recipe_nlg / recipe_nlg.py
system's picture
system HF staff
Update files from the datasets library (from 1.16.0)
cc93fff
raw
history blame
4.43 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
import csv
import os
import datasets
_CITATION = """\
@inproceedings{bien-etal-2020-recipenlg,
title = "{R}ecipe{NLG}: A Cooking Recipes Dataset for Semi-Structured Text Generation",
author = "Bie{'n}, Micha{l} and
Gilski, Micha{l} and
Maciejewska, Martyna and
Taisner, Wojciech and
Wisniewski, Dawid and
Lawrynowicz, Agnieszka",
booktitle = "Proceedings of the 13th International Conference on Natural Language Generation",
month = dec,
year = "2020",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.inlg-1.4",
pages = "22--28"
}
"""
_DESCRIPTION = """\
The dataset contains 2231142 cooking recipes (>2 millions). It's processed in more careful way and provides more samples than any other dataset in the area.
"""
_HOMEPAGE = "https://recipenlg.cs.put.poznan.pl/"
_FILENAME = "full_dataset.csv"
class RecipeNlg(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
@property
def manual_download_instructions(self):
return """\
You need to go to https://recipenlg.cs.put.poznan.pl/,
and manually download the dataset. Once it is completed,
a file named dataset.zip will be appeared in your Downloads folder
or whichever folder your browser chooses to save files to. You then have
to unzip the file and move full_dataset.csv under <path/to/folder>.
The <path/to/folder> can e.g. be "~/manual_data".
recipe_nlg can then be loaded using the following command `datasets.load_dataset("recipe_nlg", data_dir="<path/to/folder>")`.
"""
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int32"),
"title": datasets.Value("string"),
"ingredients": datasets.Sequence(datasets.Value("string")),
"directions": datasets.Sequence(datasets.Value("string")),
"link": datasets.Value("string"),
"source": datasets.ClassLabel(names=["Gathered", "Recipes1M"]),
"ner": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(path_to_manual_file):
raise FileNotFoundError(
f"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('recipe_nlg', data_dir=...)` that includes file name {_FILENAME}. Manual download instructions: {self.manual_download_instructions}"
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(path_to_manual_file, "full_dataset.csv"),
"split": "train",
},
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file)
for idx, row in enumerate(csv_reader):
if idx == 0:
continue
resp = {
"id": row[0],
"title": row[1],
"ingredients": ast.literal_eval(row[2]),
"directions": ast.literal_eval(row[3]),
"link": row[4],
"source": row[5],
"ner": ast.literal_eval(row[6]),
}
yield idx, resp