxylase I-protein_type
; O
only O
the O
four O
C O
- O
terminal O
strands B-structure_element
of I-structure_element
the I-structure_element
β I-structure_element
- I-structure_element
barrel I-structure_element
are O
slightly O
tilted O
. O
On O
the O
basis O
of O
MS B-experimental_method
analysis O
of O
insect B-experimental_method
- I-experimental_method
cell I-experimental_method
- I-experimental_method
expressed I-experimental_method
human B-species
full B-protein_state
- I-protein_state
length I-protein_state
ACC B-protein_type
, O
Ser80 B-residue_name_number
shows O
the O
highest O
degree O
of O
phosphorylation B-ptm
( O
90 O
%). O
However O
, O
residual O
phosphorylation B-ptm
levels O
were O
detected O
for O
Ser1204 B-residue_name_number
( O
7 O
%) O
and O
Ser1218 B-residue_name_number
( O
7 O
%) O
in O
the O
same B-structure_element
loop I-structure_element
. O
Besides O
the O
regulatory B-structure_element
loop I-structure_element
, O
also O
the O
phosphopeptide B-site
target I-site
region I-site
for O
BRCA1 B-protein
interaction O
is O
not O
resolved O
presumably O
because O
of O
pronounced O
flexibility O
. O
To O
improve B-experimental_method
crystallizability I-experimental_method
, O
we O
generated B-experimental_method
ΔBCCP B-mutant
variants I-mutant
of O
full B-protein_state
- I-protein_state
length I-protein_state
ACC B-protein_type
, O
which O
, O
based O
on O
SAXS B-experimental_method
analysis I-experimental_method
, O
preserve O
properties O
of O
intact B-protein_state
ACC B-protein_type
( O
Supplementary O
Table O
1 O
and O
Supplementary O
Fig O
. O
2a O
O
c O
). O
For O
CthΔBCCP B-mutant
, O
crystals B-evidence
diffracting O
to O
8 O
. O
4 O
Å O
resolution O
were O
obtained O
. O
On O
the O
basis O
of O
the O
occurrence O
of O
related O
conformational O
changes O
between O
fungal B-taxonomy_domain
and O
human B-species
ACC B-mutant
fragments I-mutant
, O
the O
observed O
set O
of O
conformations O
may O
well O
represent O
general O
states O
present O
in O
all O
eukaryotic B-taxonomy_domain
ACCs B-protein_type
. O
To O
obtain O
a O
comprehensive O
view O
of O
fungal B-taxonomy_domain
ACC B-protein_type
dynamics O
in B-protein_state
solution I-protein_state
, O
we O
employed O
SAXS B-experimental_method
and O
EM B-experimental_method
. O
They O
identify O
the O
connections O
between O
CDN B-structure_element
/ O
CDL B-structure_element
and O
between O
CDC2 B-structure_element
/ O
CT B-structure_element
as O
major O
contributors O
to O
conformational O
heterogeneity O
( O
Supplementary O
Fig O
. O
4a O
, O
b O
). O
Furthermore O
, O
based O
on O
an O
average O
length O
of O
the O
BCCP B-structure_element
I-structure_element
CD I-structure_element
linker I-structure_element
in O
fungal B-taxonomy_domain
ACC B-protein_type
of O
26 B-residue_range
amino I-residue_range
acids I-residue_range
, O
mobility O
of O
the O
BCCP B-structure_element
alone O
would O
not O
be O
sufficient O
to O
bridge O
the O
active B-site
sites I-site
of O
BC B-structure_element
and O
CT B-structure_element
. O
The O
CD B-structure_element
consists O
of O
four O
distinct O
subdomains B-structure_element
and O
acts O
as O
a O
tether O
from O
the O
CT B-structure_element
to O
the O
mobile B-protein_state
BCCP B-structure_element
and O
an O
oriented B-protein_state
BC B-structure_element
domain O
. O
In O
fungal B-taxonomy_domain
ACC B-protein_type
, O
however O
, O
Ser1157 B-residue_name_number
in O
the O
regulatory B-structure_element
loop I-structure_element
of O
the O
CD B-structure_element
is O
the O
only O
phosphorylation B-site
site I-site
that O
has O
been O
demonstrated O
to O
be O
both O
phosphorylated B-protein_state
in O
vivo O
and O
involved O
in O
the O
regulation O
of O
ACC B-protein_type
activity O
. O
A O
comparison O
between O
fungal B-taxonomy_domain
and O
human B-species
ACC B-protein_type
will O
help O
to O
further O
discriminate O
mechanistic O
differences O
that O
contribute O
to O
the O
extended O
control O
and O
polymerization O
of O
human B-species
ACC B-protein_type
. O
In O
their O
study O
, O
mutational B-experimental_method
data I-experimental_method
indicate O
a O
requirement O
for O
BC O
dimerization O
for O
catalytic O
activity O
. O
In O
flACC B-mutant
, O
CDC2 B-structure_element
rotates O
O
120 O
° O
with O
respect O
to O
the O
CT B-structure_element
domain O
. O
A O
second B-structure_element
hinge I-structure_element
can O
be O
identified O
between O
CDC1 B-structure_element
/ O
CDC2 B-structure_element
. O
In O
those O
instances O
the O
Ser1157 B-residue_name_number
residue O
is O
located O
at O
a O
distance O
of O
14 O
O
20 O
Å O
away O
from O
the O
location O
of O
the O
phosphorylated B-protein_state
serine B-residue_name
observed O
here O
, O
based O
on O
superposition B-experimental_method
of O
either O
CDC1 B-structure_element
or O
CDC2 B-structure_element
. O
The O
phosphorylated B-protein_state
central B-structure_element
domain I-structure_element
of O
yeast B-taxonomy_domain
ACC B-protein_type
. O
Architecture O
of O
the O
CD B-structure_element
O
CT B-structure_element
core O
of O
fungal B-taxonomy_domain
ACC B-protein_type
. O
Flexibility O
of O
the O
CDC2 B-structure_element
/ O
CT B-structure_element
and O
CDN B-structure_element
/ O
CDL B-structure_element
hinges B-structure_element
is O
illustrated O
by O
arrows O
. O
The O
inducible B-protein_state
lysine B-protein_type
decarboxylase I-protein_type
LdcI B-protein
is O
an O
important O
enterobacterial B-taxonomy_domain
acid B-protein_type
stress I-protein_type
response I-protein_type
enzyme I-protein_type
whereas O
LdcC B-protein
is O
its O
close O
paralogue O
thought O
to O
play O
mainly O
a O
metabolic O
role O
. O
In O
addition O
, O
the O
biosynthetic B-protein_state
E B-species
. I-species
coli I-species
lysine B-protein_type
decarboxylase I-protein_type
LdcC B-protein
, O
long O
thought O
to O
be O
constitutively O
expressed O
in O
low O
amounts O
, O
was O
demonstrated O
to O
be O
strongly O
upregulated O
by O
fluoroquinolones B-chemical
via O
their O
induction O
of O
RpoS B-protein
. O
A O
direct O
correlation O
between O
the O
level O
of O
cadaverine B-chemical
and O
the O
resistance O
of O
E B-species
. I-species
coli I-species
to O
these O
antibiotics O
commonly O
used O
as O
a O
first O
- O
line O
treatment O
of O
UTI O
could O
be O
established O
. O
Furthermore O
, O
we O
recently O
solved B-experimental_method
the I-experimental_method
structure I-experimental_method
of O
the O
E B-species
. I-species
coli I-species
LdcI B-complex_assembly
- I-complex_assembly
RavA I-complex_assembly
complex O
by O
cryo B-experimental_method
- I-experimental_method
electron I-experimental_method
microscopy I-experimental_method
( O
cryoEM B-experimental_method
) O
and O
combined O
it O
with O
the O
crystal B-evidence
structures I-evidence
of O
the O
individual O
proteins O
. O
CryoEM B-experimental_method
3D B-evidence
reconstructions I-evidence
of O
LdcC B-protein
, O
LdcIa B-protein
and O
LdcI B-complex_assembly
- I-complex_assembly
LARA I-complex_assembly
In O
the O
frame O
of O
this O
work O
, O
we O
produced O
two O
novel O
subnanometer O
resolution O
cryoEM B-experimental_method
reconstructions B-evidence
of O
the O
E B-species
. I-species
coli I-species
lysine B-protein_type
decarboxylases I-protein_type
at O
pH B-protein_state
optimal I-protein_state
for O
their O
enzymatic O
activity O
O
a O
5 O
. O
5 O
Å O
resolution O
cryoEM B-experimental_method
map B-evidence
of O
the O
LdcC B-protein
( O
pH B-protein_state
7 I-protein_state
. I-protein_state
5 I-protein_state
) O
for O
which O
no O
3D O
structural O
information O
has O
been O
previously O
available O
( O
Figs O
1A O
, O
B O
and O
S1 O
), O
and O
a O
6 O
. O
1 O
Å O
resolution O
