Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K<n<10K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SubjQA is a question answering dataset that focuses on subjective questions and answers. | |
The dataset consists of roughly 10,000 questions over reviews from 6 different domains: books, movies, grocery, | |
electronics, TripAdvisor (i.e. hotels), and restaurants.""" | |
import ast | |
import os | |
import pandas as pd | |
import datasets | |
_CITATION = """\ | |
@inproceedings{bjerva20subjqa, | |
title = "SubjQA: A Dataset for Subjectivity and Review Comprehension", | |
author = "Bjerva, Johannes and | |
Bhutani, Nikita and | |
Golahn, Behzad and | |
Tan, Wang-Chiew and | |
Augenstein, Isabelle", | |
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", | |
month = November, | |
year = "2020", | |
publisher = "Association for Computational Linguistics", | |
} | |
""" | |
_DESCRIPTION = """SubjQA is a question answering dataset that focuses on subjective questions and answers. | |
The dataset consists of roughly 10,000 questions over reviews from 6 different domains: books, movies, grocery, | |
electronics, TripAdvisor (i.e. hotels), and restaurants.""" | |
_HOMEPAGE = "" | |
_LICENSE = "" | |
# From: https://github.com/lewtun/SubjQA/archive/refs/heads/master.zip | |
_URLs = {"default": "data.zip"} | |
class Subjqa(datasets.GeneratorBasedBuilder): | |
"""SubjQA is a question answering dataset that focuses on subjective questions and answers.""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="books", version=VERSION, description="Amazon book reviews"), | |
datasets.BuilderConfig(name="electronics", version=VERSION, description="Amazon electronics reviews"), | |
datasets.BuilderConfig(name="grocery", version=VERSION, description="Amazon grocery reviews"), | |
datasets.BuilderConfig(name="movies", version=VERSION, description="Amazon movie reviews"), | |
datasets.BuilderConfig(name="restaurants", version=VERSION, description="Yelp restaurant reviews"), | |
datasets.BuilderConfig(name="tripadvisor", version=VERSION, description="TripAdvisor hotel reviews"), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"domain": datasets.Value("string"), | |
"nn_mod": datasets.Value("string"), | |
"nn_asp": datasets.Value("string"), | |
"query_mod": datasets.Value("string"), | |
"query_asp": datasets.Value("string"), | |
"q_reviews_id": datasets.Value("string"), | |
"question_subj_level": datasets.Value("int64"), | |
"ques_subj_score": datasets.Value("float"), | |
"is_ques_subjective": datasets.Value("bool"), | |
"review_id": datasets.Value("string"), | |
"id": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers": datasets.features.Sequence( | |
{ | |
"text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
"answer_subj_level": datasets.Value("int64"), | |
"ans_subj_score": datasets.Value("float"), | |
"is_ans_subjective": datasets.Value("bool"), | |
} | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_dir = dl_manager.download_and_extract(_URLs["default"]) | |
data_dir = os.path.join(data_dir, "SubjQA-master", "SubjQA", self.config.name, "splits") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "train.csv") | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "test.csv") | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "dev.csv") | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
df = pd.read_csv(filepath) | |
squad_format = self._convert_to_squad(df) | |
for example in squad_format["data"]: | |
title = example.get("title", "").strip() | |
for paragraph in example["paragraphs"]: | |
context = paragraph["context"].strip() | |
for qa in paragraph["qas"]: | |
question = qa["question"].strip() | |
question_meta = {k: v for k, v in qa.items() if k in self.question_meta_columns} | |
id_ = qa["id"] | |
answer_starts = [answer["answer_start"] for answer in qa["answers"]] | |
answers = [answer["text"].strip() for answer in qa["answers"]] | |
answer_meta = pd.DataFrame(qa["answers"], columns=self.answer_meta_columns).to_dict("list") | |
yield id_, { | |
**{ | |
"title": title, | |
"context": context, | |
"question": question, | |
"id": id_, | |
"answers": { | |
**{ | |
"answer_start": answer_starts, | |
"text": answers, | |
}, | |
**answer_meta, | |
}, | |
}, | |
**question_meta, | |
} | |
def _create_paragraphs(self, df): | |
"A helper function to convert a pandas.DataFrame of (question, context, answer) rows to SQuAD paragraphs." | |
self.question_meta_columns = [ | |
"domain", | |
"nn_mod", | |
"nn_asp", | |
"query_mod", | |
"query_asp", | |
"q_reviews_id", | |
"question_subj_level", | |
"ques_subj_score", | |
"is_ques_subjective", | |
"review_id", | |
] | |
self.answer_meta_columns = ["answer_subj_level", "ans_subj_score", "is_ans_subjective"] | |
id2review = dict(zip(df["review_id"], df["review"])) | |
pars = [] | |
for review_id, review in id2review.items(): | |
qas = [] | |
review_df = df.query(f"review_id == '{review_id}'") | |
id2question = dict(zip(review_df["q_review_id"], review_df["question"])) | |
for k, v in id2question.items(): | |
d = df.query(f"q_review_id == '{k}'").to_dict(orient="list") | |
answer_starts = [ast.literal_eval(a)[0] for a in d["human_ans_indices"]] | |
answer_meta = {k: v[0] for k, v in d.items() if k in self.answer_meta_columns} | |
question_meta = {k: v[0] for k, v in d.items() if k in self.question_meta_columns} | |
# Only fill answerable questions | |
if pd.unique(d["human_ans_spans"])[0] != "ANSWERNOTFOUND": | |
answers = [ | |
{**{"text": text, "answer_start": answer_start}, **answer_meta} | |
for text, answer_start in zip(d["human_ans_spans"], answer_starts) | |
if text != "ANSWERNOTFOUND" | |
] | |
else: | |
answers = [] | |
qas.append({**{"question": v, "id": k, "answers": answers}, **question_meta}) | |
# Slice off ANSWERNOTFOUND from context | |
pars.append({"qas": qas, "context": review[: -len(" ANSWERNOTFOUND")]}) | |
return pars | |
def _convert_to_squad(self, df): | |
"A helper function to convert a pandas.DataFrame of product-based QA dataset into SQuAD format" | |
groups = ( | |
df.groupby("item_id") | |
.apply(self._create_paragraphs) | |
.to_frame(name="paragraphs") | |
.reset_index() | |
.rename(columns={"item_id": "title"}) | |
) | |
squad_data = {} | |
squad_data["data"] = groups.to_dict(orient="records") | |
return squad_data | |