import pandas as pd | |
import sqlite3 | |
from yfcc100m.convert_metadata import generate_rows_from_db | |
from datadings.tools import yield_threaded | |
from tqdm import tqdm | |
df = pd.read_table( | |
"yfcc100m_subset_data.tsv", header=None, names=["line_number", "identifier", "hash"] | |
) | |
clip_photoids = df["identifier"].tolist() # 15 million ids | |
rows = generate_rows_from_db("yfcc100m_dataset.sql", "yfcc100m_dataset") | |
gen = yield_threaded(rows) | |
dfs = [] | |
chunk = [] | |
for i, row in enumerate(tqdm(gen, total=100000000)): | |
chunk.append(row) | |
if (i + 1) % 10_000_000 == 0: | |
df = pd.DataFrame( | |
chunk, | |
columns=[ | |
"photoid", | |
"uid", | |
"unickname", | |
"datetaken", | |
"dateuploaded", | |
"capturedevice", | |
"title", | |
"description", | |
"usertags", | |
"machinetags", | |
"longitude", | |
"latitude", | |
"accuracy", | |
"pageurl", | |
"downloadurl", | |
"licensename", | |
"licenseurl", | |
"serverid", | |
"farmid", | |
"secret", | |
"secretoriginal", | |
"ext", | |
"marker", | |
], | |
) | |
df = df[df["photoid"].isin(clip_photoids)].reset_index(drop=True) | |
dfs.append(df) | |
chunk = [] | |
df = pd.concat(dfs) | |
df.to_csv("yfcc15m.csv", index=False) | |