cryoEM B-experimental_method
map B-evidence
of O
the O
LdcIa B-protein
, O
( O
pH B-protein_state
6 I-protein_state
. I-protein_state
2 I-protein_state
) O
( O
Figs O
1C O
, O
D O
and O
S2 O
). O
Zooming O
in O
the O
variations O
in O
the O
PLP B-structure_element
- I-structure_element
SD I-structure_element
shows O
that O
most O
of O
the O
structural O
changes O
concern O
displacements O
in O
the O
active B-site
site I-site
( O
Fig O
. O
3C O
O
F O
). O
An O
inhibitor O
of O
the O
LdcI B-protein
and O
LdcC B-protein
activity O
, O
the O
stringent B-chemical
response I-chemical
alarmone I-chemical
ppGpp B-chemical
, O
is O
known O
to O
bind O
at O
the O
interface B-site
between O
neighboring O
monomers B-oligomeric_state
within O
each O
ring B-structure_element
( O
Fig O
. O
S4 O
). O
Thus O
, O
to O
advance O
beyond O
our O
experimental O
confirmation O
of O
the O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheet I-structure_element
as O
a O
major O
determinant O
of O
the O
capacity O
of O
a O
particular O
lysine B-protein_type
decarboxylase I-protein_type
to O
form O
a O
cage O
with O
RavA B-protein
, O
we O
set O
out O
to O
investigate O
whether O
certain B-structure_element
residues I-structure_element
in O
this O
β B-structure_element
- I-structure_element
sheet I-structure_element
are O
conserved B-protein_state
in O
lysine B-protein_type
decarboxylases I-protein_type
of O
different O
enterobacteria B-taxonomy_domain
that O
have O
the O
ravA B-gene
- I-gene
viaA I-gene
operon I-gene
in O
their O
genome O
. O
The O
third O
and O
most O
remarkable O
finding O
was O
that O
exactly O
the O
same O
separation O
into O
O
LdcI B-protein_type
- I-protein_type
like I-protein_type
O
and O
O
LdcC B-protein_type
- I-protein_type
like I-protein_type
groups O
can O
be O
obtained O
based O
on O
a O
comparison O
of O
the O
C O
- O
terminal O
β B-structure_element
- I-structure_element
sheets I-structure_element
only O
, O
without O
taking O
the O
rest O
of O
the O
primary O
sequence O
into O
account O
. O
Together O
with O
the O
apo B-protein_state
- O
LdcI B-protein
and O
ppGpp B-complex_assembly
- I-complex_assembly
LdcIi I-complex_assembly
crystal B-evidence
structures I-evidence
, O
our O
cryoEM B-experimental_method
reconstructions B-evidence
provide O
a O
structural O
framework O
for O
future O
studies O
of O
structure O
- O
function O
relationships O
of O
lysine B-protein_type
decarboxylases I-protein_type
from O
other O
enterobacteria B-taxonomy_domain
and O
even O
of O
their O
homologues O
outside O
Enterobacteriaceae B-taxonomy_domain
. O
For O
example O
, O
the O
lysine B-protein_type
decarboxylase I-protein_type
of O
Eikenella B-species
corrodens I-species
is O
thought O
to O
play O
a O
major O
role O
in O
the O
periodontal O
disease O
and O
its O
inhibitors O
were O
shown O
to O
retard O
gingivitis O
development O
. O
The O
dashed O
circle O
indicates O
the O
central O
region B-structure_element
that O
remains O
virtually O
unchanged O
between O
all O
the O
structures B-evidence
, O
while O
the O
periphery O
undergoes O
visible O
movements O
. O
( O
A O
) O
LdcIi B-protein
crystal B-evidence
structure I-evidence
, O
with O
one O
ring B-structure_element
represented O
as O
a O
grey O
surface O
and O
the O
second O
as O
a O
cartoon O
. O
Analysis O
of O
the O
LdcIC B-mutant
and O
LdcCI B-mutant
chimeras B-mutant
. O
With O
the O
exception O
of O
the O
human B-species
RhCG B-protein
structure B-evidence
, O
no O
structural O
information O
is O
available O
for O
eukaryotic B-taxonomy_domain
ammonium B-protein_type
transporters I-protein_type
. O
Ammonium B-chemical
transport O
is O
tightly O
regulated O
. O
By O
binding O
tightly O
to O
Amt B-protein_type
proteins I-protein_type
without O
inducing O
a O
conformational O
change O
in O
the O
transporter B-protein_type
, O
GlnK B-protein_type
sterically O
blocks O
ammonium B-chemical
conductance O
when O
nitrogen O
levels O
are O
sufficient O
. O
Under O
conditions O
of O
nitrogen B-chemical
limitation O
, O
GlnK B-protein_type
becomes O
uridylated B-protein_state
, O
blocking O
its O
ability O
to O
bind O
and O
inhibit O
Amt B-protein_type
proteins I-protein_type
. O
General O
architecture O
of O
Mep2 B-protein_type
ammonium B-protein_type
transceptors I-protein_type
The O
Mep2 B-protein
protein O
of O
S B-species
. I-species
cerevisiae I-species
( O
ScMep2 B-protein
) O
was O
overexpressed B-experimental_method
in O
S B-species
. I-species
cerevisiae I-species
in O
high O
yields O
, O
enabling O
structure B-experimental_method
determination I-experimental_method
by O
X B-experimental_method
- I-experimental_method
ray I-experimental_method
crystallography I-experimental_method
using O
data O
to O
3 O
. O
2 O
Å O
resolution O
by O
molecular B-experimental_method
replacement I-experimental_method
( O
MR B-experimental_method
) O
with O
the O
archaebacterial B-taxonomy_domain
Amt B-protein
- I-protein
1 I-protein
structure B-evidence
( O
see O
Methods O
section O
). O
Unless O
specifically O
stated O
, O
the O
drawn O
conclusions O
also O
apply O
to O
ScMep2 B-protein
. O
In O
addition O
to O
changing O
the O
RxK B-structure_element
motif I-structure_element
, O
the O
movement O
of O
ICL1 B-structure_element
has O
another O
, O
crucial O
functional O
consequence O
. O
Finally O
, O
the O
important O
ICL3 B-structure_element
linking O
the O
pseudo B-structure_element
- I-structure_element
symmetrical I-structure_element
halves I-structure_element
( O
TM1 B-structure_element
- I-structure_element
5 I-structure_element
and O
TM6 B-structure_element
- I-structure_element
10 I-structure_element
) O
of O
the O
transporter B-protein_type
is O
also O
shifted O
up O
to O
O
10 O
Å O
and O
forms O
an O
additional O
barrier O
that O
closes O
the O
channel B-site
on O
the O
cytoplasmic O
side O
( O
Fig O
. O
5 O
). O
In O
Amt B-protein
- I-protein
1 I-protein
and O
other O
bacterial B-taxonomy_domain
ammonium B-protein_type
transporters I-protein_type
, O
these O
CTR B-structure_element
residues O
interact O
with O
residues O
within O
the O
N B-structure_element
- I-structure_element
terminal I-structure_element
half I-structure_element
of O
the O
protein O
. O
For O
ScMep2 B-protein
, O
Ser457 B-residue_name_number
is O
the O
most O
C O
- O
terminal O
residue O
for O
which O
electron B-evidence
density I-evidence
is O
visible O
, O
indicating O
that O
the O
region O
beyond O
Ser457 B-residue_name_number
is O
disordered B-protein_state
. O
In O
CaMep2 B-protein
, O
the O
visible O
part O
of O
the O
sequence O
extends O
for O
two O
residues O
beyond O
Ser453 B-residue_name_number
( O
Fig O
. O
6 O
). O
Density B-evidence
for O
ICL3 B-structure_element
and O
the O
CTR B-structure_element
beyond O
residue O
Arg415 B-residue_name_number
is O
missing O
in O
the O
442Δ B-mutant
mutant B-protein_state
, O
and O
the O
density B-evidence
for O
the O
other O
ICLs B-structure_element
including O
ICL1 B-structure_element
is O
generally O
poor O
with O
visible O
parts O
of O
the O
structure B-evidence
having O
high O
B O
- O
factors O
( O
Fig O
. O
7 O
). O
We O
therefore O
predict O
that O
phosphorylation B-ptm
of O
Ser453 B-residue_name_number
will O
result O
in O
steric O
clashes O
as O
well O
as O
electrostatic O
repulsion O
, O
which O
in O
turn O
might O
cause O
substantial O
conformational O
changes O
within O
the O
CTR B-structure_element
. O
To O
supplement O
the O
crystal B-evidence
structures I-evidence
, O
we O
also O
performed O
modelling B-experimental_method
and O
MD B-experimental_method
studies O
of O
WT B-protein_state
CaMep2 B-protein
, O
the O
DD B-mutant
mutant I-mutant
and O
phosphorylated B-protein_state
protein O
( O
S453J B-mutant
). O
The O
protein O
is O
structurally B-protein_state
