Create news-unfold-dataset.py
Browse files- news-unfold-dataset.py +47 -0
news-unfold-dataset.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import, division, print_function
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
from ast import literal_eval
|
7 |
+
|
8 |
+
_DESCRIPTION = "dataset focused on media bias classification"
|
9 |
+
|
10 |
+
_URL = "news_unfold_new_sentences_final.csv"
|
11 |
+
_HOMEPAGE = ""
|
12 |
+
_LICENSE = ""
|
13 |
+
|
14 |
+
class BABE(datasets.GeneratorBasedBuilder):
|
15 |
+
|
16 |
+
def _info(self):
|
17 |
+
return datasets.DatasetInfo(
|
18 |
+
description=_DESCRIPTION,
|
19 |
+
citation=_CITATION,
|
20 |
+
features=datasets.Features(
|
21 |
+
{"text":datasets.Value("string"),
|
22 |
+
"news_link":datasets.Value("string"),
|
23 |
+
"outlet":datasets.Value("string"),
|
24 |
+
"topic":datasets.Value("string"),
|
25 |
+
"label":datasets.Value("int16")}
|
26 |
+
)
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def _split_generators(self, dl_manager):
|
32 |
+
path = dl_manager.download_and_extract(_URL)
|
33 |
+
|
34 |
+
# There is no predefined train/val/test split for this dataset.
|
35 |
+
return [
|
36 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_path": path}),
|
37 |
+
]
|
38 |
+
|
39 |
+
def _generate_examples(self, file_path):
|
40 |
+
df = pd.read_csv(file_path)
|
41 |
+
|
42 |
+
for i, row in df.iterrows():
|
43 |
+
yield i, {"text":row['text'],
|
44 |
+
"label":row['label'],
|
45 |
+
"news_link":str(row['news_link']),
|
46 |
+
"outlet":str(row['outlet']),
|
47 |
+
"topic":str(row['topic'])}
|