Datasets:

Sub-tasks:
extractive-qa
Languages:
English
ArXiv:
License:
subjqa / subjqa.py
albertvillanova's picture
Support streaming (#2)
3d1b2f2
raw
history blame
9.12 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SubjQA is a question answering dataset that focuses on subjective questions and answers.
The dataset consists of roughly 10,000 questions over reviews from 6 different domains: books, movies, grocery,
electronics, TripAdvisor (i.e. hotels), and restaurants."""
import ast
import os
import pandas as pd
import datasets
_CITATION = """\
@inproceedings{bjerva20subjqa,
title = "SubjQA: A Dataset for Subjectivity and Review Comprehension",
author = "Bjerva, Johannes and
Bhutani, Nikita and
Golahn, Behzad and
Tan, Wang-Chiew and
Augenstein, Isabelle",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = November,
year = "2020",
publisher = "Association for Computational Linguistics",
}
"""
_DESCRIPTION = """SubjQA is a question answering dataset that focuses on subjective questions and answers.
The dataset consists of roughly 10,000 questions over reviews from 6 different domains: books, movies, grocery,
electronics, TripAdvisor (i.e. hotels), and restaurants."""
_HOMEPAGE = ""
_LICENSE = ""
# From: https://github.com/lewtun/SubjQA/archive/refs/heads/master.zip
_URLs = {"default": "data.zip"}
class Subjqa(datasets.GeneratorBasedBuilder):
"""SubjQA is a question answering dataset that focuses on subjective questions and answers."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="books", version=VERSION, description="Amazon book reviews"),
datasets.BuilderConfig(name="electronics", version=VERSION, description="Amazon electronics reviews"),
datasets.BuilderConfig(name="grocery", version=VERSION, description="Amazon grocery reviews"),
datasets.BuilderConfig(name="movies", version=VERSION, description="Amazon movie reviews"),
datasets.BuilderConfig(name="restaurants", version=VERSION, description="Yelp restaurant reviews"),
datasets.BuilderConfig(name="tripadvisor", version=VERSION, description="TripAdvisor hotel reviews"),
]
def _info(self):
features = datasets.Features(
{
"domain": datasets.Value("string"),
"nn_mod": datasets.Value("string"),
"nn_asp": datasets.Value("string"),
"query_mod": datasets.Value("string"),
"query_asp": datasets.Value("string"),
"q_reviews_id": datasets.Value("string"),
"question_subj_level": datasets.Value("int64"),
"ques_subj_score": datasets.Value("float"),
"is_ques_subjective": datasets.Value("bool"),
"review_id": datasets.Value("string"),
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
"answer_subj_level": datasets.Value("int64"),
"ans_subj_score": datasets.Value("float"),
"is_ans_subjective": datasets.Value("bool"),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLs["default"])
data_dir = os.path.join(data_dir, "SubjQA-master", "SubjQA", self.config.name, "splits")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "train.csv")
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "test.csv")
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "dev.csv")
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath)
squad_format = self._convert_to_squad(df)
for example in squad_format["data"]:
title = example.get("title", "").strip()
for paragraph in example["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
question_meta = {k: v for k, v in qa.items() if k in self.question_meta_columns}
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
answer_meta = pd.DataFrame(qa["answers"], columns=self.answer_meta_columns).to_dict("list")
yield id_, {
**{
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": {
**{
"answer_start": answer_starts,
"text": answers,
},
**answer_meta,
},
},
**question_meta,
}
def _create_paragraphs(self, df):
"A helper function to convert a pandas.DataFrame of (question, context, answer) rows to SQuAD paragraphs."
self.question_meta_columns = [
"domain",
"nn_mod",
"nn_asp",
"query_mod",
"query_asp",
"q_reviews_id",
"question_subj_level",
"ques_subj_score",
"is_ques_subjective",
"review_id",
]
self.answer_meta_columns = ["answer_subj_level", "ans_subj_score", "is_ans_subjective"]
id2review = dict(zip(df["review_id"], df["review"]))
pars = []
for review_id, review in id2review.items():
qas = []
review_df = df.query(f"review_id == '{review_id}'")
id2question = dict(zip(review_df["q_review_id"], review_df["question"]))
for k, v in id2question.items():
d = df.query(f"q_review_id == '{k}'").to_dict(orient="list")
answer_starts = [ast.literal_eval(a)[0] for a in d["human_ans_indices"]]
answer_meta = {k: v[0] for k, v in d.items() if k in self.answer_meta_columns}
question_meta = {k: v[0] for k, v in d.items() if k in self.question_meta_columns}
# Only fill answerable questions
if pd.unique(d["human_ans_spans"])[0] != "ANSWERNOTFOUND":
answers = [
{**{"text": text, "answer_start": answer_start}, **answer_meta}
for text, answer_start in zip(d["human_ans_spans"], answer_starts)
if text != "ANSWERNOTFOUND"
]
else:
answers = []
qas.append({**{"question": v, "id": k, "answers": answers}, **question_meta})
# Slice off ANSWERNOTFOUND from context
pars.append({"qas": qas, "context": review[: -len(" ANSWERNOTFOUND")]})
return pars
def _convert_to_squad(self, df):
"A helper function to convert a pandas.DataFrame of product-based QA dataset into SQuAD format"
groups = (
df.groupby("item_id")
.apply(self._create_paragraphs)
.to_frame(name="paragraphs")
.reset_index()
.rename(columns={"item_id": "title"})
)
squad_data = {}
squad_data["data"] = groups.to_dict(orient="records")
return squad_data