stable I-protein_state
throughout O
the O
simulation B-experimental_method
with O
little O
deviation O
in O
the O
other O
parts O
of O
the O
protein O
. O
Finally O
, O
the O
S453J B-mutant
mutant B-protein_state
is O
also O
stable B-protein_state
throughout O
the O
200 O
- O
ns O
simulation B-experimental_method
and O
has O
an O
average O
backbone O
deviation O
of O
O
3 O
. O
8 O
Å O
, O
which O
is O
similar O
to O
the O
DD B-mutant
mutant I-mutant
. O
The O
distance B-evidence
between O
the O
phosphate B-chemical
of O
Sep453 B-residue_name_number
and O
the O
acidic O
oxygen O
atoms O
of O
Glu420 B-residue_name_number
is O
initially O
O
11 O
Å O
, O
but O
increases O
to O
> O
30 O
Å O
after O
200 O
ns O
. O
In O
Arabidopsis B-species
thaliana I-species
Amt B-protein
- I-protein
1 I-protein
; I-protein
1 I-protein
, O
phosphorylation B-ptm
of O
the O
CTR B-structure_element
residue O
T460 B-residue_name_number
under O
conditions O
of O
high O
ammonium B-chemical
inhibits O
transport O
activity O
, O
that O
is O
, O
the O
default O
( O
non B-protein_state
- I-protein_state
phosphorylated I-protein_state
) O
state O
of O
the O
plant B-taxonomy_domain
transporter B-protein_type
is O
open B-protein_state
. O
In O
addition O
, O
ICL1 B-structure_element
has O
shifted O
inwards O
to O
contribute O
to O
the O
channel B-site
closure O
by O
engaging O
His2 B-residue_name_number
from O
the O
twin B-structure_element
- I-structure_element
His I-structure_element
motif I-structure_element
via O
hydrogen O
bonding O
with O
a O
highly B-protein_state
conserved I-protein_state
tyrosine B-residue_name
hydroxyl O
group O
. O
However O
, O
even O
the O
otherwise O
highly O
similar O
Mep2 B-protein_type
proteins I-protein_type
of O
S B-species
. I-species
cerevisiae I-species
and O
C B-species
. I-species
albicans I-species
have O
different O
structures B-evidence
for O
their O
CTRs B-structure_element
( O
Fig O
. O
1 O
and O
Supplementary O
Fig O
. O
6 O
). O
With O
regards O
to O
plant B-taxonomy_domain
AMTs B-protein_type
, O
it O
has O
been O
proposed O
that O
phosphorylation B-ptm
at O
T460 B-residue_name_number
generates O
conformational O
changes O
that O
would O
close O
the O
neighbouring O
pore B-site
via O
the O
C B-structure_element
terminus I-structure_element
. O
This O
assumption O
was O
based O
partly O
on O
a O
homology B-experimental_method
model I-experimental_method
for O
Amt B-protein
- I-protein
1 I-protein
; I-protein
1 I-protein
based O
on O
the O
( O
open B-protein_state
) O
archaebacterial B-taxonomy_domain
AfAmt B-protein
- I-protein
1 I-protein
structure B-evidence
, O
which O
suggested O
that O
the O
C B-structure_element
terminus I-structure_element
of O
Amt B-protein
- I-protein
1 I-protein
; I-protein
1 I-protein
would O
extend O
further O
to O
the O
neighbouring O
monomer B-oligomeric_state
. O
In O
addition O
, O
the O
considerable O
differences O
between O
structurally O
resolved O
CTR B-structure_element
domains O
means O
that O
the O
exact O
environment O
of O
T460 B-residue_name_number
in O
Amt B-protein
- I-protein
1 I-protein
; I-protein
1 I-protein
is O
also O
not O
known O
( O
Supplementary O
Fig O
. O
6 O
). O
We O
propose O
that O
intra B-site
- I-site
monomeric I-site
CTR I-site
- I-site
ICL1 I-site
/ I-site
ICL3 I-site
interactions I-site
lie O
at O
the O
basis O
of O
regulation O
of O
both O
fungal B-taxonomy_domain
and O
plant B-taxonomy_domain
ammonium B-protein_type
transporters I-protein_type
; O
close O
interactions O
generate O
open B-protein_state
channels B-site
, O
whereas O
the O
lack B-protein_state
of I-protein_state
O
intra O
-' O
interactions O
leads O
to O
inactive B-protein_state
states O
. O
The O
need O
to O
regulate O
in O
opposite O
ways O
may O
be O
the O
reason O
why O
the O
phosphorylation B-site
sites I-site
are O
in O
different O
parts O
of O
the O
CTR B-structure_element
, O
that O
is O
, O
centrally O
located O
close O
to O
the O
ExxGxD B-structure_element
motif I-structure_element
in O
AMTs B-protein_type
and O
peripherally O
in O
Mep2 B-protein
. O
With O
respect O
to O
ammonium B-chemical
transport O
, O
phosphorylation B-ptm
has O
thus O
far O
only O
been O
shown O
for O
A B-species
. I-species
thaliana I-species
AMTs B-protein_type
and O
for O
S B-species
. I-species
cerevisiae I-species
Mep2 B-protein
( O
refs O
). O
The O
region O
showing O
ICL1 B-structure_element
( O
blue O
), O
ICL3 B-structure_element
( O
green O
) O
and O
the O
CTR B-structure_element
( O
red O
) O
is O
boxed O
for O
comparison O
. O
The O
grey O
sequences O
at O
the O
C O
termini O
of O
CaMep2 B-protein
and O
ScMep2 B-protein
are O
not O
visible O
in O
the O
structures B-evidence
and O
are O
likely B-protein_state
disordered I-protein_state
. O
( O
a O
) O
ICL1 B-structure_element
in O
AfAmt B-protein
- I-protein
1 I-protein
( O
light O
blue O
) O
and O
CaMep2 B-protein
( O
dark O
blue O
), O
showing O
unwinding O
and O
inward O
movement O
in O
the O
fungal B-taxonomy_domain
protein O
. O
( O
b O
) O
Stereo O
diagram O
viewed O
from O
the O
cytosol O
of O
ICL1 B-structure_element
, O
ICL3 B-structure_element
( O
green O
) O
and O
the O
CTR B-structure_element
( O
red O
) O
in O
AfAmt B-protein
- I-protein
1 I-protein
( O
light O
colours O
) O
and O
CaMep2 B-protein
( O
dark O
colours O
). O
Views O
from O
the O
cytosol O
for O
CaMep2 B-protein
( O
left O
) O
and O
AfAmt B-protein
- I-protein
1 I-protein
, O
highlighting O
the O
large O
differences O
in O
conformation O
of O
the O
conserved B-protein_state
residues O
in O
ICL1 B-structure_element
( O
RxK O
motif O
; O
blue O
), O
ICL2 B-structure_element
( O
ER B-structure_element
motif I-structure_element
; O
cyan O
), O
ICL3 B-structure_element
( O
green O
) O
and O
the O
CTR B-structure_element
( O
red O
). O
The O
labelled O
residues O
are O
analogous O
within O
both O
structures B-evidence
. O
The O
Npr1 B-protein
kinase B-protein_type
target O
Ser453 B-residue_name_number
is O
dephosphorylated B-protein_state
and O
located O
in O
an O
electronegative B-site
pocket I-site
. O
Missing O
regions O
are O
labelled O
. O
( O
b O
) O
Stereo O
superpositions B-experimental_method
of O
WT B-protein_state
CaMep2 B-protein
and O
the O
truncation B-protein_state
mutant I-protein_state
. O
( O
a O
) O
Cytoplasmic O
view O
of O
the O
DD B-mutant
mutant I-mutant
trimer B-oligomeric_state
, O
with O
WT B-protein_state
CaMep2 B-protein
superposed B-experimental_method
in O
grey O
for O
one O
of O
the O
monomers B-oligomeric_state
. O
The O
arrow O
indicates O
the O
phosphorylation B-site
site I-site
. O
( O
b O
) O
Monomer B-oligomeric_state
side O
- O
view O
superposition B-experimental_method
of O
WT B-protein_state
CaMep2 B-protein
and O
the O
DD B-mutant
mutant I-mutant
, O
showing O
the O
conformational O
change O
and O
disorder O
around O
the O
ExxGxD B-structure_element
motif I-structure_element
. O
Schematic O
model O
for O
phosphorylation O
- O
based O
regulation O
of O
Mep2 B-protein
ammonium O
transporters O
. O
Upon O
phosphorylation B-ptm
and O
mimicked B-protein_state
by O
the O
CaMep2 B-protein
S453D B-mutant
and O
DD B-mutant
mutants I-mutant
( O
ii O
), O
the O
region O
around O
the O
ExxGxD B-structure_element
motif I-structure_element
undergoes O
a O
conformational O
change O
that O
results O
in O
the O
CTR B-structure_element
interacting O
with O
the O
inward O
- O
moving O
ICL3 B-structure_element
, O
opening O
the O
channel B-site
( O
full O
circle O
) O
( O
iii O
). O
The O
open B-protein_state
- O
channel B-site
Mep2 B-protein
structure B-evidence
is O
represented O
by O
archaebacterial B-taxonomy_domain
Amt B-protein
- I-protein
1 I-protein
and O
shown O
in O
lighter O
colours O
consistent O
with O
Fig O
. O
4 O
. O
An O
