Datasets:
Sub-tasks:
dialogue-modeling
Languages:
English
Multilinguality:
monolingual
Language Creators:
found
Annotations Creators:
no-annotation
Source Datasets:
original
ArXiv:
License:
cc-by-3.0
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Movie Dialog Dataset.""" | |
import datasets | |
_CITATION = """\ | |
@misc{dodge2016evaluating, | |
title={Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems}, | |
author={Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston}, | |
year={2016}, | |
eprint={1511.06931}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The Movie Dialog dataset (MDD) is designed to measure how well | |
models can perform at goal and non-goal orientated dialog | |
centered around the topic of movies (question answering, | |
recommendation and discussion). | |
""" | |
_HOMEPAGE = "https://research.fb.com/downloads/babi/" | |
_LICENSE = """Creative Commons Attribution 3.0 License""" | |
ZIP_URL = "http://www.thespermwhale.com/jaseweston/babi/movie_dialog_dataset.tgz" | |
REDDIT_URL = "http://tinyurl.com/p6tyohj" | |
dir = "movie_dialog_dataset/" | |
dir2 = "" | |
paths = { | |
"task1_qa": { | |
"train": dir + "task1_qa/task1_qa_train.txt", | |
"dev": dir + "task1_qa/task1_qa_dev.txt", | |
"test": dir + "task1_qa/task1_qa_test.txt", | |
}, | |
"task2_recs": { | |
"train": dir + "task2_recs/task2_recs_train.txt", | |
"dev": dir + "task2_recs/task2_recs_dev.txt", | |
"test": dir + "task2_recs/task2_recs_test.txt", | |
}, | |
"task3_qarecs": { | |
"train": dir + "task3_qarecs/task3_qarecs_train.txt", | |
"dev": dir + "task3_qarecs/task3_qarecs_dev.txt", | |
"test": dir + "task3_qarecs/task3_qarecs_test.txt", | |
}, | |
"task4_reddit": { | |
"train": "task4_reddit/task4_reddit_train.txt", | |
"dev": "task4_reddit/task4_reddit_dev.txt", | |
"test": "task4_reddit/task4_reddit_test.txt", | |
"cand_valid": "task4_reddit/task4_reddit_cand-valid.txt", | |
"cand_test": "task4_reddit/task4_reddit_cand-test.txt", | |
}, | |
} | |
class Mdd(datasets.GeneratorBasedBuilder): | |
"""The Movie Dialog Dataset""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="task1_qa", version=VERSION, description="This part of my dataset covers task1_qa part of the dataset" | |
), | |
datasets.BuilderConfig( | |
name="task2_recs", | |
version=VERSION, | |
description="This part of my dataset covers task2_recs part of the dataset", | |
), | |
datasets.BuilderConfig( | |
name="task3_qarecs", | |
version=VERSION, | |
description="This part of my dataset covers task3_qarecs part of the dataset", | |
), | |
datasets.BuilderConfig( | |
name="task4_reddit", | |
version=VERSION, | |
description="This part of my dataset covers task4_reddit part of the dataset", | |
), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"dialogue_turns": datasets.Sequence( | |
{ | |
"speaker": datasets.Value("int32"), | |
"utterance": datasets.Value("string"), | |
} | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
if self.config.name != "task4_reddit": | |
my_urls = ZIP_URL # Cannot download just one single type as it is a compressed file. | |
else: | |
my_urls = REDDIT_URL | |
archive = dl_manager.download(my_urls) | |
splits = [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": paths[self.config.name]["train"], "files": dl_manager.iter_archive(archive)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": paths[self.config.name]["test"], "files": dl_manager.iter_archive(archive)}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": paths[self.config.name]["dev"], "files": dl_manager.iter_archive(archive)}, | |
), | |
] | |
if self.config.name == "task4_reddit": | |
splits += [ | |
datasets.SplitGenerator( | |
name=datasets.Split("cand_valid"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": paths[self.config.name]["cand_valid"], | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split("cand_test"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": paths[self.config.name]["cand_test"], | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
] | |
return splits | |
def _generate_examples(self, filepath, files): | |
for path, f in files: | |
if path == filepath: | |
if "cand" not in filepath: | |
dialogue_turns = [] | |
example_idx = 0 | |
for idx, line in enumerate(f): | |
line = line.decode("utf-8") | |
if line.strip() == "": | |
if dialogue_turns != []: | |
yield example_idx, {"dialogue_turns": dialogue_turns} | |
example_idx += 1 | |
dialogue_turns = [] | |
elif line.strip().split()[0] == "1": # New convo | |
if dialogue_turns != []: # Already some convo, flush it out | |
yield example_idx, {"dialogue_turns": dialogue_turns} | |
example_idx += 1 | |
dialogue_turns = [] | |
exchange = line[len(line.split()[0]) :].strip().split("\t") # Skip the number in the front | |
sp1 = exchange[0] | |
sp2 = exchange[-1] # Might contain multiple tabs in between. | |
dialogue_turns.append({"speaker": 0, "utterance": sp1}) | |
dialogue_turns.append({"speaker": 1, "utterance": sp2}) | |
else: | |
exchange = line[len(line.split()[0]) :].strip().split("\t") # Skip the number in the front | |
sp1 = exchange[0] | |
sp2 = exchange[-1] # Might contain multiple tabs in between. | |
dialogue_turns.append({"speaker": 0, "utterance": sp1}) | |
dialogue_turns.append({"speaker": 1, "utterance": sp2}) | |
else: | |
if dialogue_turns != []: | |
yield example_idx, {"dialogue_turns": dialogue_turns} | |
else: | |
dialogue_turns = [] | |
example_idx = 0 | |
for idx, line in enumerate(f): | |
line = line.decode("utf-8") | |
if line.strip() == "": | |
if dialogue_turns != []: | |
yield example_idx, {"dialogue_turns": dialogue_turns} | |
example_idx += 1 | |
dialogue_turns = [] | |
elif line.strip().split()[0] == "1": # New convo | |
if dialogue_turns != []: # Already some convo, flush it out | |
yield example_idx, {"dialogue_turns": dialogue_turns} | |
example_idx += 1 | |
dialogue_turns = [] | |
exchange = line[len(line.split()[0]) :].strip() # Skip the number in the front | |
sp1 = exchange | |
dialogue_turns.append({"speaker": 0, "utterance": sp1}) | |
else: | |
exchange = line[len(line.split()[0]) :].strip() # Skip the number in the front | |
sp1 = exchange | |
dialogue_turns.append({"speaker": 0, "utterance": sp1}) | |
else: # Last line, new example | |
if dialogue_turns != []: | |
yield example_idx, {"dialogue_turns": dialogue_turns} | |
break | |