extended B-protein_state
U2AF65 B-structure_element
I-structure_element
RNA I-structure_element
- I-structure_element
binding I-structure_element
domain I-structure_element
recognizes O
the O
3 B-site
I-site
splice I-site
site I-site
signal O
The O
U2AF65 B-protein
linker B-structure_element
residues O
between O
the O
dual O
RNA B-structure_element
recognition I-structure_element
motifs I-structure_element
( O
RRMs B-structure_element
) O
recognize O
the O
central O
nucleotide B-chemical
, O
whereas O
the O
N O
- O
and O
C O
- O
terminal O
RRM B-structure_element
extensions I-structure_element
recognize O
the O
3 B-site
I-site
terminus I-site
and O
third B-residue_number
nucleotide B-chemical
. O
The O
differential O
skipping O
or O
inclusion O
of O
alternatively O
spliced O
pre B-structure_element
- I-structure_element
mRNA I-structure_element
regions I-structure_element
is O
a O
major O
source O
of O
diversity O
for O
nearly O
all O
human B-species
gene O
transcripts O
. O
High O
- O
resolution O
structures B-evidence
of O
intact B-protein_state
splicing B-complex_assembly
factor I-complex_assembly
I-complex_assembly
RNA I-complex_assembly
complexes O
would O
offer O
key O
insights O
regarding O
the O
juxtaposition O
of O
the O
distinct O
splice B-site
site I-site
consensus O
sequences O
and O
their O
relationship O
to O
disease O
- O
causing O
point O
mutations O
. O
Likewise O
, O
both O
U2AF651 B-mutant
, I-mutant
2L I-mutant
and O
full B-protein_state
- I-protein_state
length I-protein_state
U2AF65 B-protein
showed O
similar O
sequence B-evidence
specificity I-evidence
for O
U B-structure_element
- I-structure_element
rich I-structure_element
stretches I-structure_element
in O
the O
5 B-site
- I-site
region I-site
of O
the O
Py B-chemical
tract I-chemical
and O
promiscuity O
for O
C B-structure_element
- I-structure_element
rich I-structure_element
regions I-structure_element
in O
the O
3 B-site
- I-site
region I-site
( O
Fig O
. O
1c O
, O
Supplementary O
Fig O
. O
1e O
O
h O
). O
U2AF65 B-protein_state
- I-protein_state
bound I-protein_state
Py B-chemical
tract I-chemical
comprises O
nine O
contiguous B-structure_element
nucleotides B-chemical
An O
extended B-protein_state
conformation I-protein_state
of O
the O
U2AF65 B-protein
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
traverses O
across O
the O
α B-structure_element
- I-structure_element
helical I-structure_element
surface I-structure_element
of O
RRM1 B-structure_element
and O
the O
central O
β B-structure_element
- I-structure_element
strands I-structure_element
of O
RRM2 B-structure_element
and O
is O
well O
defined O
in O
the O
electron B-evidence
density I-evidence
( O
Fig O
. O
2b O
). O
We O
compare O
the O
global O
conformation O
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
with O
the O
prior O
dU2AF651 B-mutant
, I-mutant
2 I-mutant
crystal B-evidence
structure I-evidence
and O
U2AF651 B-mutant
, I-mutant
2 I-mutant
NMR B-experimental_method
structure B-evidence
in O
the O
Supplementary O
Discussion O
and O
Supplementary O
Fig O
. O
2 O
. O
The O
U2AF651 B-mutant
, I-mutant
2L I-mutant
RRM2 B-structure_element
, O
the O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
and O
RRM1 B-structure_element
concomitantly O
recognize O
the O
three O
central O
nucleotides B-chemical
of O
the O
Py B-chemical
tract I-chemical
, O
which O
are O
likely O
to O
coordinate O
the O
conformational O
arrangement O
of O
these O
disparate O
portions O
of O
the O
protein O
. O
Residues O
in O
the O
C B-structure_element
- I-structure_element
terminal I-structure_element
region I-structure_element
of O
the O
U2AF65 B-protein
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
comprise O
a O
centrally O
located O
binding B-site
site I-site
for O
the O
fifth B-residue_number
nucleotide B-chemical
on O
the O
RRM2 B-site
surface I-site
and O
abutting O
the O
RRM1 B-site
/ I-site
RRM2 I-site
interface I-site
( O
Fig O
. O
3d O
). O
Otherwise O
, O
the O
rU4 B-residue_name_number
nucleotide B-chemical
packs O
against O
F304 B-residue_name_number
in O
the O
signature O
ribonucleoprotein B-structure_element
consensus I-structure_element
motif I-structure_element
( I-structure_element
RNP I-structure_element
)- I-structure_element
2 I-structure_element
of O
RRM2 B-structure_element
. O
This O
nucleotide B-chemical
twists O
to O
face O
away O
from O
the O
U2AF65 B-protein
linker B-structure_element
and O
instead O
inserts O
the O
rU6 B-residue_name_number
- O
uracil B-residue_name
into O
a O
sandwich O
between O
the O
β2 B-structure_element
/ I-structure_element
β3 I-structure_element
loops I-structure_element
of O
RRM1 B-structure_element
and O
RRM2 B-structure_element
. O
The O
Q147 B-residue_name_number
residue O
participates O
in O
hydrogen O
bonds O
with O
the O
- O
N3H O
of O
the O
eighth B-residue_number
uracil B-residue_name
and O
- O
O2 O
of O
the O
ninth B-residue_number
pyrimidine B-chemical
. O
Consistent O
with O
loss O
of O
a O
hydrogen O
bond O
with O
the O
ninth B-residue_number
pyrimidine B-chemical
- O
O2 O
( O
ΔΔG B-evidence
1 O
. O
0 O
kcal O
mol O
O
1 O
), O
mutation B-experimental_method
of O
the O
Q147 B-residue_name_number
to O
an O
alanine B-residue_name
reduced O
U2AF651 B-evidence
, I-evidence
2L I-evidence
affinity I-evidence
for O
the O
AdML B-gene
Py B-chemical
tract I-chemical
by O
five O
- O
fold O
( O
Fig O
. O
3i O
; O
Supplementary O
Fig O
. O
4c O
). O
We O
compare B-experimental_method
U2AF65 B-protein
interactions O
with O
uracil B-residue_name
relative O
to O
cytosine B-residue_name
pyrimidines B-chemical
at O
the O
ninth B-site
binding I-site
site I-site
in O
Fig O
. O
3g O
, O
h O
and O
the O
Supplementary O
Discussion O
. O
Versatile O
primary O
sequence O
of O
the O
U2AF65 B-protein
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
The O
U2AF651 B-mutant
, I-mutant
2L I-mutant
structures B-evidence
reveal O
that O
the O
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
mediates O
an O
extensive B-site
interface I-site
with O
the O
second O
α B-structure_element
- I-structure_element
helix I-structure_element
of O
RRM1 B-structure_element
, O
the O
β2 B-structure_element
/ I-structure_element
β3 I-structure_element
strands I-structure_element
of O
RRM2 B-structure_element
and O
the O
N O
- O
terminal O
α B-structure_element
- I-structure_element
helical I-structure_element
extension I-structure_element
of O
RRM1 B-structure_element
. O
The O
adjacent O
V249 B-residue_name_number
and O
V250 B-residue_name_number
are O
notable O
for O
their O
respective O
interactions O
that O
connect O
RRM1 B-structure_element
and O
RRM2 B-structure_element
at O
this O
distal O
interface B-site
from O
the O
RNA B-site
- I-site
binding I-site
site I-site
( O
Fig O
. O
4a O
, O
top O
). O
Few O
direct O
contacts O
are O
made O
between O
the O
remaining O
residues O
of O
the O
linker B-structure_element
and O
the O
U2AF65 B-protein
RRM2 B-structure_element
; O
instead O
, O
the O
C O
- O
terminal O
conformation O
of O
the O
linker B-structure_element
appears O
primarily O
RNA B-chemical
mediated O
( O
Fig O
. O
3c O
, O
d O
). O
We O
introduced O
glycine B-residue_name
substitutions B-experimental_method
to O
maximally O
reduce O
the O
buried O
surface O
area O
without O
directly O
interfering O
with O
its O
hydrogen O
bonds O
between O
backbone O
atoms O
and O
the O
base O
. O
However O
, O
the O
resulting O
decrease O
in O
the O
AdML B-gene
RNA B-evidence
affinity I-evidence
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
- I-mutant
3Gly I-mutant
mutant B-protein_state
relative O
to O
wild B-protein_state
- I-protein_state
type I-protein_state
protein B-protein
was O
not O
significant O
( O
Fig O
. O
4b O
). O
We O
found O
that O
the O
affinity B-evidence
of O
dU2AF651 B-mutant
, I-mutant
2L I-mutant
for O
the O
AdML B-gene
RNA B-chemical
was O
significantly O
reduced O
relative O
to O
U2AF651 B-mutant
, I-mutant
2L I-mutant
( O
four O
- O
fold O
, O
Figs O
1b O
and O
4b O
; O
Supplementary O
Fig O
. O
4i O
). O
Paramagnetic B-experimental_method
resonance I-experimental_method
enhancement I-experimental_method
( O
PRE B-experimental_method
) O
measurements O
previously O
had O
suggested O
a O
predominant O
back B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
back I-protein_state
, O
or O
O
closed B-protein_state
' O
conformation O
of O
the O
apo B-protein_state
- O
U2AF651 B-mutant
, I-mutant
2 I-mutant
RRM1 B-structure_element
and O
RRM2 B-structure_element
in O
equilibrium O
with O
a O
minor O
O
open B-protein_state
' O
conformation O
resembling O
the O
RNA B-protein_state
- I-protein_state
bound I-protein_state
inter B-structure_element
- I-structure_element
RRM I-structure_element
arrangement O
. O
Addition O
of O
the O
AdML B-gene
RNA B-chemical
to O
tethered B-protein_state
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
selectively O
increases O
a O
fraction O
of O
molecules O
showing O
an O
O
0 O
. O
45 O
apparent O
FRET B-evidence
efficiency I-evidence
, O
suggesting O
that O
RNA O
binding O
stabilizes O
a O
single O
conformation O
, O
which O
corresponds O
to O
the O
0 O
. O
45 O
FRET B-evidence
state I-evidence
( O
Fig O
. O
6e O
, O
f O
). O
To O
assess O
the O
possible O
contributions O
of O
RNA B-protein_state
- I-protein_state
free I-protein_state
conformations O
of O
U2AF65 B-protein
and O
/ O
or O
structural O
heterogeneity O
introduced O
by O
tethering B-experimental_method
of O
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
to O
the O
slide O
to O
the O
observed O
distribution B-evidence
of I-evidence
FRET I-evidence
values I-evidence
, O
we O
reversed B-experimental_method
the I-experimental_method
immobilization I-experimental_method
scheme I-experimental_method
. O
We O
tethered B-protein_state
the O
AdML B-gene
RNA B-chemical
to O
the O
slide O
via O
a O
biotinylated B-chemical
oligonucleotide I-chemical
DNA I-chemical
handle O
and O
added B-experimental_method
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
in O
the O
absence B-protein_state
of I-protein_state
biotin B-chemical
- I-chemical
NTA I-chemical
resin I-chemical
( O
Fig O
. O
6g O
, O
h O
; O
Supplementary O
Fig O
. O
7c O
O
g O
). O
Nevertheless O
, O
in O
the O
presence O
of O
saturating O
concentrations O
of O
rArA B-chemical
- O
interrupted O
RNA B-chemical
slide B-protein_state
- I-protein_state
tethered I-protein_state
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
showed O
a O
prevalent O
O
0 O
. O
45 O
apparent O
FRET B-evidence
value I-evidence
( O
Fig O
. O
6i O
, O
j O
), O
which O
was O
also O
predominant O
in O
the O
presence O
of O
continuous O
Py B-chemical
tract I-chemical
. O
Therefore O
, O
RRM1 B-structure_element
- O
to O
- O
RRM2 B-structure_element
distance O
remains O
similar O
regardless O
of O
whether O
U2AF65 B-protein
is O
bound B-protein_state
to I-protein_state
interrupted O
or O
continuous O
Py B-chemical
tract I-chemical
. O
The O
majority O
of O
traces B-evidence
that O
show O
fluctuations O
began O
at O
high O
( O
0 O
. O
65 O
O
0 O
. O
8 O
) O
FRET B-evidence
value I-evidence
and O
transitioned O
to O
a O
O
0 O
. O
45 O
FRET B-evidence
value I-evidence
( O
Supplementary O
Fig O
. O
7c O
O
g O
). O
Thus O
, O
the O
sequence O
of O
structural O
rearrangements O
of O
U2AF65 B-protein
observed O
in O
smFRET B-experimental_method
traces B-evidence
( O
Supplementary O
Fig O
. O
7c O
O
g O
) O
suggests O
that O
a O
O
conformational O
selection O
' O
mechanism O
of O
Py B-chemical
- I-chemical
tract I-chemical
recognition O
( O
that O
is O
, O
RNA O
ligand O
stabilization O
of O
a O
pre B-protein_state
- I-protein_state
configured I-protein_state
U2AF65 B-protein
conformation O
) O
is O
complemented O
by O
O
induced O
fit O
' O
( O
that O
is O
, O
RNA O
- O
induced O
rearrangement O
of O
the O
U2AF65 B-protein
RRMs B-structure_element
to O
achieve O
the O
final O
O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
' O
conformation O
), O
as O
discussed O
below O
. O
Likewise O
, O
deletion B-experimental_method
of O
20 B-residue_range
inter B-structure_element
- I-structure_element
RRM I-structure_element
linker I-structure_element
residues I-structure_element
significantly O
reduces O
U2AF65 B-protein
O
RNA B-chemical
binding O
only O
when O
introduced O
in O
the O
context O
of O
the O
longer B-protein_state
U2AF651 B-mutant
, I-mutant
2L I-mutant
construct O
comprising O
the O
RRM B-structure_element
extensions I-structure_element
, O
which O
in O
turn O
position O
the O
linker B-structure_element
for O
RNA B-chemical
interactions O
. O
The O
lesser O
0 O
. O
65 O
O
0 O
. O
8 O
and O
0 O
. O
2 O
O
0 O
. O
3 O
FRET B-evidence
values I-evidence
in O
the O
untethered B-protein_state
U2AF651 B-mutant
, I-mutant
2LFRET I-mutant
( O
Cy3 B-chemical
/ O
Cy5 B-chemical
) O
experiment O
could O
correspond O
to O
respective O
variants O
of O
the O
O
closed B-protein_state
', O
back B-protein_state
- I-protein_state
to I-protein_state
- I-protein_state
back I-protein_state
U2AF65 B-protein
conformations O
characterized O
by O
NMR B-experimental_method
/ O
PRE B-experimental_method
data O
, O
or O
to O
extended B-protein_state
U2AF65 B-protein
conformations O
, O
in O
which O
the O
intramolecular O
RRM1 B-structure_element
/ O
RRM2 B-structure_element
interactions O
have O
dissociated O
the O
protein B-protein
is O
bound B-protein_state
to I-protein_state
RNA B-chemical
via O
single B-protein_state
RRMs B-structure_element
. O
Examples O
of O
O
extended B-protein_state
conformational O
selection O
' O
during O
ligand O
binding O
have O
been O
characterized O
for O
a O
growing O
number O
of O
macromolecules O
( O
for O
example O
, O
adenylate B-protein_type
kinase I-protein_type
, O
LAO B-protein_type
- I-protein_type
binding I-protein_type
protein I-protein_type
, O
poly B-protein_type
- I-protein_type
ubiquitin I-protein_type
, O
maltose B-protein_type
- I-protein_type
binding I-protein_type
protein I-protein_type
and O
the O
preQ1 B-protein_type
riboswitch I-protein_type
, O
among O
others O
). O
Similar O
interdisciplinary O
structural O
approaches O
are O
likely O
to O
illuminate O
whether O
similar O
mechanistic O
bases O
for O
RNA O
binding O
are O
widespread O
among O
other O
members O
of O
the O
vast O
multi O
- O
RRM B-structure_element
family O
. O
Further O
research O
will O
be O
needed O
to O
understand O
the O
roles O
of O
SF1 B-protein
and O
U2AF35 B-protein
subunits O
in O
the O
conformational O
equilibria O
underlying O
U2AF65 B-protein
association O
with O
Py B-chemical
tracts I-chemical
. O
The O
apparent O
equilibrium B-evidence
dissociation I-evidence
constants I-evidence
( O
KD B-evidence
) O
for O
binding O
the O
AdML B-gene
13mer O
are O
as O
follows O
: O
flU2AF65 B-protein
, O
30 O
± O
3 O
nM O
; O
U2AF651 B-mutant
, I-mutant
2L I-mutant
, O
35 O
± O
6 O
nM O
; O
U2AF651 B-mutant
, I-mutant
2 I-mutant
, O
3 O
, O
600 O
± O
300 O
nM O
. O
( O
c O
) O
Comparison O
of O
the O
RNA B-evidence
sequence I-evidence
specificities I-evidence
of O
flU2AF65 B-protein
and O
U2AF651 B-mutant
, I-mutant
2L I-mutant
constructs O
binding O
C B-structure_element
- I-structure_element
rich I-structure_element
Py B-chemical
tracts I-chemical
with O
4U O
' O
s O
embedded O
in O
either O
the O
5 O
- O
( O
light O
grey O
fill O
) O
or O
3 O
- O
( O
dark O
grey O
fill O
) O
regions O
. O
The O
KD B-evidence
' O
s O
for O
binding O
5 B-chemical
- I-chemical
CCUUUUCCCCCCC I-chemical
- I-chemical
3 I-chemical
I-chemical
are O
: O
flU2AF65 B-protein
, O
41 O
± O
2 O
nM O
; O
U2AF651 B-mutant
, I-mutant
2L I-mutant
, O
31 O
± O
3 O
nM O
. O
The O
KD B-evidence
' O
s O
for O
binding O
5 B-chemical
- I-chemical
CCCCCCCUUUUCC I-chemical
- I-chemical
3 I-chemical
I-chemical
are O
: O
flU2AF65 B-protein
, O
414 O
± O
12 O
nM O
; O
U2AF651 B-mutant
, I-mutant
2L I-mutant
, O
417 O
± O
10 O
nM O
. O
Bar O
graphs O
are O
hatched O
to O
match O
the O
constructs O
shown O
in O
a O
. O
The O
average B-evidence
apparent I-evidence
equilibrium I-evidence
affinity I-evidence
( O
KA B-evidence
) O
and O
s O
. O
e O
. O
m O
. O
for O
three O
independent O
titrations O
are O
plotted O
. O
Representative O
views O
of O
the O
U2AF651 B-mutant
, I-mutant
2L I-mutant
interactions O
with O
each O
new O
nucleotide B-chemical
of O
the O
bound B-protein_state
Py B-chemical
tract I-chemical
. O
The O
average O
fitted O
fluorescence O
anisotropy O
RNA B-evidence
- I-evidence
binding I-evidence
curves I-evidence
are O
shown O
in O
Supplementary O
Fig O
. O
4a O
O
c O
. O
RNA O
binding O
stabilizes O
the O
side B-protein_state
- I-protein_state
by I-protein_state
- I-protein_state
side I-protein_state
conformation O
of O
U2AF65 B-protein
RRMs B-structure_element
. O
A O
surface O
representation O
of O
U2AF651 B-mutant
, I-mutant
2L I-mutant
is O
shown O
bound B-protein_state
to I-protein_state
nine O
nucleotides B-chemical
( O
nt O
); O
the O
relative O
distances O
and O
juxtaposition O
of O
the O
branch B-site
point I-site
sequence I-site
( O
BPS B-site
) O
and O
consensus O
AG B-chemical
dinucleotide I-chemical
at O
the O
3 B-site
I-site
splice I-site
site I-site
are O
unknown O
. O
This O
sequence O
pattern O
is O
conserved B-protein_state
among O
diverse O
plant B-taxonomy_domain
peptides B-chemical
, O
suggesting O
that O
plant B-taxonomy_domain
peptide B-protein_type
hormone I-protein_type
receptors I-protein_type
may O
share O
a O
common O
ligand O
binding O
mode O
and O
activation O
mechanism O
. O
Plants B-taxonomy_domain
can O
shed O
their O
leaves O
, O
flowers O
or O
other O
organs O
when O
they O
no O
longer O
need O
them O
. O
But O
how O
does O
a O
leaf O
or O
a O
flower O
know O
when O
to O
let O
go O
? O
A O
receptor B-protein_type
protein I-protein_type
called O
HAESA B-protein
is O
found O
on O
the O
surface O
of O
the O
cells O
that O
surround O
a O
future O
break O
point O
on O
the O
plant O
. O
When O
its O
time O
to O
shed O
an O
organ O
, O
a O
hormone B-chemical
called O
IDA B-protein
instructs O
HAESA B-protein
to O
trigger O
the O
shedding O
process O
. O
The O
experiments O
show O
that O
IDA B-protein
binds B-protein_state
directly I-protein_state
to I-protein_state
a O
canyon B-protein_state
shaped I-protein_state
pocket B-site
in O
HAESA B-protein
that O
extends O
out O
from O
the O
surface O
of O
the O
cell O
. O
Hydrophobic O
contacts O
and O
a O
hydrogen B-site
- I-site
bond I-site
network I-site
mediate O
the O
interaction O
between O
HAESA B-protein
and O
the O
peptide B-protein_type
hormone I-protein_type
IDA B-protein
. O
HAESA B-site
interface I-site
residues I-site
are O
shown O
as O
sticks O
, O
selected O
hydrogen O
bond O
interactions O
are O
denoted O
as O
dotted O
lines O
( O
in O
magenta O
). O
( O
B O
) O
View O
of O
the O
complete O
IDA B-protein
( O
in O
bonds O
representation O
, O
in O
yellow O
) O
binding B-site
pocket I-site
in O
HAESA B-protein
( O
surface O
view O
, O
in O
blue O
). O
The O
IDA B-complex_assembly
- I-complex_assembly
HAESA I-complex_assembly
and O
SERK1 B-complex_assembly
- I-complex_assembly
HAESA I-complex_assembly
complex O
interfaces B-site
are O
conserved B-protein_state
among O
HAESA B-protein
and O
HAESA B-protein_type
- I-protein_type
like I-protein_type
proteins I-protein_type
from O
different O
plant B-taxonomy_domain
species O
. O
Details O
of O
the O
interactions O
between O
the O
central O
Hyp B-structure_element
anchor I-structure_element
in O
IDA B-protein
and O
the O
C O
- O
terminal O
Arg B-structure_element
- I-structure_element
His I-structure_element
- I-structure_element
Asn I-structure_element
motif I-structure_element
with O
HAESA B-protein
are O
highlighted O
in O
( O
E O
) O
and O
( O
F O
), O
respectively O
. O
Close O
- O
up O
views O
of O
( O
A O
) O
IDA B-protein
, O
( O
B O
) O
the O
N B-protein_state
- I-protein_state
terminally I-protein_state
extended I-protein_state
PKGV B-mutant
- I-mutant
IDA I-mutant
and O
( O
C O
) O
IDL1 B-protein
bound B-protein_state
to I-protein_state
the O
HAESA B-protein
hormone B-site
binding I-site
pocket I-site
( O
in O
bonds O
representation O
, O
in O
yellow O
) O
and O
including O
simulated B-experimental_method
annealing I-experimental_method
2Fo B-evidence
I-evidence
Fc I-evidence
omit I-evidence
electron I-evidence
density I-evidence
maps I-evidence
contoured O
at O
1 O
. O
0 O
σ O
. O
Petal O
break O
- O
strength O
was O
found O
significantly O
increased O
in O
almost O
all O
positions O
( O
indicated O
with O
a O
*) O
for O
haesa B-gene
/ O
hsl2 B-gene
and O
serk1 B-gene
- I-gene
1 I-gene
mutant B-protein_state
plants B-taxonomy_domain
with O
respect O
to O
the O
Col O
- O
0 O
control O
. O
A O
SDS B-experimental_method
PAGE I-experimental_method
of O
the O
peak O
fractions O
is O
shown O
alongside O
. O
Transphosphorylation O
activity O
from O
the O
active B-protein_state
kinase O
to O
the O
mutated B-protein_state
form O
can O
be O
observed O
in O
both O
directions O
( O
lanes O
5 O
+ O
6 O
). O
A O
Hyp B-protein_state
- I-protein_state
modified I-protein_state
dodecamer B-structure_element
comprising O
the O
highly B-protein_state
conserved I-protein_state
PIP B-structure_element
motif I-structure_element
in O
IDA B-protein
( O
Figure O
1A O
) O
interacts O
with O
HAESA B-protein
with O
1 O
: O
1 O
stoichiometry O
( O
N O
) O
and O
with O
a O
dissociation B-evidence
constant I-evidence
( O
Kd B-evidence
) O
of O
~ O
20 O
μM O
( O
Figure O
1B O
). O
Consistently O
, O
PKGV B-mutant
- I-mutant
IDA I-mutant
and O
IDA B-protein
have O
similar O
binding B-evidence
affinities I-evidence
in O
our O
ITC B-experimental_method
assays I-experimental_method
, O
further O
indicating O
that O
HAESA B-protein
senses O
a O
dodecamer B-structure_element
peptide B-chemical
comprising O
residues O
58 B-residue_range
- I-residue_range
69IDA I-residue_range
( O
Figure O
2D O
). O
IDL1 B-protein
, O
which O
can O
rescue O
IDA B-protein
loss O
- O
of O
- O
function O
mutants O
when O
introduced O
in O
abscission O
zone O
cells O
, O
can O
also O
be O
sensed O
by O
HAESA B-protein
, O
albeit O
with O
lower O
affinity B-evidence
( O
Figure O
2D O
). O
The O
co B-protein_type
- I-protein_type
receptor I-protein_type
kinase I-protein_type
SERK1 B-protein
allows O
for O
high O
- O
affinity O
IDA O
sensing O
As O
all O
five O
SERK B-protein_type
family I-protein_type
members I-protein_type
appear O
to O
be O
expressed O
in O
the O
Arabidopsis B-taxonomy_domain
abscission O
zone O
, O
we O
quantified O
their O
relative O
contribution O
to O
floral O
abscission O
in O
Arabidopsis B-taxonomy_domain
using O
a O
petal B-experimental_method
break I-experimental_method
- I-experimental_method
strength I-experimental_method
assay I-experimental_method
. O
Importantly O
, O
hydroxyprolination B-ptm
of O
IDA B-protein
is O
critical O
for O
HAESA B-complex_assembly
- I-complex_assembly
IDA I-complex_assembly
- I-complex_assembly
SERK1 I-complex_assembly
complex O
formation O
( O
Figure O
3C O
, O
D O
). O
Our O
calorimetry B-experimental_method
experiments O
now O
reveal O
that O
SERKs B-protein_type
may O
render O
HAESA B-protein
, O
and O
potentially O
other O
receptor B-protein_type
kinases I-protein_type
, O
competent O
for O
high O
- O
affinity O
sensing O
of O
their O
cognate O
ligands O
. O
( O
A O
) O
Overview O
of O
the O
ternary O
complex O
with O
HAESA B-protein
in O
blue O
( O
surface O
representation O
), O
IDA B-protein
in O
yellow O
( O
bonds O
representation O
) O
and O
SERK1 B-protein
in O
orange O
( O
surface O
view O
). O
( O
B O
) O
The O
HAESA B-protein
ectodomain B-structure_element
undergoes O
a O
conformational O
change O
upon O
SERK1 B-protein
co O
- O
receptor O
binding O
. O
SERK1 B-protein
loop B-structure_element
residues O
establish O
multiple O
hydrophobic O
and O
polar O
contacts O
with O
Lys66IDA B-residue_name_number
and O
the O
C O
- O
terminal O
Arg B-structure_element
- I-structure_element
His I-structure_element
- I-structure_element
Asn I-structure_element
motif I-structure_element
in O
IDA B-protein
( O
Figure O
4C O
). O
Deletion B-experimental_method
of O
the O
C O
- O
terminal O
Asn69IDA B-residue_name_number
completely O
inhibits B-protein_state
complex O
formation O
. O
( O
C O
) O
Quantitative O
petal B-experimental_method
break I-experimental_method
- I-experimental_method
strength I-experimental_method
assay I-experimental_method
for O
Col O
- O
0 O
wild B-protein_state
- I-protein_state
type I-protein_state
flowers O
and O
35S B-gene
:: O
IDA B-protein
wild B-protein_state
- I-protein_state
type I-protein_state
and O
35S B-gene
:: O
IDA B-mutant
K66A I-mutant
/ I-mutant
R67A I-mutant
mutant B-protein_state
flowers O
. O
We O
thus O
assessed O
their O
contribution O
to O
HAESA B-complex_assembly
I-complex_assembly
SERK1 I-complex_assembly
complex O
formation O
. O
In O
contrast O
, O
over B-experimental_method
- I-experimental_method
expression I-experimental_method
of O
the O
IDA B-mutant
Lys66IDA I-mutant
/ I-mutant
Arg67IDA I-mutant
I-mutant
Ala I-mutant
double B-protein_state
mutant I-protein_state
significantly O
delays O
floral O
abscission O
when O
compared O
to O
wild B-protein_state
- I-protein_state
type I-protein_state
control O
plants B-taxonomy_domain
, O
suggesting O
that O
the O
mutant B-protein_state
IDA B-chemical
peptide I-chemical
has O
reduced O
activity O
in O
planta B-taxonomy_domain
( O
Figure O
5C O
O
E O
). O
Comparison O
of O
35S B-gene
:: O
IDA B-protein
wild B-protein_state
- I-protein_state
type I-protein_state
and O
mutant B-protein_state
plants B-taxonomy_domain
further O
indicates O
that O
mutation B-experimental_method
of O
Lys66IDA B-mutant
/ I-mutant
Arg67IDA I-mutant
I-mutant
Ala I-mutant
may O
cause O
a O
weak O
dominant O
negative O
effect O
( O
Figure O
5C O
O
E O
). O
This O
observation O
is O
consistent O
with O
our O
complex O
structure B-evidence
in O
which O
receptor O
and O
co O
- O
receptor O
together O
form O
the O
IDA B-site
binding I-site
pocket I-site
. O
In O
both O
cases O
however O
, O
the O
co O
- O
receptor O
completes O
the O
hormone B-site
binding I-site
pocket I-site
. O
Diverse O
plant B-taxonomy_domain
peptide B-protein_type
hormones I-protein_type
may O
thus O
also O
bind O
their O
LRR B-protein_type
- I-protein_type
RK I-protein_type
receptors I-protein_type
in O
an O
extended B-protein_state
conformation I-protein_state
along O
the O
inner O
surface O
of O
the O
LRR B-structure_element
domain I-structure_element
and O
may O
also O
use O
small B-protein_state
, O
shape B-protein_state
- I-protein_state
complementary I-protein_state
co B-protein_type
- I-protein_type
receptors I-protein_type
for O
high O
- O
affinity O
ligand O
binding O
and O
receptor O
activation O
. O
Biogenesis O
of O
the O
20S B-complex_assembly
proteasome I-complex_assembly
is O
tightly O
regulated O
. O
Substitution B-experimental_method
of O
Thr1 B-residue_name_number
by O
Cys B-residue_name
disrupts O
the O
interaction O
with O
Lys33 B-residue_name_number
and O
inactivates B-protein_state
the O
proteasome B-complex_assembly
. O
Although O
a O
Thr1Ser B-mutant
mutant B-protein_state
is O
active B-protein_state
, O
it O
is O
less O
efficient O
compared O
with O
wild B-protein_state
type I-protein_state
because O
of O
the O
unfavourable O
orientation O
of O
Ser1 B-residue_name_number
towards O
incoming O
substrates O
. O
This O
work O
provides O
insights O
into O
the O
basic O
mechanism O
of O
proteolysis O
and O
propeptide B-ptm
autolysis I-ptm
, O
as O
well O
as O
the O
evolutionary O
pressures O
that O
drove O
the O
proteasome B-complex_assembly
to O
become O
a O
threonine B-protein_type
protease I-protein_type
. O
While O
the O
inactive B-protein_state
α B-protein
subunits I-protein
build O
the O
two O
outer O
rings B-structure_element
, O
the O
β B-protein
subunits I-protein
form O
the O
inner O
rings B-structure_element
. O
Data O
from O
biochemical B-experimental_method
and I-experimental_method
structural I-experimental_method
analyses I-experimental_method
of O
proteasome O
variants O
with O
mutations O
in O
the O
β5 B-protein
propeptide B-structure_element
and O
the O
active B-site
site I-site
strongly O
support O
the O
model O
and O
deliver O
novel O
insights O
into O
the O
structural O
constraints O
required O
for O
the O
autocatalytic B-ptm
activation I-ptm
of O
the O
proteasome B-complex_assembly
. O
By O
contrast O
, O
the O
T1A B-mutant
mutation O
in O
subunit O
β5 B-protein
has O
been O
reported O
to O
be O
lethal O
or O
nearly O
so O
. O
Our O
present O
crystallographic B-experimental_method
analysis I-experimental_method
of O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
pp B-chemical
trans B-protein_state
mutant B-protein_state
demonstrates O
that O
the O
mutation B-experimental_method
per O
se O
does O
not O
structurally O
alter O
the O
catalytic B-site
active I-site
site I-site
and O
that O
the O
trans B-experimental_method
- I-experimental_method
expressed I-experimental_method
β5 B-protein
propeptide B-structure_element
is O
not B-protein_state
bound I-protein_state
in O
the O
β5 B-protein
substrate B-site
- I-site
binding I-site
channel I-site
( O
Supplementary O
Fig O
. O
1a O
). O
Thr B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
positions O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
) I-residue_name_number
O O
via O
hydrogen O
bonding O
(O
2 O
. O
8 O
Å O
) O
in O
a O
perfect O
trajectory O
for O
the O
nucleophilic O
attack O
by O
Thr1Oγ B-residue_name_number
( O
Fig O
. O
1b O
and O
Supplementary O
Fig O
. O
2b O
). O
Surprisingly O
, O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
) I-residue_name_number
is O
completely O
extended O
and O
forces O
the O
histidine B-residue_name
side O
chain O
at O
position O
(- B-residue_number
2 I-residue_number
) I-residue_number
to O
occupy O
the O
S2 B-site
instead O
of O
the O
S1 B-site
pocket I-site
, O
thereby O
disrupting O
the O
antiparallel B-structure_element
β I-structure_element
- I-structure_element
sheet I-structure_element
. O
Remarkably O
, O
eukaryotic B-taxonomy_domain
proteasomal O
β5 B-protein
subunits O
bear O
a O
His B-residue_name
residue O
in O
position O
(- B-residue_number
2 I-residue_number
) I-residue_number
of O
the O
propeptide B-structure_element
( O
Supplementary O
Fig O
. O
3a O
). O
As O
proven O
by O
the O
β2 B-mutant
- I-mutant
T1A I-mutant
crystal B-evidence
structures I-evidence
, O
Thr B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
hydrogen O
bonds O
to O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
) I-residue_name_number
O O
. O
Although O
this O
interaction O
was O
not O
observed O
for O
the O
β5 B-mutant
- I-mutant
H I-mutant
(- I-mutant
2 I-mutant
) I-mutant
T I-mutant
- I-mutant
T1A I-mutant
mutant B-protein_state
( O
Fig O
. O
2c O
and O
Supplementary O
Fig O
. O
4c O
, O
i O
), O
exchange B-experimental_method
of O
Thr B-residue_name_number
(- I-residue_name_number
2 I-residue_name_number
) I-residue_name_number
by O
Val B-residue_name
in O
β2 B-protein
, O
a O
conservative O
mutation O
regarding O
size O
but O
drastic O
with O
respect O
to O
polarity O
, O
was O
found O
to O
inhibit O
maturation O
of O
this O
subunit O
( O
Fig O
. O
2d O
and O
Supplementary O
Fig O
. O
4e O
, O
j O
). O
Instead O
, O
Lys33NH2 B-residue_name_number
, O
which O
is O
in O
hydrogen O
- O
bonding O
distance O
to O
Thr1Oγ B-residue_name_number
( O
2 O
. O
7 O
Å O
) O
in O
all O
catalytically B-protein_state
active I-protein_state
β B-protein
subunits I-protein
( O
Fig O
. O
3a O
, O
b O
), O
was O
proposed O
to O
serve O
as O
the O
proton O
acceptor O
. O
A O
proposed O
catalytic B-site
tetrad I-site
model O
involving O
Thr1OH B-residue_name_number
, O
Thr1NH2 B-residue_name_number
, O
Lys33NH2 B-residue_name_number
and O
Asp17Oδ B-residue_name_number
, O
as O
well O
as O
a O
nucleophilic O
water B-chemical
molecule O
as O
the O
proton O
shuttle O
appeared O
to O
accommodate O
all O
possible O
views O
of O
the O
proteasomal O
active B-site
site I-site
. O
The O
phenotype O
of O
the O
β5 B-mutant
- I-mutant
K33A I-mutant
mutant B-protein_state
was O
however O
less O
pronounced O
than O
for O
the O
β5 B-mutant
- I-mutant
T1A I-mutant
- I-mutant
K81R I-mutant
yeast B-taxonomy_domain
( O
Fig O
. O
4a O
). O
Since O
no O
acetylation B-ptm
of O
the O
Thr1 B-residue_name_number
N O
terminus O
was O
observed O
for O
the O
β5 B-mutant
- I-mutant
K33A I-mutant
pp B-chemical
trans B-protein_state
apo B-protein_state
crystal B-evidence
structure I-evidence
, O
the O
reduced O
reactivity O
towards O
substrates O
and O
inhibitors O
indicates O
that O
Lys33NH2 B-residue_name_number
, O
rather O
than O
Thr1NH2 B-residue_name_number
, O
deprotonates O
and O
activates O
Thr1OH B-residue_name_number
. O
Autolysis B-ptm
and O
residual O
catalytic O
activity O
of O
the O
β5 B-mutant
- I-mutant
D17N I-mutant
mutants O
may O
originate O
from O
the O
carbonyl O
group O
of O
Asn17 B-residue_name_number
, O
which O
albeit O
to O
a O
lower O
degree O
still O
can O
polarize O
Lys33 B-residue_name_number
for O
the O
activation O
of O
Thr1 B-residue_name_number
. O
Together O
, O
these O
observations O
suggest O
that O
efficient O
peptide O
- O
bond O
hydrolysis O
requires O
that O
Lys33NH2 B-residue_name_number
hydrogen O
bonds O
to O
the O
active O
site O
nucleophile O
. O
Crystal B-evidence
structure I-evidence
analysis O
of O
the O
β5 B-mutant
- I-mutant
T1S I-mutant
mutant B-protein_state
confirmed O
precursor B-ptm
processing I-ptm
( O
Fig O
. O
4g O
), O
and O
ligand B-complex_assembly
- I-complex_assembly
complex I-complex_assembly
structures B-evidence
with O
bortezomib B-chemical
and O
carfilzomib B-chemical
unambiguously O
corroborated O
the O
reactivity O
of O
Ser1 B-residue_name_number
( O
Fig O
. O
5 O
). O
In O
vitro O
, O
the O
mutant B-protein_state
proteasome B-complex_assembly
is O
less O
susceptible O
to O
proteasome B-complex_assembly
inhibition O
by O
bortezomib B-chemical
( O
3 O
. O
7 O
- O
fold O
) O
and O
carfilzomib B-chemical
( O
1 O
. O
8 O
- O
fold O
; O
Fig O
. O
5 O
). O
Hence O
, O
the O
mean B-evidence
residence I-evidence
time I-evidence
of O
carfilzomib B-chemical
at O
the O
active B-site
site I-site
is O
prolonged O
and O
the O
probability O
to O
covalently O
react O
with O
Ser1 B-residue_name_number
is O
increased O
. O
In O
eukaryotes B-taxonomy_domain
, O
deletion O
of O
or O
failure O
to O
cleave O
the O
β1 B-protein
and O
β2 B-protein
propeptides B-structure_element
is O
well O
tolerated O
. O
From O
these O
data O
we O
conclude O
that O
only O
the O
positioning O
of O
Gly B-residue_name_number
(- I-residue_name_number
1 I-residue_name_number
) I-residue_name_number
and O
Thr1 B-residue_name_number
as O
well O
as O
the O
integrity O
of O
the O
proteasomal O
active B-site
site I-site
are O
required O
for O
autolysis B-ptm
. O
We O
propose O
a O
catalytic B-site
triad I-site
for O
the O
active B-site
site I-site
of O
the O
CP B-complex_assembly
consisting O
of O
residues O
Thr1 B-residue_name_number
, O
Lys33 B-residue_name_number
and O
Asp B-residue_name
/ O
Glu17 B-residue_name_number
, O
which O
are O
conserved O
among O
all O
proteolytically O
active O
eukaryotic B-taxonomy_domain
, O
bacterial B-taxonomy_domain
and O
archaeal B-taxonomy_domain
proteasome B-complex_assembly
subunits O
. O
Analogously O
, O
Thr1NH3 B-residue_name_number
+ O
might O
promote O
the O
bivalent O
reaction O
mode O
of O
epoxyketone O
inhibitors O
by O
protonating O
the O
epoxide O
moiety O
to O
create O
a O
positively O
charged O
trivalent O
oxygen O
atom O
that O
is O
subsequently O
nucleophilically O
attacked O
by O
Thr1NH2 B-residue_name_number
. O
The O
residues O
Ser129 B-residue_name_number
and O
Asp166 B-residue_name_number
are O
expected O
to O
increase O
the O
pKa O
value O
of O
Thr1N B-residue_name_number
, O
thereby O
favouring O
its O
charged O
state O
. O
In O
accord O
with O
the O
proposed O
Thr1 B-residue_name_number
O
Lys33 B-residue_name_number
O
Asp17 B-residue_name_number
catalytic B-site
triad I-site
, O
crystallographic B-evidence
data I-evidence
on O
the O
proteolytically B-protein_state
inactive I-protein_state
β5 B-mutant
- I-mutant
T1C I-mutant
mutant B-protein_state
demonstrate O
that O
the O
interaction O
of O
Lys33NH2 B-residue_name_number
and O
Cys1 B-residue_name_number
is O
broken O
. O
Notably O
, O
in O
the O
Ntn B-protein_type
hydrolase I-protein_type
penicillin B-protein_type
acylase I-protein_type
, O
substitution B-experimental_method
of O
the O
catalytic B-protein_state
N O
- O
terminal O
Ser B-residue_name
residue O
by O
Cys B-residue_name
also O
inactivates B-protein_state
the O
enzyme B-protein_type
but O
still O
enables O
precursor B-ptm
processing I-ptm
. O
Notably O
, O
proteolytically B-protein_state
active I-protein_state
proteasome B-complex_assembly
subunits O
from O
archaea B-taxonomy_domain
, O
yeast B-taxonomy_domain
and O
mammals B-taxonomy_domain
, O
including O
constitutive O
, O
immuno O
- O
and O
thymoproteasome O
subunits O
, O
either O
encode O
Thr B-residue_name
or O
Ile B-residue_name
at O
position O
3 B-residue_number
, O
indicating O
the O
importance O
of O
the O
Cγ O
for O
fixing O
the O
position O
of O
the O
nucleophilic O
Thr1 B-residue_name_number
. O
In O
contrast O
to O
Thr1 B-residue_name_number
, O
the O
hydroxyl O
group O
of O
Ser1 B-residue_name_number
occupies O
the O
position O
of O
the O
Thr1 B-residue_name_number
methyl O
side O
chain O
in O
the O
WT B-protein_state
enzyme B-complex_assembly
, O
which O
requires O
its O
reorientation O
relative O
to O
the O
substrate O
to O
allow O
cleavage O
( O
Fig O
. O
4g O
, O
h O
). O
The O
resulting O
deprotonated O
Thr1NH2 B-residue_name_number
finally O
activates O
a O
water B-chemical
molecule O
for O
hydrolysis O
of O
the O
acyl O
- O
enzyme O
. O
The O
prosegment B-structure_element
is O
cleaved B-protein_state
but O
still B-protein_state
bound I-protein_state
in O
the O
substrate B-site
- I-site
binding I-site
channel I-site
. O
( O
h O
) O
The O
methyl O
group O
of O
Thr1 B-residue_name_number
is O
anchored O
by O
hydrophobic O
interactions O
with O
Ala46Cβ B-residue_name_number
and O
Thr3Cγ B-residue_name_number
. O
Note O
that O
IC50 B-evidence
values I-evidence
depend O
on O
time O
and O
enzyme O
concentration O
. O
The O
WT B-protein_state
proteasome B-complex_assembly
: I-complex_assembly
inhibitor I-complex_assembly
complex I-complex_assembly
structures B-evidence
( O
inhibitor O
in O
grey O
; O
Thr1 B-residue_name_number
in O
black O
) O
are O
superimposed B-experimental_method
and O
demonstrate O
that O
mutation B-experimental_method
of O
Thr1 B-residue_name_number
to O
Ser B-residue_name
does O
not O
affect O
the O
binding O
mode O
of O
bortezomib B-chemical
or O
carfilzomib B-chemical
. O